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FRACTAL RANDOM SERIES GENERATED BY POISSON-VORONOI

TESSELLATIONS

PIERRE CALKA1 AND YANN DEMICHEL2

Abstract. In this paper, we construct a new family of random series defined on RD, indexed
by one scaling parameter and two Hurst-like exponents. The model is close to Takagi-
Knopp functions, save for the fact that the underlying partitions of RD are not the usual
dyadic meshes but random Voronoi tessellations generated by Poisson point processes. This
approach leads us to a continuous function whose random graph is shown to be fractal with
explicit and equal box and Hausdorff dimensions. The proof of this main result is based on
several new distributional properties of the Poisson-Voronoi tessellation on the one hand, an
estimate of the oscillations of the function coupled with an application of a Frostman-type
lemma on the other hand. Finally, we introduce two related models and provide in particular
a box-dimension calculation for a derived deterministic Takagi-Knopp series with hexagonal
bases.

Introduction

The original Weierstrass series (see [40]) is a fundamental example of continuous but nowhere
differentiable function. Among the more general family of Weierstrass-type functions, the
Takagi-Knopp series can be defined in one dimension as

KH(x) =
∞∑

n=0

2−nH∆(2nx) , x ∈ R, (1)

where ∆(x) = dist(x,Z) is the sawtooth -or pyramidal- function and H ∈ (0, 1] is called the
Hurst parameter of the function. Introduced at the early beginning of the 20th century (see
[36, 22]), they have been extensively studied since then (see the two recent surveys [2, 24]).

The construction of KH is only based on two ingredients: a sequence of partitions of R (the
dyadic meshes) associated with a decreasing sequence of amplitudes for the consecutive layers
of pyramids. Therefore, we can easily extend definition (1) to dimension D > 2 using the
D-dimensional dyadic meshes.

In order to provide realistic models for highly irregular signals such as rough surfaces (see
[15, 29, 12] and Chapter 6 in [34]), it is needed to randomize such deterministic functions.
Two common ways to do it are the following: either the pyramids are translated at each step
by a random vector (see e.g. [38, 16, 11]), or the height of each pyramid is randomly chosen
(see in particular [15] for the famous construction of the Brownian bridge).

In many cases the graphs of such functions are fractal sets. Therefore, their fractal dimensions
provide crucial information for describing the roughness of the data (see [26, 20]). The two
most common fractal dimensions are the box-dimension and the Hausdorff dimension. The
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former is in general easier to calculate whereas the latter is known only in very special cases
(see e.g. [28, 25, 19, 9, 4]).

In this paper, a new family of Takagi-Knopp type series is introduced. Contrary to the previ-
ous randomization procedures, our key-idea is to substitute a sequence of random partitions
of RD for the dyadic meshes. An alternative idea would have been to keep the cubes and
choose independently and uniformly in each cube each center of a pyramid. Notably because
the mesh has only D directions, it would be very tricky to calculate the Hausdorff dimension.
One advantage for applicational purposes may be to get rid of the rigid structure induced by
the cubes and to provide more flexibility with the irregular pattern. A classical model of a
random partition is the Poisson-Voronoi tessellation.

For a locally finite set of points called nuclei, we construct the associated Voronoi partition of
RD by associating to each nucleus c its cell Cc, i.e. the set of points which are closer to c than
to any other nucleus. When the set of nuclei is a homogeneous Poisson point process, we speak
of a Poisson-Voronoi tessellation (see e.g. [32, 30, 7]). In particular, the Poisson point process
(resp. the tessellation) is invariant under any measure preserving transformation of RD, in
particular any isometric transformation (see (2)). Moreover the cells from the tessellation are
almost surely convex polytopes. Classical results for the typical Poisson-Voronoi cell include
limit theorems (see [1]), distributional (see [5, 6]) and asymptotic results (see [18, 8]). The
model is commonly used in various domains such as molecular biology (see [33]), thermal
conductivity (see [23]) or telecommunications (see e.g. [39] and Chapter 5 in [3] Volume 1).
The only parameter needed to describe the tessellation is the intensity λ > 0, i.e. the mean
number of nuclei or cells per unit volume. In particular, the mean area of a typical cell from

the tessellation is λ−1. Multiplied by the scaling factor λ
1
D , the Poisson-Voronoi tessellation

of intensity λ is equal in distribution to the Poisson-Voronoi tessellation of intensity one.
This scaling invariance is a crucial property that will be widely used in the sequel.

Let λ > 1 and α, β > 0. The parameter λ is roughly speaking a scaling factor and α, β are
Hurst-like exponents. For every integer n > 0, we denote by Xn a homogeneous Poisson point
process of intensity λnβ in RD and by Tn = {Cc : c ∈ Xn} the set of cells of the underlying

Poisson-Voronoi tessellation. We recall that λ
nβ
D Tn def

= {λnβ
D Cc : c ∈ Xn} is distributed

as T0 and λ
β
D Tn law

= Tn−1 thanks to the scaling invariance. Moreover, for any isometric
transformation I : RD −→ RD, we have

I(T0) def

= {I(Cc) : c ∈ X0} law

= {Cc : c ∈ X0}. (2)

Let ∆n : RD −→ [0, 1] be the random pyramidal function satisfying ∆n = 0 on
⋃

c∈Xn
∂Cc,

∆n = 1 on Xn and piecewise linear (see Figure 1 and the beginning of section 1.2 for more
details).
In the sequel the Poisson point processes Xn are assumed to be independent. We consider
the continuous function

Fλ,α,β(x) =

∞∑

n=0

λ−
nα
D ∆n(x) , x ∈ RD. (3)

In particular Fλ,α,β is a sum of independent functions.

Let us denote by dimB(K) and dimH(K) the (upper) box-dimension and the Hausdorff di-
mension of a non-empty compact set K (see e.g. [14] for precise definitions). We are mainly
interested in the exact values of these dimensions. Our result is the following:
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(a) The Poisson-Voronoi tessellation Tn. (b) The pyramidal function ∆n.

Figure 1. Construction of the elementary piecewise linear function ∆n.

Theorem 1. Let λ > 1 and 0 < α 6 β 6 1. Then Fλ,α,β is a continuous function whose

random graph

Γλ,α,β =
{
(x, Fλ,α,β(x)) : x ∈ [0, 1]D

}
⊂ RD × R

is a fractal set satisfying almost surely

dimB(Γλ,α,β) = dimH(Γλ,α,β) = D + 1− α

β
. (4)

Equalities (4) imply that the smaller α
β
is, the more irregular Fλ,α,β and Γλ,α,β are (see Figure

2 and Figure 3). The result of Theorem 1 naturally holds when [0, 1]D is replaced with any
cube of RD.

(a) (λ, α, β) = (1.2, 1, 1) (b) (λ, α, β) = (1.2, 0.2, 1)

Figure 2. Graph of the random function Fλ,α,β when D = 1.

The paper is organized as follows. In the first section we state some preliminary results
related to the geometry of the Poisson-Voronoi tessellations. We introduce in particular
the oscillation sets On,N (see (7)) that are used to derive explicit distributional properties
on the increments of ∆n and precise estimates on the increments of Fλ,α,β. Section 2 is
then devoted to the proof of Theorem 1. An upper bound for dimB(Γλ,α,β) comes from the
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(a) (λ, α, β) = (1.5, 1, 1) (b) (λ,α, β) = (1.5, 0.2, 1)

Figure 3. Graph of the random function Fλ,α,β when D = 2.

estimation of the oscillations of Fλ,α,β whereas a lower bound for dimH(Γλ,α,β) is obtained
via a Frostman-type lemma. Finally, we introduce and study in the last section two related
models: a deterministic series based on an hexagonal mesh and a random series based on a
perturbation of the dyadic mesh.

