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THE FULL FAITHFULNESS CONJECTURES IN

CHARACTERISTIC p

BRUNO KAHN

ABSTRACT. We present a triangulated version of the conjectures of Tate

and Beilinson on algebraic cycles over a finite field. This sheds a new

light on Lichtenbaum’s Weil-étale cohomology.
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INTRODUCTION

It is generally understood that the “standard” conjectures on mixed mo-

tives predict that certain triangulated realisation functors should be conser-

vative. The aim of this text is to explain that, at least in characteristic p, they

predict much more: namely, that suitable triangulated realisation functors

should be fully faihtful.

The main result is the following. Let F be a finite field, and let DMét(F)
be Voevodsky’s stable category of (unbounded, étale) motivic complexes.

Date: September 19, 2012.

1



2 BRUNO KAHN

It contains the category DMeff
ét (F) of effective motivic complexes as a full

subcategory. Let l be a prime number different from 2 and charF. By work

of Ayoub [4], there is a pair of adjoint functors:

DMét(F)
Ωl

⇆
Rl

D̂ét(F,Zl)

where the right hand side is Ekedahl’s category of l-adic coefficients [22].

In particular, we have the object

Γ = Ωl(Zl) ∈ DMét(F).

Theorem 1 (cf. Corollary 9.8.4). The following conditions are equivalent:

(i) The Tate conjecture (on the poles of the zeta function) and the Beilin-

son conjecture (on rational equivalence agreeing with numerical

equivalence) hold for any smooth projective F-variety.

(ii) Γ ∈ DMeff
ét (F).

The full faithfulness statement announced above appears as another equiv-

alent condition in Proposition 10.3.3 a); further equivalent conditions (finite

generation of Hom groups) appear in Theorem 10.4.2. After the fact, see

§11, these reformulations involve Weil étale cohomology. For a case when

they hold in the triangulated context, see Theorem 12.2.1.

Curiously, the Beilinson conjecture and the Parshin conjecture (on van-

ishing of higher rational K-groups of smooth projective F-varieties) are

sufficient to imply the existence of a motivic t-structure on DMgm(F,Q),
as well as semi-simplicity and independence of l for the Ql-adic realisations

of objects of this category: see Proposition 10.5.1.

A problem is that there is no known analogue of this picture in character-

istic 0 at the moment. While in characteristic p a single l-adic cohomology

is sufficient to approach cycles modulo rational equivalence, it seems that

in characteristic 0 one should consider the full array of realisation functors,

plus their comparison isomorphisms. Even with this idea it does not seem

obvious how to get a clean conjectural statement. In the light of §11, this

might be of great interest to get the right definition of Weil-étale cohomol-

ogy in characteristic 0.

This is a write-up of the talk I gave at the summer school on July 27,

2006. Much of the oral version was tentative because the suitable l-adic

realisation functors were not constructed at the time. The final version is

much more substantial than I had envisioned: this is both because of tech-

nical difficulties and because I tried to make the exposition as pedagogical

as possible, in the spirit of the summer school. I hope the reader will bear

with the first reason, and be satisfied with the second one.

I also hope that some readers will, like me, find the coherence and beauty

of the picture below compelling reasons to believe in these conjectures.
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I wish to thank Joseph Ayoub for a great number of exchanges while

preparing this work, and the referee for a thorough reading which helped

me improve the exposition.

Notation. k denotes a perfect field; we write Sm(k) for the category of

smooth separated k-schemes of finite type. When k is finite we write F

instead of k and denote by G ≃ Ẑ its absolute Galois group.

If C is a category, we write C(X, Y ), HomC(X, Y ) or Hom(X, Y ) for

the set of morphisms between two objects X, Y , according to notational

convenience.

1. GENERAL OVERVIEW

This section gives a background to the sequel of the paper.

1.1. Triangulated categories of motives. As explained in André’s book

[1, Ch. 7], the classical conjectures of Hodge and Tate, and less classical

ones of Grothendieck and Ogus, may be interpreted as requesting certain re-

alisation functors on pure Grothendieck motives to be fully faithful. These

conjectures concern algebraic cycles on smooth projective varieties modulo

homological equivalence. On the other hand, both Bloch’s answer to Mum-

ford’s nonrepresentability theorem for 0-cycles [10, Lect. 1] and Beilin-

son’s approach to special values of L-functions [5, 7] led to conjectures

on cycles modulo rational equivalence: the conjectures of Bloch-Beilinson

and Murre (see Jannsen [45] for an exposition).

This development came parallel to another idea of Beilinson: in order

to construct the (still conjectural) abelian categoryM(k) of mixed motives

over a field k, one might start with the easier problem of constructing a

triangulated category of motives, leaving for later the issue of finding a

good t-structure on this category. Perhaps Beilinson had two main insights:

first, the theory of perverse sheaves he had been developing with Bernstein,

Deligne and Gabber [8] and second, his vanishing conjecture for Adams

eigenspaces on algebraic K-groups (found independently by Soulé) which

deals with an a priori obstruction to the existence ofM(k).
The latter programme: constructing triangulated categories of motives,

was successfully developed by Levine [53], Hanamura [31] and Voevod-

sky [78] independently. All three defined tensor triangulated categories of

motives over k, by approaches similar in flavour but quite different in de-

tail. It is now known that all these categories are equivalent, if char k = 0
or if we take rational coefficients.1 More precisely, the comparison between

Levine’s and Voevodsky’s categories is due to Levine in characteristic 0 [53,

1Gabber’s recent refinement of de Jong’s alteration theorem [36] now allows us to just

invert the exponential characteristic for these theorems.
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Part I, Ch. VI, 2.5.5] and to Ivorra in general [38], while the comparison

between Hanamura’s and Voevodsky’s categories is due to Bondarko [12]

and independently to Hanamura (unpublished).

These three constructions extend when replacing the field k by a rather

general base S [53, 81, 32]2. At this stage, the issue of Grothendieck’s six

operations [7, 5.10 A] starts to make sense. In a talk at the ICTP in 2002,

Voevodsky gave hints on how to carry this over in an abstract framework

which would fit with his constructions, at least for the four functors f ∗, f∗,
f! and f !. This programme was taken up by Ayoub in [2]; he added a great

deal to Voevodsky’s outline, namely a study of the missing operations⊗ and

Hom plus related issues like constructibility and Verdier duality, as well as

an impressive theory of specialisation systems, a vast generalisation of the

theory of nearby cycle functors.

It remained to see whether this abstract framework applied to categories

of motives over a base, for example to the Voevodsky version S 7→ DM(S)
constructed using relative cycles (“sheaves with transfers”). It did apply

to a variant “without transfers” S 7→ DA(S) (as well as to Voevodsky’s

motivating example: the Morel-Voevodsky stable A1-homotopy categories

S 7→ SHA1(S)): see [2, Ch. 4] for this. It did not apply directly to DM,

however. This issue was solved to some extent by Cisinski and Déglise

[15], who showed that the natural functor DAét(S,Q) → DM(S,Q) is an

equivalence of categories when S is a normal scheme, where DAét is an

étale variant of DA. All this will be explained in much more detail in §6.

1.2. Motivic conjectures and categories of motives. It is both a concep-

tual and a tactical issue to reformulate the conjectures alluded to at the be-

ginning of §1.1 in this triangulated framework. The first necessary thing is

to have triangulated realisation functors at hand. In Levine’s framework,

many of them are constructed in his book [53, Part I, Ch. V]. In Voevod-

sky’s framework, with rational coefficients and over a field of characteristic

0, this was done by Huber using her triangulated category of mixed real-

isations as a target [33]. Over a separated Noetherian base, with integral

coefficients and for l-adic cohomology, this was done by Ivorra [37].

Then came up the issue whether realisation functors commute with the

six operations. The only context where the question made full sense was

Ivorra’s. But there were three problems at the outset: Ivorra’s functors 1)

are only defined on geometric motives, and 2) are contravariant. The third

problem is that the formalism of six operations is not known to exist on

S 7→ DM(S) in full generality, as explained above.

These issues were recently solved by Ayoub who constructed covari-

ant l-adic realisation functors from DAét(S) to Ekedahl’s l-adic categories

D̂(S,Zl) [4]. He proved that they commute with the six operations and with

the right choice of a specialisation system. More details are in §6.

2As far as I know, no comparison between these extensions has been attempted yet.
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2. THE TATE CONJECTURE: A REVIEW

In this section, F = Fq is a finite field with q elements. The main refer-

ence here is Tate’s survey [76].

2.1. The zeta function and the Weil conjectures. Let X be a F-scheme

of finite type. It has a zeta function:

ζ(X, s) = exp

(
∑

n≥1

|X(Fqn)|
q−ns

n

)
=
∏

x∈X(0)

(1− |F(x)|−s)−1

Weil conjectured that ζ(X, s) ∈ Q(q−s) for any X: Dwork was first to

prove it in [21]. A different proof, based on l-adic cohomology, was given

by Grothendieck et al in [SGA5]. It provided the following extra property,

also conjectured by Weil: if X is smooth projective, there is a functional

equation of the form

ζ(X, s) = ABsζ(X, dimX − s)

where A,B are constants.

Continue to assume X smooth projective and let n ≥ 0. We writeZn(X)
for the group of cycles of codimension n on X and An

num(X) for its quotient

by numerical equivalence: An
num(X) is finitely generated (see [1, 3.4.6] or

[66, Th. 2.15]). The starting point of this work is the following

Conjecture 2.1.1 (Tate [74]). ords=n ζ(X, s) = − rkAn
num(X).

2.2. Cohomological interpretation. The proofs of [SGA5] give the fac-

torisation (another Weil conjecture)

ζ(X, s) =

2d∏

i=0

Pi(q
−s)(−1)i+1

with

Pi(t) = det(1− ϕt | H i
l (X))

ϕ = Frobenius, H i
l (X) := H i

cont(X̄,Ql) (l 6= p).

Here X̄ = X ⊗F F̄, H i
cont(X̄,Ql) := lim←−H i

ét(X̄,Z/ln)⊗Ql.

Finally the last Weil conjecture was proven by Deligne in [19]:

Theorem 2.2.1 (“Riemann Hypothesis over finite fields”). For all i, Pi(t) ∈
Z[t] and its inverse roots have complex absolute values = qi/2.

This yields:

Theorem 2.2.2 (Milne [58, Prop. 8.2 and 8.4], Tate [76, Th. (2.9)]). For

any (X, n, l), the following are equivalent:
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(1) Conjecture 2.1.1;

(2) rkAn
num(X) = dimQl

H2n
cont(X̄,Ql(n))

G, G = Gal(F̄/F);
(3) (a) the cycle map Zn(X)⊗Ql → H2n

cont(X̄,Ql(n))
G is surjective,

(b) homological and numerical equivalences agree onZn(X)⊗Q.

(3) (a) is called the cohomological Tate conjecture: it makes sense (and

is conjectured to hold) over any finitely generated field.

Remark 2.2.3. Let us write Sn for the following condition: the composition

H2n
cont(X̄,Ql(n))

G −֒→ H2n
cont(X̄,Ql(n)) −→→ H2n

cont(X̄,Ql(n))G

is bijective. Poincaré duality easily implies that Sn ⇐⇒ Sd−n if d =
dimX . Let us also write more precisely (a)n for (a) in Theorem 2.2.2 (3).

Then, by [76, Th. (2.9)], the conditions of this theorem are also equivalent

to

(4) (a)n + (a)d−n + Sn.

Condition Sn is verified if X is an abelian variety, essentially because the

Frobenius endomorphism of X is semi-simple as an element of the centre

of End0(X) [48, lemme 1.9]. Thus, in this case, (1) ⇐⇒ (a)n + (a)d−n in

Theorem 2.2.2.

Remark 2.2.4. Here are other known consequences of Conjecture 2.1.1

(see Tate [76] and Milne [59]):

(i) Grothendieck’s standard conjecture B (by Theorem 2.2.2 (3) (b)).

(ii) Semi-simplicity of Galois action on l-adic cohomology ([58, Rk.

8.6], [49]).

(iii) Any (pure) homological motiveM is a direct summand of h(AK)(n)
for an abelian F-variety A, K/F a finite extension and n ∈ Z [59,

Rk. 2.7]. We say that M is of abelian type.

(iv) “Any mixed motive [over a finite field!] is pure” [59, Th. 2.49] (see

also Proposition 10.5.1 below).

2.3. Known cases of the cohomological Tate conjecture. They are scarce:

see [76, §5] for a 1994 state of the art.

The main case is n = 1, where the conjecture is known for abelian vari-

eties over any finitely generated field k (Tate [75] if k is finite, Zarhin [83]

if char k > 0, Faltings [23, 24] if char k = 0). This trivially extends to

smooth projective varieties X whose homological motive is of abelian type

in the sense of Remark 2.2.4 (iii): for simplicity, we shall then say that X is

homologically of abelian type. For some other X’s, see [76, Th. (5.6) and

(5.8)].

One can then sometimes extend the cohomological Tate conjecture from

codimension 1 to all codimensions. It was essentially observed by Soulé
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that this is automatic if X is homologically of abelian type and of dimen-

sion ≤ 3 [69, Th. 3].3 In another direction, this will work if the algebra

H2∗
cont(X ⊗K k̄,Ql(∗))

G is generated in cohomological degree 2: this hap-

pens when k is finite and X is a product of elliptic curves (Spiess [71]),

and also for powers of certain simple abelian varieties (Lenstra, Zarhin).

See [60], where Milne also proves the Tate conjecture for powers of certain

abelian varieties for which the above generation condition is not satisfied.

3. THE BEILINSON, PARSHIN AND FRIEDLANDER CONJECTURES

3.1. The conjectures.

Conjecture 3.1.1 (Beilinson). Let X/F be smooth projective and let n ≥ 0.

Then rational and numerical equivalences coincide on Zn(X)⊗Q.

This is the strongest possible conjecture: it implies that all adequate

equivalence relations should coincide on Zn(X)⊗Q! (Compare [1, 3.2.2.1

and 3.2.7.2].)

Conjecture 3.1.2 (Parshin). For any smooth projective F-variety X , the

algebraic K-group Ki(X) is torsion for i > 0.

This contains in particular the Beilinson-Soulé vanishing conjecture on

eigenspaces for the Adams operations ([5], [70, p. 501, Conj.]).

Remark 3.1.3. Milne writes in [61, §1] that Tate already formulated con-

jecture 3.1.1 orally in the Woods Hole seminar of 1964. On the other hand,

Conjecture 3.1.2 is attributed to Parshin by Jannsen in [43, Conj. 12.2], but

is also formulated by Beilinson in [6, Conj. 8.3.3 b)]4. So the attributions

of these conjectures are a bit blurred. For simplicity, I will keep their es-

tablished names of “Tate conjecture”, “Beilinson conjecture” and “Parshin

conjecture” here.

3.2. “Elementary” implications. We now start reviewing implications be-

tween these conjectures, in the same spirit as Theorem 2.2.2 and Remark

2.2.4.

Theorem 3.2.1 (Geisser [28]). Conjecture 2.1.1 + Conjecture 3.1.1⇒Con-

jecture 3.1.2.

See Theorem 8.0.2 below for a more precise version.

Geisser’s proof is based on Jannsen’s semi-simplicity theorem [44] plus

a Frobenius argument going back to Soulé [69]. The same is true for the

3Soulé’s proof works over a finite field, but the argument of [50, proof of Th. 82]

extends this to any finitely generated field.
4Beilinson attributes it to Parshin in [5, Conj. 2.4.2.3].
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proof of the following theorem, in which CHd is the quotient of Zd by

rational equivalence.

Theorem 3.2.2 (Kahn [48]). Let X be a smooth projective F-variety of

dimension d. Assume that Ker(CHd(X×X)⊗Q→ Ad
num(X×X)⊗Q is

a nilpotent ideal. Then Conjecture 2.1.1 for X and all n ≥ 0⇒ Conjecture

3.1.1 for X and all n ≥ 0.

The point is that the hypothesis of Theorem 3.2.2 is verified if the Chow

motive of X is finite dimensional in the sense of Kimura and O’Sullivan (see

[1, Ch. 12] or [39]). This will be the case if X is of abelian type, that is, if

its motive verifies condition (iii) of Remark 2.2.4 for rational equivalence

(ibid.). This gives many cases where one can apply Theorem 3.2.2, see §2.3.

3.3. From smooth projective to more general varieties. Putting together

the cohomological Tate conjecture ((3) (a) in Theorem 2.2.2) and the Beilin-

son conjecture (Conjecture 3.1.1) gives the following

Conjecture 3.3.1. For any smooth projective F-variety X and any n ≥ 0,

the cycle class map

CHn(X)⊗Ql → H2n(X̄,Ql(n))
G

is bijective.

This statement continues to make sense when removing the word “pro-

jective”. It was conjectured to be true by Friedlander. Actually, Friedlander

made a general conjecture involving the l-adic Chern character from alge-

braic K-theory, with targets of the form H i(X̄,Ql(n))
G for all i ∈ Z (ibid.),

namely:

Conjecture 3.3.2 (Friedlander, [6, 8.3.4 b)]). For any smooth F-variety X ,

the Chern character

chn,i : K2n−i(X)
(n)
Q ⊗Ql → H i(X̄,Ql(n))

G

is an isomorphism, where the left hand side is the n-th Adams eigenspace

on the algebraic K-theory of X .

For i = 2n we get the Adams eigenspace of weight n on K0(X) ⊗ Q

which may be identified with CHn(X) ⊗ Q thanks to the Grothendieck

Riemann-Roch theorem, so Friedlander’s conjecture includes Conjecture

3.3.1 in the extended case of smooth varieties. For X smooth projective, it

implies Parshin’s conjecture 3.1.2 in view of Theorem 2.2.1, as observed by

Beilinson (ibid.). Geisser’s theorem 3.2.1 refines this observation.

Remarks 3.3.3.
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(1) I want to avoid entering the details of algebraic K-theory and the

construction of l-adic Chern characters here, in order to concentrate

on the already substantial case of motivic cohomology and l-adic

cycle class maps.

(2) Chern characters involve denominators, so that Friedlander’s con-

jecture is intrinsically with rational coefficients. One could get some

integrality by using higher Chern classes, but not completely avoid

the denominators. On the other hand, as we shall see, a motivic

version of this conjecture can be formulated integrally.

In his habilitation thesis [43, Th. 12.7 a)], Jannsen proved that Friedlan-

der’s conjecture follows from its restriction to smooth projective varieties,

provided one adds a generalisation of Condition Sn from Remark 2.2.3

and assumes resolution of singularities. Jannsen’s proof is a little awkward

mainly because the formulation of Friedlander’s conjecture involves fixed

points under Galois action, which is not an exact functor: this is where the

recourse to semi-simplicity (and the weight filtration) was essential.

Jannsen also gives an extension of these conjectures to singular varieties

using K ′-theory and (Borel-Moore) l-adic homology.

Let K be a finitely generated field of characteristic p, and let X be a

smooth K-variety. Then X spreads as a smooth S-scheme of finite type X
for a suitable smooth model S of K over Fp. Using this remark, one sees

that Friedlander’s conjecture potentially implies statements concerning K-

varieties: this is one of its many interests. For example, one easily sees

that it implies Conjecture 2.4.2.2 of [5] on rational K-groups of fields of

positive characteristic, see [46, 8.28 (v) and 8.30] and [50, Th. 60 and 61].

3.4. Motivic reformulations. Since the appearance of [43], two major pro-

gresses have been made: 1) de Jong’s theorem on alterations [41], and 2)

definitions of motivic cohomology, together with motivic l-adic cycle class

maps.

Motivic cohomology groups generalise Chow groups, and they agree ra-

tionally with Adams eigenspaces on algebraic K-theory. For smooth vari-

eties there are mainly two versions of these groups: Bloch’s higher Chow

groups [9] and the Suslin-Voevodsky motivic cohomology groups. They are

shown to be canonically (but not very directly) isomorphic over any field in

[79].