In the sequel we will drop the indices λ, α and β so that F = Fλ,α,β and Γ = Γλ,α,β.

1. Preliminary results

1.1. Notations.

We consider the metric space RD, D > 1, endowed with the Euclidean norm ‖ · ‖. The closed
ball with center x ∈ RD and radius r > 0 is denoted by Br(x). We write Vol(A) for the
Lebesgue measure of a Borel set A ⊂ RD. In particular κD = Vol(B1(0)). The unit sphere
of RD is denoted by SD−1 and σD−1 will be the unnormalized area measure on SD−1. The
surface area of SD−1 is then ωD−1 = σD−1(S

D−1). Finally, for all s > 0, the s-dimensional
Hausdorff measure is Hs.

For all x, y ∈ [0, 1]D and all n > 0 let

Zn(x, y) = λ−
nα
D (∆n(x)−∆n(y)) (5)

so that F (x)− F (y) =
∑∞

n=0 Zn(x, y), and

Sn(x, y) =

∞∑

m=0
m6=n

Zm(x, y) (6)

so that F (x) − F (y) = Zn(x, y) + Sn(x, y). Notice that Zn(x, y) and Zm(x, y) are two
independent random variables form 6= n. In particular Zn(x, y) and Sn(x, y) are independent.

Finally, we fix H > β. For all n > 0, we set τn = λ−
nH
D .
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1.2. Random oscillation sets.

Remember that the function ∆n is piecewise linear. Any maximal set on which ∆n is linear
is the convex hull Conv({c} ∪ f) of the union of a nucleus c from Xn and a hyperface (i.e.
a (D − 1)-dimensional face) f of the cell associated with c. The set Sn of such simplices
tessellates RD. For all n,N > 0 we define the random sets

On,N =
{
x ∈ [0, 1]D : all points of BτN (x) are in the same simplex of Sn as x

}
(7)

and

WN =

∞⋂

n=N

On,n. (8)

The set On,N is referenced as random oscillation set because the oscillations of the function
∆n can be properly estimated only on such set.

The first result states that these sets are not too ‘small’.

Proposition 1.1.

(i) There exists a constant C > 0 such that, for all x ∈ [0, 1]D and all N > n > 0,

P(x 6∈ On,N ) 6 Cλ
nβ−NH

D .

(ii) We have limN→∞ P(Vol(WN ) > 0) = 1.

Proof.

(i) By invariance by translation of Xn and Tn, we notice that for every x ∈ RD,

P(0 6∈ On,N ) = P(x 6∈ On,N ). (9)

Let Skn be the skeleton of the simplex tessellation Sn, i.e. the union of the boundaries of all
simplices (see the grey region on Figure 4).

Figure 4. The skeleton of the complete tessellation (in grey).

In particular, we have the equivalence

x 6∈ On,N ⇐⇒ x ∈ Skn +BτN (0). (10)
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Let U be a uniform point in [0, 1]D, independent of the tessellation Tn, and PXn be the
distribution of the Poisson point process Xn. Using (9) and Fubini’s theorem, we get

P(U 6∈ On,N ) =

∫

[0,1]D
PXn(x 6∈ On,N )dx = P(0 6∈ On,N ).

Moreover, the equivalence (10) implies that

P(0 6∈ On,N ) = EXn

(∫

[0,1]D
1ISkn +BτN

(0)(x)dx

)
= EXn

(
Vol((Skn+BτN (0)) ∩ [0, 1]D)

)
. (11)

It remains to calculate the Lebesgue measure of the set (Skn+BτN (0))∩ [0, 1]D . Denoting by
Fn(a) the set of hyperfaces of the simplex tessellation Sn which intersect [0, a]D we have

Vol((Skn+BτN (0)) ∩ [0, 1]D) 6
∑

f∈Fn(1)

Vol(f +BτN (0)) + Vol(∂([0, 1]D) +BτN (0)).

By Steiner formula (see e.g. Prolog in [35]), we have for every f ∈ Fn(1),

Vol(f +BτN (0)) =

D−1∑

i=0

λ−
NH(D−i)

D κD−iVi(f)

where Vi(f) is the i-th intrinsic volume of f .
Consequently, we have

EXn

(
Vol((Skn+BτN (0)) ∩ [0, 1]D)

)

6

D−1∑

i=0

λ−
NH(D−i)

D κD−iEXn

( ∑

f∈Fn(1)

Vi(f)

)
+ 4Dλ−

NH
D . (12)

Using the invariance of Xn by scaling transformations and translations and the fact that Vi
is a homogeneous function of degree i, we observe that for every 0 6 i 6 D − 1,

EXn

( ∑

f∈Fn(1)

Vi(f)

)
= λ−

nβi
D E

( ∑

f∈F0(λ
nβ
D )

Vi(f)

)
= λ−

nβi
D E

( ∑

f∈F0(1)

Vi(f)

)
(λ

nβ
D )D. (13)

Combining (11), (12) and (13), we obtain the required result (i).
(ii) The point (i) implies that

E(Vol([0, 1]D \ On,n)) =

∫

[0,1]D
P(x /∈ On,n)dx = P(0 /∈ On,n) = O(λ

n(β−H)
D ).

Therefore, we obtain

E(Vol([0, 1]D \WN )) 6
∞∑

n=N

E(Vol([0, 1]D \ On,n)) 6
∞∑

n=N

O(λ
n(β−H)

D ) = O(λ
N(β−H)

D ).

Finally, using Markov’s inequality,

P(Vol(WN ) < 1/2) = P(Vol([0, 1]D \WN ) > 1/2) 6 2E(Vol([0, 1]D \WN )) 6 O(λ
N(β−H)

D )

and the result (ii) follows. �



FRACTAL RANDOM SERIES GENERATED BY POISSON-VORONOI TESSELLATIONS 7

1.3. Distribution of the random variable Zn(x, y).
This subsection is devoted to the calculation of the distribution of Zn(x, y) conditionally
on {x ∈ On,n} when ‖x − y‖ 6 τn. In particular, we obtain in Proposition 1.2 below
an explicit formula and an upper-bound for the conditional density of Zn(x, y). A similar
method provides in Proposition 1.3 the integrability of the local Lipschitz constant of Z0. All
these results will play a major role in the estimation of the oscillations of F (see Proposition
1.4) and the application of the Frostman criterion (see Proposition 1.5).

For any x ∈ [0, 1]D , let cn(x) (resp. Cn(x)) be the nucleus (resp. the cell) from the Voronoi
tessellation Tn associated with x, i.e. the point of χn which is the closest to x (resp. the cell
of such point). Let c′n(x) be the ‘secondary nucleus’ of x, i.e. the point of Xn which is the
nucleus of the neighboring cell of Cn(x) in the direction of the half-line [cn(x), x). Moreover,
for any z1 6= z2 ∈ RD and x ∈ RD \ (Bτn(z1) ∪Bτn(z2)), we consider

- the bisecting hyperplane Hz1,z2 of [z1, z2],
- the cone Λ(z1, x) of apex z1 and generated by the ball Bτn(x),
- the set An,x of couples (z1, z2) with z1 6∈ Bτn(x) such that x is between the hyperplane
orthogonal to z2−z1 and containing z1 and the parallel hyperplane which is at distance
τn from Hz1,z2 on the z1-side:

An,x =

{
(z1, z2) ∈ Bτn(x)

c × RD : 0 6
〈
x− z1, z2 − z1

〉
6

1

2
‖z2 − z1‖2

(
1− 2τn

‖z2 − z1‖

)}
.

Finally, we denote by Vn(x, z1, z2) the volume of the Voronoi flower associated with the
intersection Hz1,z2 ∩ Λ(z1, x):

Vn(x, z1, z2) = Vol
(⋃ {

B‖u−z1‖(u) : u ∈ Hz1,z2 ∩ Λ(z1, x)
})

.