In [46], I was interested in formulating a version of Conjecture 3.3.2

using motivic cohomology. I used the Suslin-Voevodsky version, but as-

sumed resolution of singularities (over finite fields!) because it was built

in Voevodsky’s theory of triangulated motives at the time. To get around

resolution, I changed course and used higher Chow groups in [47] and [48].

Here I want to give a version of Friedlander’s conjecture 3.3.2 involving
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realisation functors on Voevodsky’s DM(F), thus going back to the original

viewpoint of using Suslin-Voevodsky motivic cohomology. It has several

advantages:

(1) While Bloch’s theory avoids resolution of singularities, it relies on

a subtle sophistication of Chow’s moving lemma which renders the

functoriality of his cycles complexes (as opposed to their homology

groups) delicate. By contrast, the motivic complexes of Suslin and

Voevodsky have a straightforward functoriality.

(2) Much of the resolution of singularities needed in the basics of Vo-

evodsky’s theory has been removed. On the one hand, he proved

very simply the cancellation theorem over any perfect field [82].

On the other hand, de Jong’s alteration theorem turns out to be suf-

ficient for most of the development, even integrally.

(3) Some of the remaining original constructions of Voevodsky, which

still require resolution of singularities, like the motives (with or

without compact supports) of singular schemes, can now be by-

passed by using the 4 operations., see §6.7.

(4) The triangulated framework is much richer than the one involving

smooth varieties: for example, it automatically yields conjectural

statements for the cohomology and cohomology with compact sup-

ports of possibly singular varieties in the spirit of Jannsen, see (3).

3.5. A reading guide. Let me now outline the sequel of this paper. I tried

to go step by step and by increasing degree of sophistication:

(1) In §4, I introduce motivic cohomology à la Suslin-Voevodsky by

using their concrete motivic complexes; the construction of the l-
adic cycle class map is then very easy but insufficient.

(2) In §5, I introduce Voevodsky’s categories of motives over a field; the

motivic cohomology of §4 may then be interpreted as Hom groups

in these categories (Theorem 5.2.1 and 5.5.1).

(3) In §6, I describe the situation over a base, and in particular outline

the formalism of six operations. Here the story becomes more com-

plicated as several versions of categories of motives come into play.

The main point is that they often agree: see §6.5. An important

outcome is the construction of motives (with or without compact

supports) of singular varieties, with the right functoriality: see §6.7.

The l-adic realisation functor is finally introduced in §6.8.

(4) §7 is technical but essential to get Theorem 1 of the introduction.

(5) In §8, I prove a more precise version of Geisser’s Theorem 3.2.1.

The main reason why I did this was to convince myself that there is

no way to get the equivalence (ii) ⇐⇒ (iv) of Corollary 9.8.4 “n
by n”.
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(6) In §9, we get slowly towards the motivic formulation of Friedlan-

der’s conjecture and the proof of Theorem 1: this is achieved in §9.8,

see Proposition 9.8.2, Theorem 9.8.3 and Corollary 9.8.4. In partic-

ular, the conditions of Theorem 1 are equivalent to Friedlander’s

conjecture plus a generalisation of Condition Sn of Remark 2.2.3.

A simple lemma of Ayoub (Lemma 9.3.1) drastically simplifies an

argument I had outlined in my 2006 talk.

(7) In §10, I give two other reformulations of these conjectures: a) a

realisation functor from a suitable category is fully faithful, b) the

Hom groups of this category are finitely generated. See Proposition

10.3.3 and Theorem 10.4.2. This involves an apparently artificial

construction, which is better explained in the next section.

(8) In §11, I recall Lichtenbaum’s Weil-étale topology and inflict it to

DM. This sheds a better light on the previous section, but these new

categories have their shortcomings.

4. MOTIVIC COHOMOLOGY AND l-ADIC COHOMOLOGY

4.1. Motivic cohomology, Nisnevich and étale. Let us first recall Voevod-

sky’s groups of finite correspondences [78]: if X, Y are smooth k-schemes,

we denote by c(X, Y ) the free abelian group with basis the closed integral

subschemes Z ⊆ X × Y such that the projection Z → X is finite and

surjective on some connected component of X . The beauty of finite cor-

respondences is that they compose “on the nose”, that is, without having

to mod out by any adequate equivalence relation. In particular, they are

covariant in Y and contravariant in X .

If (Y1, y1), (Y2, y2) are two pointed smooth k-schemes (yi ∈ Yi(k)), we

define

c(X, (Y1, y1) ∧ (Y2, y2)) =

Coker (c(X, Y1 × y2)⊕ c(X, y1 × Y2)→ c(X, Y1 × Y2))

and more generally, we define c(X, (Y1, y1) ∧ · · · ∧ (Yn, yn)) by a similar

formula: this is a direct summand of c(X, Y1 × · · · × Yn).
We denote by ∆· be the standard cosimplicial k-scheme, with

∆n = Spec k[t0, . . . , tn]/(
∑

ti − 1).

Let now X ∈ Sm(k), and let n ≥ 0. The n-th Suslin-Voevodsky complex

is the complex whose i-th term is

C i(X,Z(n)) = c(X ×∆n−i,G∧n
m )

where G
∧n
m = (Gm, 1) ∧ · · · ∧ (Gm, 1), and the differentials are as usual.
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Varying X , this defines a complex of presheaves (even sheaves) over the

étale site on Sm(k), and a fortiori over the corresponding Nisnevich site.

Let us denote this complex by C∗(Z(n)). We set

Definition 4.1.1. a) H i(X,Z(n)) = Hi
Nis(X,C∗(Z(n))). This is motivic

cohomology.

b) H i
ét(X,Z(n)) = Hi

ét(X,C∗(Z(n))). This is étale motivic cohomology.

The link between motivic cohomology and Chow groups is the following:

Proposition 4.1.2. One has isomorphisms

CHn(X) ≃ H2n(X,Z(n)).

More generally, motivic cohomology groups (for the Nisnevich topology)

are isomorphic to Bloch’s higher Chow groups, with a suitable reindexing

[79]. This also implies:

(4.1.1) H i(X,Z(n)) = 0 for i > 2n.

4.2. Continuous étale cohomology. We now assume that k = F is finite

until the end of this section.

Let X ∈ Sm(F). We write H i
cont(X,Zl(n)) for Jannsen’s continuous

étale cohomology [42]: recall that if (An) is an inverse system of étale

sheaves, H i
cont(X, (An)) is defined as the i-th derived functor of the com-

posite functor

(An) 7→ (Γ(X,An)) 7→ lim←−Γ(X,An).

We also write H i
cont(X,Ql(n)) := H i

cont(X,Zl(n))⊗Q.

Since étale cohomology of X with finite coefficients is finite, this coin-

cides with the naı̈ve l-adic cohomology:

(4.2.1) H i
cont(X,Zl(n))

∼
−→ lim←−H i

ét(X, µ⊗n
lν ).

The Hochschild-Serre spectral sequence yields short exact sequences:

(4.2.2)

0→ H i−1
cont(X̄,Zl(n))G → H i

cont(X,Zl(n))→ H i
cont(X̄,Zl(n))

G → 0.

4.3. An l-adic lemma. Let

(4.3.1) e ∈ H1
cont(F, Ẑ) ≃ Homcont(Ẑ, Ẑ) ≃ Ẑ

be the canonical generator corresponding to the identity, where the first iso-

morphism is given by the arithmetic Frobenius of F. Note that e2 = 0 since

cd(F) = 1. The following generalises [58, Prop. 6.5] (the proof is the same

as for [46, Prop. 6.5]):
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Lemma 4.3.1. Let C ∈ D̂b
c(F,Zl) be a perfect complex of l-adic sheaves

over SpecF. Then the diagram

(4.3.2) Hj
cont(F, C)

a
//

·c

��

Hj(C)G

i

%%J
JJ

JJ
JJ

JJ
J

Hj(C)

p
yytt
tt
tt
tt
tt

Hj+1
cont(F, C) Hj(C)G

b
oo

commutes for any j ∈ Z. Here i is the inclusion, p is the projection and

a, b are the maps stemming from the hypercohomology spectral sequence

for H∗
cont(F, C). �

4.4. Naı̈ve cycle class maps. The rigidity theorem of Suslin-Voevodsky

([72, Th. 7.6] or [80, Th. 6.1]) yields canonical isomorphisms

(4.4.1) H i
ét(X,Z(n)⊗ Z/lν) ≃ H i

ét(X, µ⊗n
lν )

which, in view of (4.2.1), immediately yield higher l-adic cycle class maps:

(4.4.2) Hj
ét(X,Z(n))⊗ Zl → Hj

cont(X,Zl(n)).

One has isomorphisms [9]

K2n−i(X)
(n)
Q ≃ Hj(X,Q(n))

∼
−→ Hj

ét(X,Q(n)),

which convert the maps (4.4.2) into the Chern characters chn,i of Conjecture

3.3.2. Thus, this construction already allows us to reformulate Conjecture

3.3.2 in terms of motivic cohomology. However it is too crude to provide

a correct integral version of this conjecture (see §9.1 for a detailed discus-

sion). For this, one needs a triangulated version of (4.4.2), namely a map

Z(n)ét ⊗ Zl → R lim←−µ⊗n
lν

in a suitable triangulated category, which has to be modified. In [47], this

was done in the derived category of étale sheaves on Sm(F), using Bloch’s

cycle complexes instead of the Suslin-Voevodsky complexes. Since we are

going to ultimately give a reformulation using DMeff
ét (F), it is best to con-

struct the above morphism directly in this category. This will be done in

§9.6.

5. CATEGORIES OF MOTIVES OVER A FIELD

5.1. Categories of effective geometric motives. Let DMeff
gm(k) be Voevod-

sky’s tensor triangulated category of effective geometric motives [78]: we

also refer to Levine’s survey [54, Lect. 1 and 2] for a nice exposition. Then
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anyX ∈ Sm(k) has a motive M(X) ∈ DMeff
gm(k). The functor X 7→M(X)

has the following properties:

Homotopy invariance: M(X ×A1)
∼
−→M(X).

Mayer Vietoris: If X = U ∪V with U, V open, then one has an exact

triangle

M(U ∩ V )→M(U)⊕M(V )→M(X)
+1
−→ .

Projective bundle formula: Write Z(1) for the direct summand of

M(P1)[−2] defined by any rational point: this is the Tate object.

For n > 0, define Z(n) = Z(1)⊗n: if M ∈ DMeff
gm(k), we write

M(n) := M ⊗Z(n). Now let E → X be a vector bundle of rank r.

Then

M(P(E)) ≃
r−1⊕

n=0

M(X)(n)[2n].

Gysin: Let Z ⊂ X be a closed subscheme, smooth of codimension c,
and let U = X − Z. Then one has an exact triangle

M(U)→ M(X)→M(Z)(c)[2c]
+1
−→ .

Let us recall the construction of DMeff
gm(k) in two words: it parallels the

construction of Chow motives to a large extent, but is based on smooth, not

necessarily projective, varieties. We start from the category Cor(k) of finite

corrrespondences over k: its objects are smooth k-schemes of finite type

and its morphisms are the groups c(X, Y ) of §4.1. The graph of a morphism

is a finite correspondence, which yields a (covariant) functor Sm(k) →
Cor(k).

Since Cor(k) is an additive category, one may consider the homotopy

category Kb(Cor(k)) of bounded chain complexes of objects of Cor(k).
Then DMeff

gm(k) is defined as the pseudo-abelian envelope of the Verdier

localisation of Kb(Cor(k)) with respect to the “relations” corresponding to

homotopy invariance and Mayer-Vietoris as above. This yields a string of

functors:

Sm(k)→ Cor(k)→ Kb(Cor(k))→ DMeff
gm(k).

Their composition is the above functor M .

5.2. Categories of motivic complexes, Nisnevich topology. The relation-

ship between motivic cohomology and DMeff
gm(k) is

Theorem 5.2.1 ([78]). One has canonical isomorphisms

H i(X,Z(n)) ≃ HomDMeff
gm(k)(M(X),Z(n)[i]).
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This is proven by introducing a larger tensor triangulated categoryDMeff
− (k),

constructing a fully faithful functor DMeff
gm(k) → DMeff

− (k) and proving

Theorem 5.2.1 in DMeff
− (k).

In short, DMeff
− (k) is constructed out of Nisnevich sheaves with trans-

fers. A presheaf with transfersF is simply an additive contravariant functor

from the category Cor(k) of the previous subsection to abelian groups; F
is a Nisnevich sheaf with transfers if, viewed as a functor on Sm(k), it is a

sheaf for the Nisnevich topology. Write NST(k) for the abelian category of

Nisnevich sheaves with transfers. Inside the bounded above derived cate-

gory D−(NST(k)), Voevodsky considers the full subcategory consisting of

those complexes whose homology sheaves are homotopy invariant: this is

DMeff
− (k). The embedding of DMeff

gm(k) into DMeff
− (k) may then be thought

of as a Yoneda embedding: it is constructed using complexes C∗(F) gener-

alising those described in §4.1.

The category DMeff
− (k) is constructed out of bounded above complexes

of Nisnevich sheaves. It will be more convenient for us to work with the

corresponding category DMeff(k) constructed in the same way but without

boundedness conditions. In fact we have a commutative square of inclu-

sions of tensor triangulated categories

(5.2.1)

DMeff
gm(k)

a
−−−→ DMeff(k)

c

y d

y

DMgm(k)
b

−−−→ DM(k).

The two bottom categories are obtained from the top categories by in-

verting the Tate object, but in rather different ways. On the left hand side,

one defines DMgm(k) as the category whose objects are pairs (M,m) with

M ∈ DMeff
gm(k) and m ∈ Z, and Hom sets are defined by

HomDMgm(k)((M,m), (N, n)) = lim−→
r≥−m,−n

HomDMeff
gm(k)(M(m+r), N(n+r))

cf. [78, p. 192]. The full faithfulness of a follows from [the proof of] [78,

Th. 3.2.6] and the full faithfulness of c follows from [82]; both results use

the perfectness of the field k.

On the other hand, if we try and define DM(k) from DMeff(k) in the

same way, the category we get is too small: in particular it does not have

infinite direct sums, while DMeff(k) does. The solution is to pass to the

model-categoric level and imitate the construction of spectra in algebraic

topology: namely one considers “Z(1)-spectra” of the form

(Cn, en)n∈Z
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where Cn ∈ C(NST ) and en is a morphism of complexes Cn ⊗ Z(1) →
Cn+1 for Z(1) as in §4.1. This is outlined by Morel in [62, §5.2], as an

analogue to the construction given by Voevodsky in [77, §5] for the stable

homotopy category of schemes. A detailed construction, over a base, is

given by Cisinski and Déglise in [14, Ex. 7.15].

One can show that the functors b and d are also fully faithful. The cate-

gories DMeff(k) and DM(k) are closed, i.e., have internal Homs.

5.3. Variant. If A is a commutative ring, one may define similar categories

of motives with coefficients in A; we shall denote them by DM(k, A) and

the decorated analogues. The most important cases for us will be A = Q,

A = Z/n and, later, A = Zl.

5.4. Remark on notation. I will never write DM(k,Z) for DM(k). There

is a dilemma (or a trilemma) for writing the unit object of DM(k, A). A

spontaneous choice would be A, but this leads to ambiguities. One ambi-

guity which would be disastrous here would be to confuse notationally the

complex of sheaves Z(n)⊗ Zl and the l-adic sheaf Zl(n).
Another choice which has been made elsewhere to avoid this problem is

to use the neutral notation 1 for the unit object. This leads to notation like

1(n)[i], which I find disgracious.

For these reasons, I have decided to retain the notation Z for the unit

object of DM(k, A) even when A is another ring than Z. Similarly, the nota-

tionZ(n) is retained in DM(k, A) for any A. This means that DM(k, A)(Z,Z)
= A and DM(k, A)(M(X),Z(n)[i]) = H i(X,Z(n))⊗ A for X ∈ Sm(k).

This also applies to the variants of DM(k) to come.

On the other hand, I will sometimes write H i(X,A(n)) for H i(X,Z(n))⊗
A when there is no risk of ambiguity, e.g. for A = Q or Z/m (but not

A = Zl).

I hope this will not create any confusion.

5.5. Categories of motivic complexes, étale topology. Let A be a com-

mutative ring. There is an étale analogue to the inclusion DMeff(k, A)
−֒→ DM(k, A), using the étale topology rather than the Nisnevich topol-

ogy. This yields a naturally commutative diagram of tenros triangulated

categories:

(5.5.1)

DMeff(k, A)
α∗

−−−→ DMeff
ét (k, A)

d

y dét

y

DM(k, A)
α∗

−−−→ DMét(k, A)

where α∗ denotes the change of topology functor. The functor dét is still

fully faithful.
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The basic results on the effective categories are identical to those stated

in [78, Prop. 3.3.2 and 3.3.3] for their bounded versions:

Theorem 5.5.1. Assume that the field k has finite cohomological dimen-

sion, and exponential characteristic p. Then:

a) For A = Q, the functors α∗ of (5.5.1) are equivalences of tensor trian-

gulated categories.

b) for n > 0 prime to p, the natural functor

DMeff
ét (k,Z/n)→ D(két,Z/n)

is an equivalence of triangulated categories, where the right hand side is

the derived category of sheaves of Z/n-modules on the small étale site of

Spec k and the functor is induced by restriction to the small étale site.

c) For ν ≥ 1, the categories DMeff
ét (k,Z/p

ν) and DMét(k,Z/p
ν) are 0.

Part c) of Theorem 5.5.1 means that DMeff
ét (k) and DMét(k) are Z[1/p]-

linear; the basic reason why this follows from homotopy invariance is the

Artin-Schreier exact sequence (of étale shaves with transfers)

0→ Z/p→ Ga
F−1
−→ Ga → 0.

One deduces a pendant to Theorem 5.2.1, plus an important comparison

between motivic and étale motivic cohomology:

Theorem 5.5.2. a) One has canonical isomorphisms

H i
ét(X,Z(n))⊗ Z[1/p] ≃ HomDMeff

ét (k)
(M(X),Z(n)[i]).

b) For any smooth X and any n ≥ 0, i ∈ Z, the natural map

H i(X,Z(n))⊗Q→ H i
ét(X,Z(n))⊗Q

is an isomorphism.

An upshot is that if we work with DM, we are bound to lose p-torsion

information on étale motivic cohomology. Using the groups from Definition

4.1.1 b) retains this information, but we lose the power of the triangulated

formalism.5

We shall also need:

Lemma 5.5.3. Let DMgm,ét(k) be the full subcategory of DMét(k) which is

the pseudo-abelian envelope of the image of DMgm(k,Z[1/p])→ DMét(k).
Then DMgm,ét(k) is a rigid subcategory ofDMét(k): every object is strongly

dualisable.

5To recover this power for the p-torsion, one would have to invent new triangulated

categories which would accomodate non homotopy invariant phenomena: this is very much

work in progress now.
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(Recall that an object M of a unital symmetric monoidal category A is

strongly dualisable if there exists a triple (M∗, η, ǫ) with M∗ ∈ A and

η : 1 → M ⊗M∗, ǫ : M∗ ⊗M → 1, verifying adjunction-like identities.

Such a triple is then unique up to unique isomorphism; see [20].)

Proof. Since DMgm(k,Z[1/p]) → DMét(k) is a (strict) ⊗-functor, it suf-

fices to show that DMgm(k,Z[1/p]) is rigid. But this triangulated category

is generated by motives of smooth projective varieties, as follows from Gab-

ber’s refinement of de Jong’s theorem, and these objects are strongly dual-

isable (cf. [34, App. B]). �

5.6. Motivic complexes in DM. They are easy to understand in weight

≤ 1:

Theorem 5.6.1 (see [78, Cor. 3.4.3]). One has isomorphisms in DMeff(k)

Z(0) ≃ Z

Z(1) ≃ Gm[−1]

where Gm is viewed as a homotopy invariant Nisnevich sheaf with transfers.