Figure 5. The configuration of (z1, z2) with the associated Voronoi flower (in red).
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Proposition 1.2. Let n > 0 and x, y ∈ [0, 1]D such that x ∈ On,n and 0 < ‖x − y‖ 6 τn.
Then

(i) The increment Zn(x, y) is given by

Zn(x, y) = − 2λ−
nα
D

‖c′n(x)− cn(x)‖2
〈
x− y, c′n(x)− cn(x)

〉
. (14)

(ii) The density gZn of Zn(x, y) conditionally on {x ∈ On,n} is given by (22) for D > 2
and by (21) for D = 1. Moreover, it satisfies

sup
t∈R

gZn(t) 6
C

P(x ∈ On,n)
‖x− y‖−1 λ−

n(β−α)
D (15)

where C is a positive constant depending only on the dimension D.

Proof.

(i) If x ∈ On,n and ‖x− y‖ 6 τn then

∆n(x) =
dist(x,Hcn(x),c′n(x)

)

dist(cn(x),Hcn(x),c′n(x)
)
.

Moreover,

dist(x,Hcn(x),c′n(x)
) =

〈
x− cn(x) + c′n(x)

2
,
cn(x)− c′n(x)
‖cn(x)− c′n(x)‖

〉

and

dist(cn(x),Hcn(x),c′n(x)
) =

1

2
‖cn(x)− c′n(x)‖.

It remains to use the definition (5) of Zn(x, y) to obtain the result (i).

Figure 6. The random variable Zn(x, y).

(ii) We need to determine the joint distribution of (cn(x), c
′
n(x)). We notice that x belongs

to On,n if and only if all the points of Bτn(x) have the same nucleus as x in Xn and same
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‘secondary nucleus’. In other words,

x ∈ On,n ⇐⇒ Λ(cn(x), x) ∩Hcn(x),c′n(x)
⊂ Ccn(x) ∩ Cc′n(x).

By Mecke-Slivnyak’s formula (see Corollary 3.2.3 in [35]), for any measurable and non-
negative function h : R2 −→ R+ we have

E(h(cn(x), c
′
n(x))1I{x∈On,n})

= E

( ∑

z1 6=z2

h(z1, z2)1I(cn(x),c′n(x))(z1, z2)1I{x∈On,n}

)

= λ2nβ
∫∫

h(z1, z2)P(Λ(z1, x) ∩Hz1,z2 ⊂ Cz1 ∩ Cz2)1IAn,x(z1, z2)dz1dz2

= λ2nβ
∫∫

h(z1, z2) exp
(
−λnβVn(x, z1, z2)

)
1IAn,x(z1, z2)dz1dz2.

We point out a small abuse of notation above: the sets Cz1 and Cz2 are Voronoi cells associated
with z1 and z2 when the underlying set of nuclei is Xn ∪ {z1, z2}. We proceed now with the
change of variables z2 = (z2)ρ,u = z1 + ρu with ρ > 0 and u ∈ SD−1.

Let Ln(x) = ‖c′n(x)− cn(x)‖, un(x) = c′n(x)−cn(x)
Ln(x)

and V ′
n(·) = Vn(x, z1, z1 + ·) (keep in mind

that V ′
n will still depend on x and z1 though this dependency will not be visible for sake of

readability). The density of (Ln(x), un(x)) conditionally on {x ∈ On,n} with respect to the
product measure dρdσD−1(u) is

λ2nβ

P(x ∈ On,n)

∫

Bτn (x)
c

exp
(
−λnβV ′

n(ρu)
)
1I[0, ρ

2
−τn]

(〈
x− z1, u

〉)
ρD−1dz1. (16)

Using (14), we can rewrite the quantity Zn(x, y) as a function of Ln(x) and un(x) as

Zn(x, y) = −2λ−
nα
D

Ln(x)

〈
x− y, un(x)

〉
.

The density of the distribution of Zn(x, y) conditionally on {x ∈ On,n} can then be calculated
in the following way: for any non-negative measurable function ψ : R+ −→ R+,

E(ψ(Zn(x, y))) =
λ2nβ

P(x ∈ On,n)

∫

Bτn (x)
c

Jn(x, y, z1, ρ, u)dz1 (17)

where Jn(x, y, z1, ρ, u) is equal to
∫∫

ψ
(
−2λ−

nα
D ρ−1〈x− y, u〉

)
e−λnβV ′

n(ρu)1IR+(〈x− z1, u〉)ρD−1dρdσD−1(u),

the domain of integration for ρ being [2τn + 2〈x− z1, u〉,∞).

Case D = 1. We observe that u = ±1 and 〈x − z1, u〉 = (x − z1)u = ±(x − z1). More-
over, the condition z1 6∈ Bτn(x) means that z1 < x − τn or z1 > x + τn. It implies that
if u = 1 (resp. u = −1), the range of z1 is (−∞, x − τn) (resp. (x + τn,∞)) while for
fixed z1 the range of ρ is (2τn + 2(x − z1),∞) (resp. (2τn + 2(z1 − x),∞)). Finally, the set⋃{

B‖u−z1‖(u) : u ∈ Hz1,z2 ∩ Λ(z1, x)
}
is [z1, z1 + ρ] (if u = 1) or [z1 − ρ, z1] (if u = −1) so

V ′
n(ρu) = ρ in both cases. Consequently, we have

E(ψ(Zn(x, y))) =
λ2nβ

P(x ∈ On,n)
(I1 + I2) (18)
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where

I1 =

∫ x−τn

−∞

(∫ +∞

2τn+2(x−z1)
ψ(−2λ−nαρ−1(x− y))e−λnβρdρ

)
dz1

and

I2 =

∫ +∞

x+τn

(∫ +∞

2τn+2(z1−x)
ψ(2λ−nαρ−1(x− y))e−λnβρdρ

)
dz1.

Applying Fubini’s theorem in I1 then the change of variables ρ′ = −ρ, we get

I1 =

∫ +∞

4τn

ψ(−2λ−nαρ−1(x− y))e−λnβρ

(∫ x−τn

x− ρ
2
+τn

dz1

)
dρ

=

∫ +∞

4τn

ψ(−2λ−nαρ−1(x− y))e−λnβρ

(
ρ

2
− 2τn

)
dρ

=

∫ −4τn

−∞
ψ(2λ−nαρ′−1(x− y))e−λnβ |ρ′|

( |ρ′|
2

− 2τn

)
dρ′. (19)

Applying Fubini’s theorem in I2, we obtain

I2 =

∫ +∞

4τn

ψ(2λ−nαρ−1(x− y))e−λnβρ

(∫ x+ ρ
2
−τn

x+τn

dz1

)
dρ

=

∫ +∞

4τn

ψ(2λ−nαρ−1(x− y))e−λnβρ

(
ρ

2
− 2τn

)
dρ. (20)

Combining (18), (19) and (20), we get

E(ψ(Zn(x, y))) =
λ2nβ

P(x ∈ On,n)

∫

|ρ|>4τn

ψ(2λ−nαρ−1(x− y))e−λnβ |ρ|
( |ρ|

2
− 2τn

)
dρ.

Applying the change of variables ρ = ρt = 2λ−nαt−1(x−y), we get that the density of Zn(x, y)

is, for |t| < λ−nα |x−y|
2τn

,

gZn(t) =
2λ2nβ

P(x ∈ On,n)
e
−2λn(β−α) |x−y|

|t|

(
λ−nα |x− y|

|t| − 2τn

)
λ−nα |x− y|

t2
. (21)

In particular,

gZn(t) 6
2λ2nβ

P(x ∈ On,n)

λ−3nβ+nα

|x− y| sup
r>0

(e−2rr3),

which shows (15).