These quasi-isomorphisms persist when passing to DMeff
ét (k): we shall

put an index ét for clarity. In particular, if m is invertible in k, multiplication

by m gives a “Kummer” isomorphism

µm
∼
−→ Z/m(1)ét

hence morphisms

(5.6.1) µ⊗n
m → Z/m(n)ét

in the category DMeff
ét (k). The following reformulation of (4.4.1) is a special

case of Theorem 5.5.1 b) (see also [80, Th. 6.1]):

Theorem 5.6.2. (5.6.1) is an isomorphism for any n ≥ 0.

5.7. The l-adic realisation functor. Let us mention immediately that, for

a prime number l invertible in k, there exists an l-adic realisation⊗-functor

Rl : DMét(k)→ D̂ét(k,Zl)

where the right hand side is the category defined by Ekedahl in [22]. Intu-

itively, its restriction to DMeff
ét (k) is obtained as the “inverse limit” of the

compositions

DMeff
ét (k)→ DMeff

ét (k,Z/l
n) ≃ D(két,Z/l

n)

cf. Theorem 5.5.1 b). This functor commutes with infinite direct sums,

which implies formally that it has a right adjoint Ωl. When k is a finite

field, the motivic reformulation of Friedlander’s conjecture will rely on this

pair of adjoints and its relationship with the subcategory DMeff
ét (k).
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For details on the definition of Rl, I refer to the next section.

6. CATEGORIES OF MOTIVES OVER A BASE

In this section, S is a Noetherian separated scheme.

6.1. Generalising Voevodsky’s definition over a field. This presents no

basic difficulty: in short, one replaces the category Cor(k) used in the pre-

vious section by a category Cor(S) based on the theory of relative cycles

developed by Suslin and Voevodsky in [73]. The desciption of Cor(S) is

outlined in [57, App. 1A], and in more detail in [82, §2]. The construction

of a category DMeff
− (S) (even for S a simplicial scheme!) is then given in

[81].

Ivorra’s exposition [40] develops this a bit further in §2, and introduces

a corresponding category of geometric motives DMeff
gm(S) in §4: the only

difference with the case of a field is that the Mayer-Vietoris relation is gen-

eralised to “Mayer-Vietoris for the Nisnevich topology”. Finally, Ivorra

constructs a fully faithful functor DMeff
gm(S) −֒→ DMeff

− (S) in §5, just as in

the case of a field.

Another exposition of the theory of finite correspondences, in the case

of a regular base, is given by Déglise in [18]. He then gives a general

exposition with Cisinski in [15, §8], that they use in loc. cit., §10 to con-

struct categories DMeff
gm(S) and DMeff(S) as above, but also stable versions

DMgm(S) and DM(S). (In [15], the index gm is replaced by c.) In this

way, the picture of §§5.1 and 5.2 is extended to a general base. The only

difference is that, in the diagram

DMeff
gm(S)

a
−−−→ DMeff(S)

c

y d

y

DMgm(S)
b

−−−→ DM(S)

generalising (5.2.1), the horizontal functors are still fully faithful but it is

not known whether the vertical functors are.

6.2. Where the buck stops. So far we seem to live in the best possible

world, having fully extended Voevodsky’s theory over a base. Unfortu-

nately, one runs into trouble in two situations:

(1) When trying to apply to this construction the yoga of six operations

of Voevodsky-Ayoub.

(2) Similarly for realisation functors, most importantly the l-adic reali-

sation functors.
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In (1), the aim would be to endow S 7→ DM(S) with the six functors of

Grothendieck: f ∗, f∗, f!, f
!, ⊗,Hom where f : S ′ → S is a morphism of

Noetherian schemes (cf. [35, §2]). The strategy of Grothendieck, Verdier

and Deligne for coherent and étale cohomology is awkward here, mainly

because Voevodsky works with big sites rather than small sites. For this

reason, Voevodsky proposed another axiomatic strategy which fits better in

his context.

Roughly speaking, his framework is the following. One starts from as-

sociating to any (reasonable) scheme S a triangulated category H(S); one

assumes that some of the operations are already constructed and verify cer-

tain axioms. From this input, one can then deduce the other operations and

all their properties.

After Voevodsky sketched this programme for f ∗, f∗, f!, f
!, it was worked

out by Ayoub in [2, Ch. 1] (see his 1.4.1 for a precise statement of the

above).

Voevodsky had in mind primarily the stable homotopy categories of sche-

mes SH(S) that he developed jointly with Morel [63, 77]. In [2, Ch. 4],

Ayoub gives examples of theories S 7→ H(S) which verify his axioms 1.4.1.

They include SH, but not DM.

The problem with DM is that transfers make it difficult to verify the ax-

iom of “locality”. This axiom (number 4 in [2, 1.4.1]) roughly requires that

if Z is a closed subset of S with open complement U , one can obtain H(S)
by glueing H(Z) and H(U).

The issue for (2): constructing l-adic realisation functors, is to extend the

rigidity theorem of Suslin-Voevodsky over a base. For this, a strategy to

reduce to the case of a perfect base field treated in [72] is obstructed by the

same axiom of locality.

6.3. Where the buck restarts: motives without transfers. On the other

hand, the examples of [2, Ch. 4] do include motives without transfers. If τ is

a suitable topology, the category DAτ (S) is constructed as DMτ (S), except

that one replaces the category Cor(S) by the simpler category Sm(S) (more

correctly: Z[Sm(S)]) throughout. We shall use the established practice of

dropping τ if it is the Nisnevich topology. For S the spectrum of a field k,

this construction appears first in [62, §5.2] with the notation D̃M(k).
That this theory satisfies locality is the contents of [2, Cor. 4.5.44]6,

whose proof is inspired by that of [63, Th. 2.21]. An essentially self-

contained construction of DAτ is given in [4, §3].

6The notation of [2] may be confusing: compare [4, App. A].
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As above, one may define this theory with coefficients in a commutative

ring A; there is a natural ⊗-functor

DAτ (S,A)→ DMτ (S,A).

In [15, §15.2], Cisinski and Déglise prove that this functor is an equiva-

lence of categories when A = Q and τ = ét if S is excellent and geometri-

cally unibranch. In [4, Th. B.1], Ayoub extends this to the case where any

prime number is invertible either in A or on S, provided S is universally

Japanese, normal and of finite étale cohomological dimension. (There is an

extra minor condition, and 2 must be inverted unless the characteristic is 0.)

In this way, the formalism of the 4 operations is largely repaired.

If S has characteristic p > 0, we may choose A = Z[1/2p]. But the

Artin-Schreier argument of Theorem 5.5.1 c) shows that

DMét(S)→ DMét(S,Z[1/p])

is an equivalence of categories, and the same works for DAét. So the com-

parison theorem holds with coefficients Z[1/2] in this case. If S is a Q-

scheme, then it holds with integer coefficients.

6.4. A competitor: Beilinson motives. In [15], Cisinski and Déglise do

prove the locality axiom outlined in §6.2 for DM when S and Z are smooth

over a common base. They can relax this smoothness assumption provided

one works with rational coefficients. To this aim, they introduce yet another

theory: Beilinson motives.

Roughly speaking, Beilinson motives are modules over the K-theory

spectrum, an object of SH which represents algebraic K-theory. They form

a Q-linear tensor triangulated category DMB(S), defined for any reason-

able S. The locality axiom for SH then implies rather formally the locality

axiom for DMB.

They also construct an equivalence of ⊗-triangulated categories

DMB(S) ≃ DM(S,Q)

for any excellent and geometrically unibranch scheme S [15, Th. 8 and 9],

which extends the locality axiom for DM(−,Q) to these schemes.

Finally, they prove an equivalence

DMB(S) ≃ DAét(S,Q)

for any S [15, Th. 13], which connects with the results explained in §6.3.

6.5. Recapitulation. Since the above discussion may have confused the

reader, let me summarise it:
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(1) There are three types of triangulated theories of motives on the mar-

ket, associated to a reasonable scheme S: DMτ (S,A), DAτ (S,A),
DMB(S). Here τ denotes a suitable Grothendieck toplogy (usually

Nisnevich or étale) and A denotes a commutative ring. The cate-

gories DMB(S) are Q-linear.

(This does not exhaust the triangulated theories of motives on the

market: there are also the versions of Levine and Hanamura, see

§1.1. Here I limit myself to those which are constructed in the spirit

of Voevodsky and Morel.)

(2) For any S, there is an equivalence of ⊗-categories DMB(S) ≃
DAét(S,Q).

(3) Suppose for simplicity that S is a k-scheme for a field k of expo-

nential characteristic p. Then the natural ⊗-functor

DAét(S,Z[1/2])→ DMét(S,Z[1/2])

is an equivalence of categories provided S is normal and universally

Japanese. If p = 1, this holds with integer coefficients.

(4) The assignment S 7→ DAτ (S,A) satisfies the formalism of the six

operations of Voevodsky-Ayoub (for τ = Nis, ét).

6.6. Some philosophy. It may be disturbing that one has to replace the

beautiful categories of motives based on finite correspondences by appar-

ently uglier categories in order to have a working theory. In fact, this is not

so serious. What matters is that this theory coincides with DMét(−, A) in

important cases, especially when the base is a field. In this way, the con-

nection with algebraic cycles is not lost. As for other bases, I like to think

of some theory S 7→ H(S) extending k 7→ DMét(k, A) as a black box,

which is helpful for applying the six functors formalism but whose specific

description for a general S is not so important. An example is given just

below.

6.7. Application: motives of singular varieties. Let k be a field. In [78,

§4.1], Voevodsky associates to any k-scheme X of finite type two objects

C∗(X) and Cc
∗(X) of DMeff

− (k). These objects play the respective rôles

of the motive and motive with compact supports of X . Unfortunately, the

proof of their functoriality rests on [78, Th. 4.1.2], whose proof uses Hi-

ronaka’s resolution of singularities in a central way, so is valid only in char-

acteristic 0. Under this condition, the functorialities show that these objects

belong to DMeff
gm(k), by reduction to the case of smooth projective schemes.