Case D > 2. We go back to (17). For almost any u ∈ SD−1, there exists a unique
v ∈ SD−1 ∩ {y − x}⊥ and a unique s =

〈
u, y−x

‖y−x‖
〉
∈ (−1, 1) such that

u = us,v = s
y − x

‖y − x‖ +
√

1− s2 v.

In particular, we can rewrite the uniform measure of SD−1 as

dσD−1(u) = (1− s2)
D−3

2 ds dσD−2(v).

We thus get that Jn(x, y, z1, ρ, u) is also equal to
∫∫∫

ψ
(
2λ−

nα
D ‖x− y‖sρ−1

)
e−λnβV ′

n(ρus,v)1IR+(〈x− y, us,v〉)ρD−1(1− s2)
D−3

2 dρds dσD−2(v),

the domain of integration for ρ being [2τn + 2〈x− z1, us,v〉,∞).
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We now proceed with the change of variables ρ = ρt = 2λ−
nα
D ‖x − y‖st−1 with st > 0. We

then deduce that the density gZn(t) at point t of Zn(x, y) conditionally on {x ∈ On,n} is given
by

gZn(t) =
λ2nβ

P(x ∈ On,n)

∫∫∫
J ′
n(x, y, z1, t, s, v)1IDn(x, y, z1, t, s, v)dsdσD−2(v)dz1 (22)

where

J ′
n(x, y, z1, t, s, v) = e−λnβV ′

n

(
2λ

−nα
D ‖x−y‖ s us,v

t

)(
2λ−

nα
D ‖x− y‖s
t

)D (1− s2)
D−3

2

t

and

Dn =

{
(x, y, z1, t, s, v) : ‖x− z1‖ > τn and 0 6 〈x− z1, us,v〉 6

λ−
nα
D ‖x− y‖s

t
− τn

}
.

In the sequel, we only deal with the case t > 0 but the same could be done likewise for t < 0.
We denote by x′ the intersection of the half-line [z1, x) with the boundary of the Voronoi cell
of z1. Moreover, we write z1 = x− γw where γ > τn and w ∈ SD−1. In particular, we notice
that

‖x′ − z1‖ =
ρ

2〈w, us,v〉
=
λ−

nα
D ‖x− y‖s
t〈w, us,v〉

.

We can now easily estimate the volume V ′
n(·) in the following way:

V ′
n(·) > Vol(B‖x′−z1‖(x

′)) = κD

(
λ−

nα
D ‖x− y‖s
t〈w, us,v〉

)D

. (23)

We then proceed with the following change of variables: for almost any w ∈ SD−1, there
exist a unique ξ = 〈w, us,v〉 ∈ [0, 1) and a unique η ∈ SD−1 ∩ {us,v}⊥ such that w = wξ,η =

ξus,v +
√

1− ξ2 η and

dz1 = γD−1dγ dσD−1(w) = γD−1(1− ξ2)
D−3

2 dγ dξ dσD−2(η). (24)

In particular, when (x, y, z1, t, s, v) ∈ Dn, we have

0 6 γ =
〈x− z1, us,v〉

ξ
6
λ−

nα
D ‖x− y‖s
tξ

. (25)

Consequently, for fixed s, ξ ∈ (0, 1), we have

∫∫∫
1IDnγ

D−1dγdσD−2(v)dσD−2(η) 6
ω2
D−2

D

(
λ−

nα
D ‖x− y‖s
tξ

)D

. (26)

We deduce from (22), (23), (24) and (26) that the density gZn(t) satisfies, for every t > 0,

gZn(t) 6
λ2nβω2

D−2

DP(x ∈ On,n)

∫ 1

0

∫ 1

0
J ′′
n(x, y, t, s, ξ) ds dξ (27)

where

J ′′
n(x, y, t, s, ξ) = e−λnβκD

(
λ
−nα

D ‖x−y‖s
tξ

)D (
√
2λ−

nα
D ‖x− y‖s)2D
t2D+1ξD

(
(1− s2)(1− ξ2)

)D−3
2 .
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Subcase D > 3. We then use the change of variables s = sτ = λ
nα
D ‖x− y‖−1tξτ . Using that

(1− s2)(1− ξ2) and ξ are bounded by 1, we obtain from the change of variables that

gZn(t) 6
λ2nβω2

D−2

DP(x ∈ On,n)

∫ 1

0

∫

{τ>0}
τDe−λnβκDτD (2τξ)D

t

tξ

λ−
nα
D ‖x− y‖

dτ dξ

6
C

P(x ∈ On,n)

λ2nβ+
nα
D

‖x− y‖

∫

{τ>0}
τ2De−λnβκDτDdτ

=
C ′

P(x ∈ On,n)

λ−
n(β−α)

D

‖x− y‖
where C and C ′ are two positive constants which only depend on D.

Subcase D = 2. We return to (27) and apply the same change of variables s = sτ =

λ
nα
D ‖x− y‖−1tξτ . We now obtain that

gZn(t) 6
8λ2nβλ

nα
2

‖x− y‖P(x ∈ On,n)

∫

{τ>0}
τ4e−λnβπτ2 (· · · ) dτ (28)

where

(· · · ) =
∫ 1∧λ

−nα
2 ‖x−y‖
tτ

ξ=0
(1− ξ)−

1
2

(
1− tξτ

λ−
nα
2 ‖x− y‖

)− 1
2

dξ.

We notice that there exists a positive constant C > 0 such that for every a > 0, we have
∫ 1∧a

ξ=0
(1− ξ)−

1
2

(
1− ξ

a

)− 1
2

dξ 6 C| log |a− 1||. (29)

Indeed, due to the facts that the left-hand side of (29) is bounded for large a and that the
calculation is symmetric with respect to 1, it is enough to look for the behaviour of the
Abelian-type integral when a > 1 is close to 1. A direct calculation shows then that

∫ 1

0
(1− ξ)−

1
2

(
1− ξ

a

)− 1
2

dξ =
√
a argch

(
a+ 1

a− 1

)
∼

a→1
− log(a− 1),

which proves (29). Consequently, we get from (28) and (29) that

gZn(t) 6
C ′λ2nβλ

nα
2

‖x− y‖P(x ∈ On,n)

∫

{τ>0}
τ4e−λnβπτ2

∣∣∣∣ log
∣∣∣∣1−

λ−
nα
2 ‖x− y‖
tτ

∣∣∣∣
∣∣∣∣ dτ,

where C ′ denotes again a positive constant.
We now fix ε ∈ (0, 1) and we split the integral:

- on the range of τ which satisfy |1− λ−nα
2 ‖x−y‖
tτ

| > ε, the upper-bound is similar to the case
D > 3;

- on the range of τ satisfying |1− λ−nα
2 ‖x−y‖
tτ

| < ε, the integral is bounded by

1

(1− ε)6
e
−λnβπ

λ−nα‖x−y‖2

(1+ε)2t2

(
λ−

nα
2 ‖x− y‖
t

)5 ∫ 1+ε

u=1−ε

| log |1− u−1|du 6 C ′ϕ

(
λ−

nα
2 ‖x− y‖
t

)

where ϕ(u) = e
−λnβπ u2

(1+ε)2 u5, u > 0.

It remains to notice that the maximum of the function ϕ is of order O(λ−
5
2
nβ) to deduce the

required result (15). �
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We conclude this subsection with the integrability of the Lipschitz constant L(x) of the affine
part of ∆0 above x, i.e.

L(x) =
2

‖c0(x)− c′0(x)‖
. (30)

We define the new set Õn,N as

Õn,N =

{
x ∈ [0, 1]D : all points of B

λ
nβ
D τN

(x) are in the same simplex of S0 as x

}
.

Proposition 1.3. For every x ∈ [0, 1]D, E(L(x)) <∞ and sup
06n6N

E(L(x)|x ∈ Õn,N ) <∞.

Proof. We could deal with the conditional distribution of L(x) in the same spirit as in the
proof of Proposition 1.2. The conditional density of ‖c0(x) − c′0(x)‖ would be in particular
very close to (16). For sake of simplicity, we choose to use a direct argument for removing the

conditioning. Indeed, we notice the following fact: on the event {x ∈ Õn,N}, a vicinity of x is
in the same simplex of S0 which means that the conditioning favors flatter pyramid faces above

x and smaller Lipschitz constants L(x). Consequently, we have E(L(x) |x ∈ Õn,N ) 6 E(L(x))
for every n,N > 0.
For D = 1, the integrability of the variable L(x) given by (30) comes from the fact that the
distance from the two neighbors of x (the nearest and second nearest) is Gamma-distributed.
When D > 2, we use a reasoning similar to the proof of Proposition 1.2 to obtain that

E(L(x)) = E

( ∑

z1 6=z2

2

‖z1 − z2‖
1I(cn(x),c′n(x))(z1, z2)

)

=

∫∫
2

‖z1 − z2‖
P((x+ R+(x− z1)) ∩Hz1,z2 ∈ Cz1 ∩ Cz2)dz1dz2. (31)

We write z2 = z1+ρu where u ∈ SD−1, ρ > 0 and u = s x−z1
‖x−z1‖+

√
1− s2v where s ∈ (0, 1) and

v ∈ SD−1∩{x−z1}⊥. In particular, the distance from z1 to the point (x+R+(x−z1))∩Hz1,z2

is ρ
2s . Consequently, we deduce from a change of variables applied to the integral in (31) that

E(L(x)) =

∫∫ ∫ 1

s=0

2ωD−2

ρ
1IR+(ρ− 2‖x− z1‖s)e−κD( ρ

2s)
D

ρD−1(1− s2)
D−3

2 ds dρdz1.

When D > 3, we proceed with the change of variables τ = τs = ρ
2s . There is a constant

C > 0 such that

E(L(x)) 6 ωD−2

∫ ∞

ρ=0
ρD−1

∫ ∞

τ= ρ
2

(∫

B(x,τ)
dz1

)
e−κDτDτ−2dτdρ

6 C

∫ ∞

ρ=0
ρD−1

∫ ∞

τ= ρ
2

τD−2e−κDτDdτdρ

6 C

∫ ∞

ρ=0
ρD−1e−

κD
2 ( ρ

2)
D

dρ

∫ ∞

τ=0
τD−2e−

κD
2

τDdτ <∞.

Finally, when D = 2, with the same change of variables, we get

E(L(x)) 6 C

∫ ∞

ρ=0
ρ

∫ ∞

τ= ρ
2

e−πτ2 dτdρ√
1−

(
ρ
2τ

)2 . (32)
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We treat separately the integral in τ for fixed ρ > 0 :
∫ ∞

τ= ρ
2

e−πτ2 dτ√
1−

(
ρ
2τ

)2 6 2ρe−π( ρ
2)

2
∫ ρ

τ= ρ
2

ρ

2τ2
dτ√

1−
(

ρ
2τ

)2 +

√
4

3

∫ ∞

τ=ρ

e−πτ2dτ

6 2ρe−π( ρ
2)

2 [
arccos

( ρ
2u

)]ρ
ρ
2

+

√
4

3
e−

π
2
ρ2
∫ ∞

τ=0
e−

π
2
τ2dτ

6
2π

3
ρe−π( ρ

2)
2

+ C ′e−
π
2
ρ2 , (33)

where C ′ is a positive constant. Inserting (33) in (32), we get the required result. �

1.4. Size of the increments of F .
The box-dimension of Γ, as well as its Hausdorff dimension, is closely related to the oscillations
of F (see [13, 14]). Let us recall that, for every A ⊂ [0, 1]D , the oscillation of F over A is
defined by

osc(F,A) = sup
y,y′∈A

|F (y′)− F (y)|. (34)

In particular, we will consider, for all x ∈ [0, 1]D and τ > 0, the oscillation of F over the cube
x+ [0, τ ]D given by

oscτ (x) = osc(F, x+ [0, τ ]D) = sup
y,y′∈ x+[0,τ ]D

|F (y′)− F (y)|. (35)

Proposition 1.4. Let 0 < p < α
H
. Then, for every x ∈ [0, 1]D, we have, when N → ∞,

E(oscτN (x)) = E(oscτN (0)) = O(τpN ).

Proof. Let us write

δN = sup
x∈[0,τN ]D

|F (x)− F (0)|.

We claim that

P
(
lim inf

{
δN 6 τpN

})
= 1. (36)

By Markov’s inequality,

P
(
δN > τpN

)
6 τ−p

N E (δN ) . (37)

We can write

E (δN ) 6 E

( ∞∑

n=0

sup
x∈[0,τN ]D

|Zn(x, 0)|
)
= S1(N) + S2(N) + S3(N)

with

S1(N) =

N∑

n=0

E

(
sup

x∈[0,τN ]D
|Zn(x, 0)|

∣∣∣∣ 0 ∈ On,N

)
P(0 ∈ On,N ),

S2(N) =

N∑

n=0

E

(
sup

x∈[0,τN ]D
|Zn(x, 0)|

∣∣∣∣ 0 6∈ On,N

)
P(0 6∈ On,N ),

S3(N) =

∞∑

n=N+1

E

(
sup

x∈[0,τN ]D
|Zn(x, 0)|

)
.
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Since [0, τn]
D ⊂ B√

DτN
(0), we mention that for the purpose of this proof, the definition (7) of

the set On,N should be slightly adapted by substituting
√
DτN for τN . For sake of simplicity,

we omit that technical detail.
For S1(N), we notice that

E

(
sup

x∈[0,τN ]D
|Zn(x, 0)|

∣∣∣∣ 0 ∈ On,N

)
6 (λ−

nα
D

√
D τN )(λ

nβ
D E(L(0) | 0 ∈ Õn,N ))

where L(0) is the Lipschitz constant of ∆0 at 0 when the underlying Poisson point process
is homogeneous of intensity 1. Indeed, the function ∆n is Lipschitz above 0 with Lipschitz

constant equal in distribution to λ
nβ
D L(0) by scaling invariance. Moreover, the distribution of

that Lipschitz constant conditional on {0 ∈ On,N} is the same as the distribution of λ
nβ
D L(0)

conditional on {0 ∈ Õn,N}. Using (5), we get the inequality above. Thanks to Proposition

1.3, we have supn,N∈N E(L(0) | 0 ∈ Õn,N ) <∞.
Thus, using 0 < α 6 β 6 1, we obtain

S1(N) 6

N∑

n=0

λ−
nα
D λ−

NH
D λ

nβ
D

√
D sup

n,N∈N
E(L(0) | 0 ∈ Õn,N ) 6

{
C1 λ

(β−α−H)N
D if α < β

C ′
1Nλ

−NH
D if α = β

where C1, C
′
1 are two positive constants which do not depend on N .

For S2(N) we use the upper estimate (see (5))

E

(
sup

x∈[0,τN ]D
|Zn(x, 0)|

∣∣∣∣ 0 6∈ On,N

)
6 λ−

nα
D

and Proposition 1.1(i) to get

S2(N) 6
N∑

n=0

λ−
nα
D λ

nβ−NH
D 6

{
C2 λ

(β−α−H)N
D if α < β

C ′
2Nλ

−NH
D if α = β

where C2, C
′
2 are two positive constants which do not depend on N .