As I first learned from Joël Riou, the six operations allow us to define

such objects in nonzero characteristic at least in the étale categories, by

avoiding Hironaka resolution:
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Definition 6.7.1. Let τ be the Nisnevich or the étale topology, and let pX :
X → Spec k be a k-scheme of finite type. We define:

(1) Its motive: M(X) = Hom((pX)∗ZX ,Z) ∈ DAτ (k).
(2) Its motive with compact supports: Mc(X) = Hom((pX)!ZX ,Z)
∈ DAτ (k).

Proposition 6.7.2. a) The motive is covariant for any morphism.

b) The motive with compact supports is covariant for projective morphisms

and contravariant for étale morphisms.

c) Let X be a k-scheme of finite type, i : Z → X a closed immersion and

j : U → X the complementary open immersion. Then the sequence

Mc(Z)
i∗−→ Mc(X)

j∗

−→Mc(U)

defines an exact triangle in DAτ (k).
d) Let

Z ′ i′
−−−→ X ′

q

y p

y

Z
i

−−−→ X

be an abstract alteration in the following sense: p is projective, i is a closed

immersion, Z ′ = p−1(Z) and

r = p|X′−Z′ : X ′ − Y ′ → X − Z

is an étale (finite) morphism of degree m. Then the map of cones

cone(M(Z ′)→M(X ′))→ cone(M(Z)→M(X))

is split surjective either in DM(k,Z[1/m]) or in DAét(k,Z[1/m]) and is an

isomorphism in DAτ (k,Z[1/m]) if m = 1. In particular, if m = 1 we have

an exact triangle

M(Z ′)→M(X ′)⊕M(Z)→M(X)
+1
−→ .

e) If X is projective, Mc(X) ≃M(X).
f) If X is smooth, M(X) is the classical motive of X . If we work in DM(k)
or DAét(k, A), with 2 invertible in A, then

Mc(X) ≃M(X)∗(−d)[−2d],

where d = dimX .

g) Let T = DAeff
gm,ét(k) or DMeff

gm(k,Z[1/p]), where p is the exponential

characteristic of k. Then M(X),Mc(X) ∈ T for any X .
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Proof. We shall prove the (a priori finer) dual functoriality to a) – f) for

M∗(X) := (pX)∗ZX and BM(X) := (pX)!ZX .

a) Let f : X → Y . The isomorphism of functors

(pX)∗ ≃ (pY )∗ ◦ f∗

gives an isomorphism

M∗(X) ≃ (pY )∗(f∗ZX).

We get a morphism f ∗ : M∗(Y ) → M∗(X) from the unit morphism

ZY → f∗f
∗ZY = f∗ZX .

b) Same argument for the contravariance of BM , using the covariance of

f! and the isomorphism f!
∼
−→ f∗ for f projective [2, Sch. 1.4.2]. Let now

f : X → Y be an étale morphism. To define a covariant functoriality, we

have to exhibit a canonical morphism f!ZX → ZY or equivalently ZX →
f !ZY . But since f is étale, we have f ! = f ∗ (ibid.) and we take the identity

morphism.

c) follows from applying (pX)! to the exact triangle

j!j
!ZX → ZX → i∗i

∗ZX
+1
−→

from [2, Lemma 1.4.6], noting that i∗ZX = ZZ , j!ZX = j∗ZX = ZU and

i∗ = i!.
d) Let j : X − Z → X , j′ : X ′ − Z ′ → X ′ be the complementary open

immersions to i, i′. Applying to p∗ZX′ the exact triangle of functors used in

the proof of c), we get a commutative diagram of exact triangles

j!j
!p∗ZX′ −−−→ p∗ZX′ −−−→ i∗i

∗p∗ZX′

+1
−−−→x

x
x

j!j
!ZX −−−→ ZX −−−→ i∗i

∗ZX
+1
−−−→ .

By projective base change [2, Sch. 1.4.2 5], this may be rewritten as

j!r∗ZX′−Z′ −−−→ p∗ZX′ −−−→ i∗q∗ZZ′

+1
−−−→x

x
x

j!ZX−Z −−−→ ZX −−−→ i∗ZZ
+1
−−−→

or

j!r∗ZX′−Z′ −−−→ p∗ZX′ −−−→ p∗i
′
∗ZZ′

+1
−−−→x

x
x

j!ZX−Z −−−→ ZX −−−→ i∗ZZ
+1
−−−→ .

Consider the unit map a : ZX−Z → r∗ZX′−Z′ = r!ZX′−Z′ and the counit

map b : r!ZX′−Z′ → ZX−Z . The composition ba is multiplication by m
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in two cases: if we push the situation in DM(S) (because b is given by the

transpose of the graph of r) or if τ = ét (same proof as for [4, Lemma 2.3]).

If m = 1, r is the identity in any situation. Applying (pX)∗ to the above

diagram, this concludes the proof of d).

e) follows from the isomorphism (pX)∗
∼
−→ (pX)! (when X is projec-

tive).

In f), the second statement follows from the isomorphism (pX)!
∼
−→

(pX)#(−d)[−2d], where (pX)# is the left adjoint of p∗X , defined because

pX is smooth ([2, Sch. 1.4.2 3] plus [4, cor. 2.14]); recall that the isomor-

phism (pX)#ZX = M(X) is formal. The first statement follows from the

isomorphism

Homk((pX)#A,B)
∼
−→ (pX)∗HomX(A, p

∗
XB)

from [2, Prop. 2.3.52], applied with A = ZX , B = Z.

Finally, g) follows from the previous properties by dévissage using Gab-

ber’s refinement of de Jong’s theorem [36], by reduction to the case of

smooth projective varieties. �

Remarks 6.7.3. 1) The condition “projective” may be relaxed to “proper”

by arguments involving Chow’s lemma7, cf. [SGA4, Exp. XVII, §7] and

[15].

2) There are other useful formulas for M(X) and M c(X):

M(X) = f!f
!Z, M c(X) = f∗f

!Z

obtained by applying the Verdier duality of [2, Vol. I, p. 435, Th. 2.3.75].

3) It would remain to compare the motives M(X) and Mc(X) of Propo-

sition 6.7.2 (or rather their images in DMτ (k)) with those defined by Vo-

evodsky. We leave this as a problem for the interested reader.

4) This provides definitions for motivic theories associated to a k-scheme

of finite type X , in the style of [25, §9]:

Motivic cohomology:

H i
τ (X,Z(n)) = DAτ (k)(M(X),Z(n)[i]).

Motivic cohomology with compact supports:

H i
τ,c(X,Z(n)) = DAτ (k)(Mc(X),Z(n)[i]).

Motivic homology:

Hτ
i (X,Z(n)) = DAτ (k)(Z(n)[i],M(X)).

Borel-Moore motivic homology:

Hτ,c
i (X,Z(n)) = DAτ (k)(Z(n)[i],Mc(X)).

7plus a support property [15, 2.2.5], as pointed out by the referee.
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It would remain to compare these (co)homology groups with those given by

cdh cohomology as in [25, 78] or éh cohomology as in [29]: we leave this

as another problem for the interested reader.

6.8. The l-adic realisation functor. The correct version of the target is

the category defined by Ekedahl in [22]; technical details are spelled out in

Ayoub’s article [4, §5]. He gets l-adic realisation functors:

Theorem 6.8.1. Let S be a k-scheme of finite type and l 6= 2, p, where k is

a finite field of characteristic p. Then there exist ⊗-triangulated functors

(6.8.1) Rl : DAét(S,Zl)→ D̂ét(S,Zl)

sending the “motive” of a smooth S-scheme f : X → S to the dual of

Rf∗Zl. We shall also write Rl for its restriction to DAét(S).
These functors commute with the 6 operations of Grothendieck.

Proof. See [4, Prop. 5.8] for (6.8.1), ibid., Th. 6.6 and Prop. 6.7 for the

compatibility with the 6 operations and ibid., Prop. 5.9 for the value of Rl

on the motive of X . �

6.9. The motivic version of the l-adic cycle class map. Assume that S =
Spec k in Theorem 6.8.1. For a smooth k-scheme f : X → Spec k, Rl

induces homomorphisms

(6.9.1) H i
ét(X,Z(n)) = DMét(k)(M(X),Z(n)[i])

Rl−→ D̂ét(k,Zl)(RlM(X), RlZ(n)[i]) = D̂ét(k,Zl)(Zl, Rf∗Zl(n)[i])

= H i
cont(X,Zl(n)).

Here the equality on the first line follows from Theorem 5.5.2 a) and the

full faithfulness of the functor dét in (5.5.1). The equality on the second

line uses the fact that Rf∗Zl is a strongly dualisable object: this is a formal

consequence of the fact that Rl is a (strict) ⊗-functor and that M(X) is

strongly dualisable in DMét(k) (Lemma 5.5.3).

One can check that (4.4.2) is induced by (6.9.1) when k is finite.

We get similar cycle class maps for the (co)homology theories considered

in Remark 6.7.3 4).

However, as said in §4.4, these maps are insufficient to get a good refor-

mulation of Friedlander’s conjecture: we shall have to wait until §9.6 to get

the latter.

7. EFFECTIVITY AND SPECTRA

This section is very formal and would work in a wider generality; it will

be used in the proof of Corollary 9.8.4.
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7.1. Compacts, duals and Brown representability. In this subsection I

review some now basic facts about “large” triangulated categories. First

some terminology from [64]:

Definition 7.1.1. Let S be a triangulated category.

a) An object X ∈ S is compact if the functor S(X,−) commutes with

representable direct sums.

b) A subcategory of S is localising if it is full, triangulated and stable under

representable direct sums.

c) A set of objects X of S is dense in S if

X⊥ := {Y ∈ S | S(X, Y [i]) = 0 ∀X ∈ X ∀i ∈ Z}

is reduced to 0.

d) The category S satisfies TR5 if small direct sums are representable in S,

and define triangulated functors.

e) The category S is compactly generated if it satisfies TR5 and there exists

a dense set of compact objects.

Clearly, the full subcategory Sc ⊆ S consisting of compact objects is

triangulated and thick, i.e., closed under direct summands.

The following is Neeman’s version of Brown’s representability theorem

(a special case of [64, Prop. 8.4.2]):

Theorem 7.1.2. Let S be a compactly generated triangulated category. Let

H : Sop → Ab be a cohomological functor. Then H is representable if and

only if it converts small direct sums into small products.