Finally, for S3(N) we only use the upper estimate

E

(
sup

x∈[0,τN ]D
|Zn(x, 0)|

)
6 λ−

nα
D

to get

S3(N) 6

∞∑

n=N+1

λ−
nα
D 6 C3 λ

−Nα
D

where C3 > 0 is a positive constant which does not depend on N .
Therefore,

E

( ∞∑

n=0

sup
x∈[0,τN ]D

|Zn(x, 0)|
)
6





C
(
τ
1−β−α

H

N + τ
α
H

N

)
if α < β

C ′(| log(τN )|τN + τ
α
H

N

)
if α = β

where C,C ′ are two positive constants which do not depend on N . The rhs of (37) is in

particular summable in N as soon as p < α
H

(which guarantees that 1 − β−α
H

> p since

1− β
H
> 0). Consequently, by Borel-Cantelli’s lemma, (36) holds. Then, we obtain

oscτN (0) 6 2δN = O(τpN )
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almost surely for all N large enough. To conclude, let us notice that, by stationarity, it
follows that

E(oscτN (x)) = E(oscτN (0)) = O(τpN )

for all x ∈ [0, 1]D. �

We conclude this subsection with an estimate of the expectation of a particular functional of
the increment F (x)− F (y) that will appear in the application of a Frostman-type lemma in
the next section.

Proposition 1.5. Let s > 1 and n > 0. If x, y ∈ [0, 1]D satisfy τn+1 < ‖x− y‖ 6 τn then

E

(
(|F (x)− F (y)|2 + ‖x− y‖2)− s

2 1IOn,n(x)
)
6 C‖x− y‖−s+β−α

H (38)

where C > 0 is a constant which does not depend on x, y, n.

Proof. Remember that F (x) − F (y) = Zn(x, y) + Sn(x, y) where Zn(x, y) and Sn(x, y) are
independent. Let Pn be the probability associated with Xn and µSn be the probability
distribution of the random variable Sn(x, y). From Proposition 1.2 one obtains

E

(
(|F (x) − F (y)|2 + ‖x− y‖2)− s

2 1IOn,n(x)
)

=

∫∫
((Zn(x, y) + v)2 + ‖x− y‖2)− s

21IOn,n(x)dPndµSn(v)

=

∫∫
P(x ∈ On,n)((u + v)2 + ‖x− y‖2)− s

2 gZn(u)dudµSn(v)

6

∫
P(x ∈ On,n)

(∫

{|u+v|<‖x−y‖}
‖x− y‖−sgZn(u)dudµSn(v) +

∫

{|u+v|>‖x−y‖}
|u+ v|−sgZn(u)dudµSn(v)

)

6 2‖x− y‖ sup
t∈R

(gZn(t))‖x − y‖−s + sup
t∈R

(gZn(t))

∫

{|u+v|>‖x−y‖}
|u+ v|−sdudµSn(v)

6 2C‖x− y‖ ‖x− y‖−1λ−
n(β−α)

D ‖x− y‖−s + C‖x− y‖−1λ−
n(β−α)

D ‖x− y‖−s+1

= C‖x− y‖−sλ−
n(β−α)

D .

Finally, the assumption on ‖x − y‖ implies that λ−n 6 (‖x − y‖λH
D )

D
H , which provides the

desired bound. �

2. Proof of the main theorem

Let us recall that for any non-empty compact set K ⊂ RD+1 one has (see [14])

0 6 dimH(K) 6 dimB(K) 6 D + 1. (39)

Thus the proof of Theorem 1 will consist in proving that D + 1 − α
β
is an upper bound for

dimB(Γ) and a lower bound for dimH(Γ).

2.1. An upper bound for the box-dimension of Γ.
First we investigate the box-dimension of Γ. For every τ > 0 we cover [0, 1]D×R with τ -mesh
cubes and denote by N (τ) the (finite) number of cubes from this partition which intersect Γ.
Then, we can express the box-dimension of Γ in terms of N (τN ) (see Section 3.1 in [14] and
Section 2.2 in [38]):

dimB(Γ) = lim sup
N→∞

logN (τN )

| log(τN )| . (40)
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Lemma 2.1. There exists a constant d > 0 such that P(dimB(Γ) = d) = 1.

Proof. For every m ∈ N, let us denote by Am the σ-algebra generated by the point process
Xm and Fm(x) =

∑m
n=0 λ

−nα
D ∆n(x), x ∈ [0, 1]D . Since Fm is a Lipschitz function, the graph

of the function F − Fm has the same box-dimension as the graph of F (see Section 12.4 in
[38] or Chapter 11 in [14]). Consequently, we can use (40) to show that dimB(Γ) is a random
variable which is measurable with respect to σ(Am : m > n) for every n ∈ N. We then use
the 0-1 law to deduce that it is almost surely constant. �

Proof of the upper bound of (4).
Let (τNk

)k be a subsequence of (τN )N such that

dimB(Γ) = lim
k→∞

logN (τNk
)

| log(τNk
)| 6 D + 1.

Applying Lebesgue’s convergence theorem we obtain

E

(
lim
k→∞

logN (τNk
)

| log(τNk
)|

)
= lim

k→∞
E

(
logN (τNk

)

| log(τNk
)|

)
6 lim sup

N→∞
E

(
logN (τN )

| log(τN )|

)
.

Then, Jensen’s inequality with the concave function log yields

E(dimB(Γ)) 6 lim sup
N→∞

E

(
logN (τN )

| log(τN )|

)
6 lim sup

N→∞
logE

( N (τN )

| log(τN )|

)
.

We now use Proposition 11.1 from [14] and Proposition 1.4 to get

E(N (τN )) 6 2⌈τ−1
N ⌉D + τ−1

N

∑

k=(k1,...,kD)

06ki6⌈τ−1
N

⌉

E(oscτN (kτN )) = O
(
τp−D−1
N

)
.

In conclusion, for every H > β and p < α
H
, we obtain E(dimB(Γ)) 6 D + 1 − p. We finally

get

dimB(Γ) = E(dimB(Γ)) 6 D + 1− α

β

by letting H → β, p→ α
β
, and by using Lemma 2.1. �

2.2. A lower bound for the Hausdorff dimension of Γ.
To find a lower bound for the Hausdorff dimension of a compact set is generally a difficult
problem. An important step was made in [19] when Hunt proposed a way to find a lower
bound for the Hausdorff dimension of the graph of Weierstrass functions using the ‘finite
energy criterion’. The arguments of [19] can be applied for a large class of Weierstrass-type
functions, but not for the Takagi-Knopp series defined by (1) because the sawtooth function
∆ is not regular enough. This well-known criterion is used for calculating the Hausdorff
dimension of more general fractal sets (see e.g. Chapter 4 in [31]).
Let us recall that the Hausdorff dimension of a non-empty compact set K ⊂ RD+1 may be
expressed in terms of finite energy of some measures thanks to a lemma due to Frostman (see
e.g. [21, 27]):

dimH(K) = sup
µ

(
sup{s > 0 : Is(µ) <∞}

)

where the supremum on µ is taken over all the finite and non-null Borel measures such that
µ(K) > 0, Is(µ) being the s-energy of µ defined by

Is(µ) =

∫∫
‖x− y‖−sdµ(x)dµ(y). (41)
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Therefore, if such a measure µ satisfies Is(µ) <∞ then dimH(K) > s.

Let us recall now a classical way to construct such a measure on Γ. For each N > 0 the set
WN (see (8)) is a Borel subset of [0, 1]D . Since F is a continuous function then Γ is a Borel set
too so that we can consider the measure µWN

obtained by lifting onto Γ the D-dimensional
Lebesgue measure restricted to WN . Precisely, for all Borel set E ⊂ RD+1 = RD × R,

µWN
(E) = Vol

{
x ∈ [0, 1]D ∩WN such that (x, F (x)) ∈ E

}

and µWN
is a positive measure as soon as Vol(WN ) > 0. The s-energy of µWn is then

Is(µWN
) =

∫∫

WN×WN

(
‖x− y‖2 + |F (x)− F (y)|

)2
)−

s
2dxdy. (42)

Notice that the finiteness of Is(µWN
) depends only on the size of the increments F (x)−F (y)

when ‖x− y‖ is small.

Proof of the lower bound of (4).
Let us consider, for all n > 0, the set

Tn =
{
(x, y) ∈ [0, 1]D × [0, 1]D : τn+1 < ‖x− y‖ 6 τn

}
.

Let N > 1 and s > 1. Since WN ⊂ On,n for all n > N , we have, with (42),

Is(µWN
) 6

∫∫

(x,y)∈WN×[0,1]D

(
‖x− y‖2 + |F (x)− F (y)|

)2
)−

s
2 dxdy

6 C ′ + CN +

∞∑

n=N

∫∫

(x,y)∈Tn∩(WN×[0,1]D)

(
‖x− y‖2 + |F (x)− F (y)|

)2
)−

s
2 dxdy

6 C ′ + CN +

∞∑

n=N

∫∫

(x,y)∈Tn

(
‖x− y‖2 + |F (x)− F (y)|

)2
)−

s
21IOn,n(x) dxdy

where

C ′ =
∫∫

{(x,y)∈WN×[0,1]D:‖x−y‖>1}

(
‖x− y‖2 + |F (x)− F (y)|

)2
)−

s
2 dxdy

6

∫∫

{(x,y)∈[0,1]D×[0,1]D:‖x−y‖>1}
‖x− y‖−sdxdy 6 1,

and

CN =

∫∫

(x,y)∈(T0∪···∪TN−1)∩(WN×[0,1]D)

(
‖x− y‖2 + |F (x)− F (y)|

)2
)−

s
2 dxdy

6

∫∫

(x,y)∈(T0∪···∪TN−1)
‖x− y‖−sdxdy 6 λNHs.

To show that the integral (42) is finite almost surely it is enough to show that its expectation
is finite. By Fubini’s theorem,

E(Is(µWN
)) 6 1 + λNHs +

∞∑

n=N

∫∫

(x,y)∈Tn

E
((
‖x− y‖2 + |F (x)− F (y)|

)2
)−

s
21IOn,n(x)

)
dxdy.

Using the estimate (38) we obtain

E(Is(µWN
)) 6 1 + λNHs + C

∫∫

(x,y)∈∪∞
n=N

Tn

‖x− y‖−s+β−α
H dxdy.
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This latter integral converges as soon as −s + β−α
H

> −D. Therefore the random measure

µWN
has a finite s-energy for all 1 < s < D + β−α

H
. Since N may be chosen such that the

probability P(Vol(WN ) > 0) will be arbitrarily close to 1 (see Proposition 1.1) we deduce
that

dimH(Γ) > D +
β − α

H

for all H > β and almost surely. We obtain the desired lower bound by letting H ∈ Q+ go
to β. �

3. Related models

In this section, we study the fractal properties of two different models which are related to our
Poisson-Voronoi construction: a deterministic series of pyramidal functions with hexagonal
bases on the one hand, a random perturbation of the classical Takagi-Knopp series on a
dyadic mesh on the other hand.

3.1. Takagi-like series directed by hexagonal Voronoi tessellations.

The series that we study here is only defined in R2. It is very close to the original function
Fλ,α,β. The novelty lies in the ∆n functions: we consider now pyramids with a regular
hexagonal basis. This model is naturally related to the previous one for two reasons. First,
an hexagonal mesh is known to be the Voronoi tessellation generated by a regular triangular
mesh. Secondly, the mean of the number of vertices of a typical cell from a Poisson-Voronoi
tessellation is known to be 6 (see e.g. Prop. 3.3.1. in [30]) so that an hexagonal mesh may
be seen as an idealized realization of a Poisson-Voronoi tessellation.

We start with the deterministic Voronoi tessellation whose cells are identical regular hexagons
such that one is centered at the origin (0, 0) and has a vertex at (1, 0). Then, considering all
the centers of these hexagons as a set of points X0, we set Xn = 2−nX0 and construct the
hexagonal Voronoi tessellation associated with. Here again ∆n : R2 −→ [0, 1] is the piecewise
linear pyramidal function satisfying ∆n = 0 on

⋃
c∈Xn

∂Cc and ∆n = 1 on Xn.

Let us notice that, for all x ∈ R2 and all n > 0, we have ∆n(x) = ∆(2nx). We fix α ∈ (0, 1]
and define a function

fα(x) =

∞∑

n=0

2−nα∆n(x) =

∞∑

n=0

2−nα∆(2nx) , x ∈ R2. (43)

The main theorem of this section is the analogue of Theorem 1. Actually we state a more
precise result than Proposition 1.4 for the oscillations of fα but we cannot determine the
Hausdorff dimension of Γα.

Theorem 3.1. Let 0 < α 6 1. Then fα is a continuous function such that

∃C,C ′ > 0, ∀ τ ∈ (0, 1), ∀x ∈ [0, 1]2, C ′τα 6 oscτ (x) 6 Cτα. (44)

Moreover, its graph

Γα =
{
(x, fα(x)) : x ∈ [0, 1]2

}
⊂ R2 × R

is a fractal set satisfying

dimB(Γα) = 3− α. (45)
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Proof. In the sequel we drop again the index α so that f = fα and Γ = Γα. We also keep the
notation Zn(x, y) = 2−nα(∆n(x)−∆n(y)) = 2−nα(∆(2nx)−∆(2ny)) for all x, y ∈ R2.

(i) Let us state the upper estimates first. We fix x, y ∈ [0, 1]2 such that ‖x− y‖ ∈ (0, 1) and
consider N > 1 such that 2−N < ‖x − y‖ 6 2−(N−1). Using the fact that ∆ is Lipschitz,
with Lipschitz constant 1, and bounded by 1, we have |Zn(x, y)| 6 2−nα min(2n‖x − y‖, 1).
Therefore

|f(x)− f(y)| 6
∞∑

n=0

|Zn(x, y)| 6
N−1∑

n=0

(2n(1−α)‖x− y‖) +
∞∑

n=N

2−nα

6 ‖x− y‖ 2N(1−α)

21−α − 1
+

2−Nα

1− 2−α

6 ‖x− y‖(2‖x − y‖−1)(1−α)

21−α − 1
+

‖x− y‖α
1− 2−α

6 C‖x− y‖α

where C is a positive constant which only depends on α. Then, |f(x)− f(y)| 6 Cτα for all
x, y ∈ R2 such that 0 < ‖x− y‖ <

√
2τ < 1. This gives the upper bound in (44).

(ii) Now we state the lower estimates. We begin with finding a lower bound for the oscillation
over an hexagonal cell. The key-point for estimating this oscillation is to calculate two
particular increments for two pairs of well-chosen points belonging to the cell, namely the
center and vertices. To keep in mind the number of the generation, we denote by Cn

c , c ∈ Xn

(resp. Tn, Sn, Skn) the cells of the Voronoi tessellation of generation n (resp. the set
{Cn

c : c ∈ Xn}, the associated simplex tessellation and the skeleton of the simplex tessellation).
Moreover, the six vertices of a cell Cn

c are denoted by ci with i ∈ {1, . . . , 6}.
Then, let N > 1, c ∈ XN , c1, . . . , c6 the vertices of CN

c and i ∈ {1, . . . , 6}. We can write

f(c)− f(ci) =

N−1∑

n=0

Zn(c, ci) +

∞∑

n=N

Zn(c, ci).

As soon as a point is the center (resp. a vertex) of a cell CN
c then it is the center (resp.

a vertex) of all the cells of higher generations. Hence ∆(2nc) = 1 and ∆(2nci) = 0 for all
n > N . Therefore

∞∑

n=N

Zn(c, ci) =
∞∑

n=N

2−nα =
1

1− 2−α
2−Nα.