Corollary 7.1.3. Let S be as in Theorem 7.1.2, and let f be a triangulated

functor to another triangulated category T . Then f has a right adjoint

if and only if it commutes with small direct sums. This right adjoint is

triangulated.

To deduce Corollary 7.1.3 from Theorem 7.1.2 is left to the reader as an

exercise.

We also note the following useful lemma of Ayoub:

Lemma 7.1.4 ([2, Lemma 2.1.28]). Let S, T , f be as in Corollary 7.1.3,

and assume that f has a right adjoint g. Then g commutes with small direct

sums if and only if f preserves compact objects.

Finally, if S is a tensor triangulated category [2, Def. 2.1.148], we have

the notion of strongly dualisable object, see Lemma 5.5.3 and its proof.

Lemma 7.1.5. Let S be a tensor triangulated category, with unit object 1.

Then strongly dualisable objects are compact if and only if 1 is compact.
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Proof. If X, Y ∈ S with X strongly dualisable, then

S(X, Y ) ≃ S(1, X∗ ⊗ Y )

where X∗ is the dual of X . �

7.2. The hocolim construction. Let S be a triangulated category in which

countable direct sums are representable. In [11], Bökstedt and Neeman

observed that one can perform the hocolim construction, up to non unique

isomorphism: given a sequence

(7.2.1) . . .
fn−1
−→ Xn

fn
−→ Xn+1

fn+1
−→ . . .

in S, define hocolim(Xn, fn) as a cone of the morphism
⊕

n∈Z

Xn
1−f·
−→

⊕

n∈Z

Xn.

If Y is a compact object of S, one easily constructs an isomorphism

(7.2.2) lim−→S(Y,Xn)
∼
−→ S(Y, hocolimXn).

7.3. Z(1)-spectra. Let S be a Noetherian scheme and A be a commutative

ring. Write cd(S,A) for the étale cohomological dimension of S relatively

to sheaves of A-modules. We need:

Proposition 7.3.1. Suppose that cd(S,A) <∞.

a) The category DAeff
ét (S,A) is compactly generated.

b) The “suspension spectrum” functor i : DAeff
ét (S,A) → DAét(S,A) has

a right adjoint M 7→M eff .

c) The category DAeff
ét (S,A) is closed, with internal Hom given by

Homeff(M,N) = Hom(i(M), i(N))eff

where Hom is the internal Hom of DAét(S,A).

Proof. a) If cd(S,A) < ∞, then cd(X,A) <∞ for any X/S of finite type

[SGA4, Exp. X]. For such X ,

DAeff
ét (S,A)(M(X), C) ≃ H0

ét(X,C)

for any C ∈ DAeff
ét (S,A) viewed as a complex of étale sheaves. To see

that M(X) is compact, one reduces to the cohomology of a single sheaf

via hypercohomology spectral sequences, and then one uses that étale co-

homology commutes with filtering direct limits of sheaves. Clearly, the set

of M(X)’s8 is dense in DAeff
ét (k, A). Axiom TR5 is also clear in terms of

complexes of sheaves (this is where the unboundedness is important).

8more correctly, X running through a set of representatives of isomorphism classes of

smooth S-schemes
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b) follows from a) and Theorem 7.1.2, or directly from the construction

of DAét(S) as a category of spectra. To apply it, we use the fact that i
commutes with small direct sums. c) follows formally. �

In DAeff
ét (S), we have the object Z(1) which may be defined as π∗Z(1)

for π : S → Spec k, or alternately as a shifted direct summand of the motive

of P1
S. For an object M ∈ DAeff

ét (S), we write as usual M(1) := M⊗Z(1).
We may consider “Z(1)-spectra” in DAeff

ét (S): these are systems

(Mn, ϕn)n∈Z, ϕn : Mn(1)→Mn+1.

Of course, one could also consider Z(1)[i]-spectra for some i ∈ Z: ex-

amples which may be relevant are i = 1 (Z(1)[1] ≃ Gm[0]) and i = 2
Z(1)[2] ∈ DMeff

gm(k) is the image of the Lefschetz motive). This does not

make any difference in practice.

Let M ∈ DAét(S): we may associate to it the Z(1)-spectrum

Mn = (M(n))eff .

The transition morphisms

(7.3.1) ϕn : Mn(1)→Mn+1

are obtained by twisting once the counit morphisms iMn → M(n) and

using that i is a monoidal functor.

Lemma 7.3.2. The morphisms (7.3.1) induce isomorphisms

Mn
∼
−→ Homeff(Z(1),Mn+1).

In other words, the spectrum (Mn) is an Ω-spectrum.

Proof. By an adjunction game, this follows from the fact that Z(1) is in-

vertible in DAét(S). �

7.4. The case of a field. We now assume S = Spec k, where k is a perfect

field of finite étale cohomological dimension.

Let us apply the hocolim construction to Xn = iMn(−n) ∈ DAét(k):
the transition morphisms Mn(1) → Mn+1 induce morphisms fn : Xn →
Xn+1. These morphisms are compatible with the untwisted counit mor-

phisms Xn → M , hence induce a morphism

(7.4.1) hocolim iMn(−n)→M.

Proposition 7.4.1. Suppose that S = Spec k. Then, for any M ∈ DAét(k) =
DMét(k), (7.4.1) is an isomorphism.

(I don’t know if this is true over a general base; the proof below uses the

full faihtfulness of i, which relies on the cancellation theorem.)
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Proof. Since DMét(k) is generated by DMgm,ét(k), it is enough to check

that, for any compact object N ∈ DMgm,ét(k), the morphism

lim−→n
DMét(k)(N, iMn(−n))

∼
−→ DMét(k)(N, hocolimn iMn(−n))

→ DMét(k)(N,M)

given by (7.2.2) and (7.4.1) is an isomorphism.

There exists n0 ≫ 0 such that N(n) ∈ Im i for n ≥ n0. For clarity, let us

write N(n) = iNn for n ≥ n0. Since i is fully faithful, we get for n ≥ n0

DMét(k)(N, iMn(−n)) = DMét(k)(iNn, iMn)
∼
←− DMeff

ét (k)(Nn, (M(n))eff) ≃ DMét(k)(iNn,M(n))

= DMét(k)(N(n),M(n))
∼
←− DMét(k)(N,M).

We thus get an isomorphism

DMét(k)(N,M)
∼
−→ lim−→n≥n0

DMét(k)(N, iMn(−n))

= lim−→n
DMét(k)(N, iMn(−n)).

One check that this isomorphism is inverse to the above map, which con-

cludes the proof. �

7.5. Ω-spectra and Σ-spectra. The following corollary is the raison d’être

of this section:

Corollary 7.5.1. For M ∈ DMét(k), the following are equivalent:

(i) M ∈ DMeff
ét (k).

(ii) For any n ≥ 0, the natural morphism M eff(n) → (M(n))eff is an

isomorphism. ((M(n))eff is a “Σ-spectrum”.)

(iii) For any n > 0, i(M(n))eff(−1) ∈ DMeff
ét (k).

Proof. (i)⇒ (ii)⇒ (iii) is obvious; (ii)⇒ (i) follows from Proposition 7.4.1

applied to M . Finally, assume (iii) true: thus we may write (M(n))eff ≃
N(1) for some N ∈ DMeff

ét (k). Using Lemma 7.3.2, we find

(M(n−1))eff
∼
−→ Homeff(Z(1), (M(n))eff) ≃ Homeff(Z(1), N(1))

∼
←− N

or (M(n − 1))eff(1)
∼
−→ (M(n))eff ; by induction on n, we get (ii). �

8. A PROOF OF THEOREM 3.2.1

From now on, F is a finite field.

The aim of this section is to give the following effective version of Geisser’s

theorem 3.2.1 [27, Th. 3.3]:

Theorem 8.0.2. Let X be a smooth projective F-variety of dimension d,

and let n ≥ 0. Assume:
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(1) Conjecture 3.1.1 holds for X ×X in codimension d.

(2) The cohomological Tate conjecture holds for X in codimension n.

Then, for any i 6= 2n, H i(X,Q(n)) = 0 (“Parshin’s conjecture in weight

n”).

Proof. We shall use Theorem 5.2.1 as well as the functor

(8.0.1) Φ :Meff
rat(F,Q)→ DMeff

gm(F,Q)

of [78, Prop. 2.1.4], where the left hand side is the category of effective

Chow motives over F. This shows that End(h(X)) = CHd(X ×X)⊗Q

acts on the motivic cohomology of X , where h(X) is the Chow motive of

X . By assumption,

CHd(X ×X)⊗Q
∼
−→ Ad

num(X ×X,Q).

By Jannsen [44], the right hand side is a semi-simple Q-algebra. Thus

we may decompose h(X) as a direct sum

h(X) =
⊕

α∈A

Sα

where the Sα are simple motives. Accordingly, we may decompose the

motivic cohomology of X as

H i(X,Q(n)) =
⊕

α∈A

DMeff
gm(F,Q)(Φ(Sα),Z(n)[i]).

Let L be the Lefschetz motive. If Sα = Ln, then

DMeff
gm(F,Q)(Φ(Sα),Z(n)[i]) = DMeff

gm(F,Q)(Z(n)[2n],Z(n)[i])

= 0 if i 6= 2n.

To conclude, it remains to see that DMeff
gm(F,Q)(Φ(Sα),Z(n)[i]) = 0 if

Sα 6≃ L
n.

Let us first show thatMeff
rat(F,Q)(Sα,L

n) = 0. This is obvious if n /∈
[0, d]. If n ∈ [0, d], then An

num(X) 6= 09, which shows that Ln appears as a

direct summand of h(X) and we conclude by semi-simplicity.