Let i, j ∈ {1, . . . , 6}. We obtain

sup
y,y′∈CN

c

|f(y′)− f(y)| > 1

2

(
(f(c)− f(ci)) + (f(c)− f(cj))

)

>
1

2

(N−1∑

n=0

Zn(c, ci) +
N−1∑

n=0

Zn(c, cj)

)
+

1

1− 2−α
2−Nα. (46)

For a fixed hexagon CN
c , we claim that there exists a pair of two diametrically opposed vertices

ci and cj such that the sum of the two first sums above is positive. Indeed, for n < N , the
center c is included in one or two cells C′n

c of the tessellation of generation n and it can be
only in three positions: at the center c′ of a cell from Tn, on one ‘edge’ of the skeleton Skn
(i.e. a segment between two consecutive vertices c′i and c

′
i+1 or between the center c′ and one

of its vertex c′i), or on a ‘face’ (i.e. an open triangle of vertices c′, c′i and c
′
i+1 or equivalently,
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a connected component of the complementary set of Skn). Let us denote by C, E and F
respectively these three positions of c. We are interested in the behaviour of the sequence of
the positions of c when n goes from N to 0. In particular, we notice the two following facts.

• The set of centers of Tn−1 is included in the set of centers of Tn. Consequently, if c is
in position E or F at step n, it cannot be in position C at step (n− 1).

• The skeleton Skn−1 is included in the skeleton Skn. Consequently, if c is in position
F at step n, it cannot be in position E at step (n− 1).

Consequently, the sequence of positions when n goes from N to 0 has to be (C, · · · , C) or
(C, · · · , C,E, · · · , E) or (C,C, · · · , C,E, · · · , E, F, · · · , F ) (see the first generations on Figure
7 below).

Figure 7. The only three possibilities for the sequence of the positions of the centers of
the cells. On the left p goes from 1 to 0: c gives (C,C), c′ gives (C,E) and c′′ gives (C,E).
On the right p goes from 2 to 0: c gives (C,C, C), c′ gives (C,C, E), c′′ gives (C,E,E) and
c′′′ gives (C,E, F ).

Let us choose now the pair (ci, cj) of vertices from CN
c which satisfies that the sum of the

first two sums in (46) is non-negative. In the sequel, we will use the following general facts.

• When c is in position E at step n, then there exist exactly two diametrically opposed
vertices from CN

c which are on the same edge of Skn as c.
• When c is in position F at step n, then the whole cell CN

c is included in the same face
as c.

Case (C, · · · , C). When the sequence of positions of c is (C, · · · , C), we have ∆(2nc) = 1 >

∆(2nci) for every n < N . Consequently, for any choice of ci and cj , the sum of the two sums
is non-negative.

Case (C, · · · , C,E, · · · , E). Let n0 be the maximal n < N such that c is in position E at
step n. Let ci and cj be the two diametrically opposed vertices associated with c which are
on the same edge of the skeleton Skn0 . For every n0 < n < N , we have Zn(c, ci) > 0 and
Zn(c, cj) > 0 (see the previous case). If n 6 n0, either the edge of Skn containing c, ci and
cj is an edge from an hexagon of Tn or it is a segment between a center of an hexagon and
one of its vertices. In the first case, we have ∆(2nc) = ∆(2nci) = ∆(2ncj) = 0. In the second
case, since c is the midpoint of [ci, cj ] and the slope of the pyramid is the same above the
three points, we have ∆(2nc) − ∆(2nci) = −(∆(2nc) −∆(2ncj)). Consequently, the sum of
the two sums in (46) is non-negative.

Case (C,C, · · · , C,E, · · · , E, F, · · · , F ). We define ci and cj as in the previous case. The
same reasoning as before can be applied for every n < N such that c is in position C or E
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at step n. Let n < N be such that c is in position F at step n. Then the slope above the
three points c, ci and cj is constant so the equality ∆(2nc)−∆(2nci) = −(∆(2nc)−∆(2ncj))
is still valid. Consequently, the sum of the two sums in (46) is non-negative.

Therefore,
sup

y,y′∈CN
c

|F (y′)− F (y)| > C ′2−Nα

where C ′ is a positive constant which only depends on α.
Finally, let τ ∈ (0, 1), x ∈ [0, 1]2 and N > 1 such that 2−N < τ 6 2−(N−1). The ball Bτ (x)
contains a cell CN+1

c of generation N + 1, thus

oscτ (x) > sup
y,y′∈CN+1

c

|F (y′)− F (y)| > C ′2−(N+1)α
> C ′′τα,

which gives the lower bound in (44).

Combining (i) and Proposition 11.1 in [14] (see also [13]) we get N (τN ) ∼ τα−3
N as N → ∞.

The result is then a consequence of (40). �

3.2. Takagi-Knopp series generated by a random perturbation of the dyadic mesh.

In this subsection, we stray from the Voronoi partition of RD. An alternative way of ran-
domizing the underlying partition of a Takagi-Knopp series is the following: the sequence of
dyadic meshes Dn = 2−nZD, n ∈ N, is kept but each mesh Dn is translated by a random
uniform vector in 2−n(0, 1)D . In each cube Cn,k, k ∈ N, of the translate of Dn, a random uni-
form ‘nucleus’ cn,k is chosen independently. The associated random pyramidal function ∆n

is defined so that it is equal to zero on the translate of Dn and to 1 on the set {cn,k, k ∈ N}.
The Takagi-Knopp type series Fα,β, α, β > 0, is then given by a definition very similar to
(3) with λ = 2. Compared to our Poisson-Voronoi construction, the main advantage of this
model is that it preserves the cube structure so that it could be easier to deal with it in
dimension two for applicational purpose in image analysis and pixel representation. The
essential drawback is that the rigid structure of the mesh prevents us from obtaining an
explicit Hausdorff dimension. Still, some results close to those proved in Section 1 can be
deduced from similar methods. Indeed, if the random oscillation set On,N , n,N ∈ N, the

increment Zn(x, y), x, y ∈ RD, the density gZn of Zn(x, y) conditionally on {x ∈ On,N} and
the Lipschitz constant L(x) are defined analogously, then the conclusions of Propositions 1.1
and 1.3 are satisfied. Moreover, the point (ii) of Proposition 1.2 is replaced by the following
estimate:

sup
t∈R

gZn(t) 6
C

P(x ∈ On,n)
λ−

n(β−α)
D

D∑

i=1

1

|xi − yi|
. (47)

As a consequence, it is possible to derive an analogue of Proposition 1.4 and of the upper-
bound of the box-dimension in (4). This upper-bound is in particular the exact Hausdorff
dimension when D = 1. Indeed, in the linear case, the estimate of supt∈R gZn(t) in (47)
coincides with (ii) of Proposition 1.2, which implies that the lower-bound can be obtained
along the same lines as in Section 2. We sum up our results in the next proposition, given
without a detailed proof.

Proposition 3.2. Let Fα,β be the function as above with 0 < α 6 β 6 1. Then, its graph

Γα,β satisfies almost surely the following estimates.

(i) For every D > 2, dimB(Γα,β) 6 D + 1− α
β
.

(ii) When D = 1, dimB(Γα,β) = dimH(Γα,β) = 2− α
β
.
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Unfortunately, the fact that the sum
∑D

i=1
1

|xi−yi| is a substitute for the inverse of the Eu-

clidean norm ‖x − y‖−1 in the estimate (47) makes the proof of the lower-bound of the
Hausdorff dimension more intricate for D > 2. This could be eventually considered as an
extra-argument in favor of our Poisson-Voronoi construction.

Acknowledgement. We thank an anonymous referee for a careful reading of the original
manuscript, resulting in an improved and more accurate exposition.
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