We now use that Frobenius defines an endomorphism of the identity

functor of DMeff
gm(F,Q): this follows from the easy fact that it is natu-

ral with respect to the action of finite correspondences. In particular, for

M,N ∈ DMeff
gm(F,Q), with Frobenius endomorphisms FM , FN , we have

the equality F ∗
M = (FN)∗ on DMeff

gm(F,Q)(M,N). Since the Frobenius

endomorphism of Ln equals qn, we get:

9If L is an ample line bundle on X , then deg(Ld) > 0 and a fortiori 0 6= Ln ∈
An

num(X) for all n ∈ [0, d]. . .
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Lemma 8.0.3. Let Fα be the Frobenius endomorphism of Sα. Then F ∗
α acts

on DMeff
gm(F,Q)(Φ(Sα),Z(n)[i]) by multiplication by qn. �

To conclude, it suffices to show thatFα 6= qn inDα = EndMeff
num(F,Q)(Sα).

(Then F ∗
α − qn will act both invertibly and by 0 on the Dα-vector space

DMeff
gm(F,Q)(Φ(Sα),Z(n)[i]), and the latter will have to be 0.)

The cycle class map of Conjecture 3.3.1 splits into components:

Meff
rat(F,Q)(Sα,L

n)→ H2n(S̄α,Ql(n))
G

with an obvious abuse of notation on the right. As we saw above, the left

hand side is 0. By (2), the right hand side is therefore 0 as well. But this

means that 1 is not an eigenvalue of the characteristic polynomial of Fα

acting on H2n(S̄α,Ql(n)), which concludes the proof. �

9. MOTIVIC REFORMULATION OF FRIEDLANDER’S CONJECTURE

9.1. An integral version? Getting a motivic version of Conjecture 3.3.2

with rational coefficients from (4.4.2) or (6.9.1) is easy: one considers the

composition

(9.1.1)

c̄l
n,i
X : H i

ét(X,Z(n))⊗Ql → H i
cont(X,Ql(n))→ H i

cont(X̄,Ql(n))
G

and conjectures that it is an isomorphism. What about an integral version?

The first idea, to consider the composition

H i
ét(X,Z(n))⊗ Zl → H i

cont(X,Zl(n))→ H i
cont(X̄,Zl(n))

G

is tempting but looks unreasonable: a special case would imply a naı̈ve

integral version of the Tate conjecture, and it is well-konwn that the corre-

sponding integral refinement of the Hodge conjecture has counterexamples,

the first ones being due to Atiyah-Hirzebruch using Godeaux varieties.

Over F, counterexamples to the surjectivity of the map

CHn(X)⊗ Zl → H2n
cont(X̄,Zl(n))

G

also exist. In [61, Aside 1.4], Milne hints that the Atiyah-Hirzebruch ex-

amples also work here: this was fully justified in [17, Th. 2.1]. These

counterexamples persist after any finite extension of F. More recently, A.

Pirutka has given an example of a smooth projective F-variety X for which

the map CH2(X) → CH2(X̄)G is not surjective [65]: this provides a dif-

ferent kind of counterexample.

Of course, this rules out the even more naı̈ve idea that (4.4.2) and (6.9.1)

could be isomorphisms. In fact they cannot even be isomorphisms ratio-

nally, in view of the exact sequence (4.2.2). If X is smooth projective and

i = 2n+ 1, one gets a map

0 = H2n+1(X,Z(n))⊗Ql → H2n+1
cont (X,Ql(n))

∼
←− H2n

cont(X̄,Ql(n))G.
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Here we used (4.1.1) and Theorem 5.5.2 b) for the first vanishing, as well

as (4.2.2) and Theorem 2.2.1, which gives the vanishing of H2n+1(X̄,Ql(n))
G.

The equality

dimQl
H2n

cont(X̄,Ql(n))G = dimQl
H2n

cont(X̄,Ql(n))
G

shows that H2n
cont(X̄,Ql(n))G is in general nonzero.

9.2. The complex Zc. The simplest example of the above is for n = 0 and

X = SpecF = SpecFq . Then

(9.2.1) Hj
cont(Fqr ,Zl(0)) =

{
Zl if j = 0, 1

0 else

while

Hj
ét(Fqr ,Q(0)) =

{
Q if j = 0

0 else.

In (9.2.1), transition morphisms for passing from Fq to Fqr are the iden-

tity on H0 but are multiplication by r on H1. This gives a computation

of the cohomology sheaves of R lim←−(Zl), where R lim←− : D̂ét(F,Zl) →
D(Fét,Zl) is the total derived functor of lim←−:

lim←−
j Zl =





Zl if j = 0

Ql if j = 1

0 else.

In [46, §4], I computed the object R lim←−Zl as follows: there exists an

object Zc ∈ Db(Fét,Z), represented by an explicit complex of étale sheaves

of length 1, such that

R lim←−Zl ≃ Zc ⊗ Zl in D(Fét,Zl)

for any l 6= p (and even for l = p) [46, Def. 4.1 and Th. 4.6 b)].

Let us repeat the properties of Zc: its cohomology sheaves are Z in degree

0 and Q in degree 1; in particular

(9.2.2) Z/n[0]
∼
−→ Zc

L
⊗Z/n.

The extension class ∂ ∈ Ext2Fét
(Q,Z) corresponding to Zc is nonzero; it

can be factored as follows in Db(Fét,Z):

(9.2.3)

Q[−1]
∂

−−−→ Z[1]

π

y β

x
Q/Z[−1]

·e
−−−→ Q/Z.
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Here π is induced by the projection Q → Q/Z, β is the integral Bock-

stein and ·e is cup-product with the canonical generator from (4.3.1).

In particular, ∂ ⊗Q = 0, yielding an isomorphism

(9.2.4) Zc ⊗Q ≃ Q[0]⊕Q[−1].

Finally, we have

(9.2.5) Hj
ét(F,Z

c) =

{
Z if j = 0, 1

0 else.

In particular, (4.3.1) refines to a generator

(9.2.6) e ∈ H1
ét(F,Z

c).

See Appendix A for more details on Zc.

I used Zc in [46] and [47] to define a modified cycle class map:

(9.2.7) Hj
ét(X,Z(n)

L
⊗Zc)⊗ Zl

cln,j
X−→ Hj

cont(X,Zl(n))

which serves for an integral version of Friedlander’s conjecture. In the se-

quel, we shall recover this map more conceptually.

9.3. A lemma of Ayoub. Let M,N be two unital symmetric monoidal

categories, and let f :M → N be a (strong, symmetric, unital) monoidal

functor. Assume that f has a right adjoint g. Then the unit map

M → gf(M)

enriches into a bi-natural transformation

(9.3.1) M ⊗ gf(M ′)→ gf(M ⊗M ′), M,M ′ ∈M

which can be described as follows: by adjunction, such a morphism corre-

sponds to a morphism

f(M)⊗ fgf(M ′) ≃ f(M ⊗ gf(M ′))→ f(M ⊗M ′) ≃ f(M)⊗ f(M ′).

This morphism is simply induced by the counit map fgf(M ′)→ f(M ′).
In particular, we may take M ′ = 1 and get a natural transformation

(9.3.2) M ⊗ gf(1)→ gf(M).

We are interested in a sufficient condition for (9.3.2) to be an isomor-

phism. For this, note that we have another bi-natural transformation

(9.3.3) M ⊗ g(N)→ g(f(M)⊗N), M ∈M, N ∈ N

which corresponds by adjunction to the map

f(M)⊗ fg(N) ≃ f(M ⊗ g(N))→ f(M)⊗N
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given by the counit at N . To recover (9.3.1) from (9.3.3), just take N =
f(M ′). The following “projection formula” is due to Joseph Ayoub [3,

Lemme 2.8]:

Lemma 9.3.1. (9.3.3) is an isomorphism if M is strongly dualisable.

Proof. It is so simple that we don’t resist in reproducing it:

Given an objet X of M or N , write tX for the functor X ⊗ −. Let C
be a strong dual of M , i.e., there exist morphisms C ⊗M → 1 and 1 →
M ⊗ C which make tC a left adjoint of tM . As f is monoidal, symmetric

and unital, one deduces that f(C) is a strong dual of f(M), hence that tf(C)

is left adjoint to tf(M). On the other hand, there is an obvious isomorphism

tf(C) ◦ f ≃ f ◦ tC . Using the adjunctions (f ; g), (tC ; tM) and (tf(C); tf(B)),
one deduces an isomorphism of functors tM ◦ g ≃ g ◦ tf(M). It remains

to see that this isomorphism coincides with (9.3.3). This verification is

omitted. �

Corollary 9.3.2. If M is strongly dualisable, (9.3.2) is an isomorphism. �

Remark 9.3.3. Of course Lemma 9.3.1 and Corollary 9.3.2 can be ex-

tended: suppose thatM,N are triangulated categories and f (hence g) is a

triangulated functor. Suppose also that g commutes with small direct sums

(compare Lemma 7.1.4). Then, given N ∈ N , the full subcategory ofM
consisting of those M for which (9.3.3) is an isomorphism is localising. In

particular, if strongly dualisable objects are dense inM, then (9.3.3) holds

universally as soon as g commutes with small direct sums.

9.4. A stable theorem. We shall need:

Lemma 9.4.1. The functor Rl of Theorem 6.8.1 has a right adjoint Ωl.

Proof. This is true for both versions: with coefficients Z or Zl. Once again

this follows from Corollary 7.1.3 (note that Rl commutes with small direct

sums). �

Remark 9.4.2. The unit object Zl of D̂ét(S,Zl) is not compact. This im-

plies that Ωl does not commute with small direct sums (see lemma 7.1.4).

We now apply Corollary 9.3.2 and Remark 9.3.3 to the adjunction (Rl,Ωl)
of Lemma 9.4.1; we get:

Theorem 9.4.3. For any strongly dualisable object M of DAét(S), the map

M ⊗ Ωl(Zl)→ ΩlRl(M)

is an isomorphism.

If S = SpecF and l 6= 2, this applies to all objects of DMgm,ét(F).
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Corollary 9.4.4. Let Γ = Ωl(Zl). Let M,N ∈ DAét(S) and suppose that

N is strongly dualisable. Then there is a natural isomorphism

DAét(S)(M,N ⊗ Γ)
∼
−→ D̂ét(S,Zl)(Rl(M), Rl(N)).

In particular, assume that S = SpecF and l 6= 2; taking M = M(X) for a

smooth F-scheme X and N = Z(n)[i], we get an isomorphism

DMét(F)(M(X),Γ(n)[i])
∼
−→ H i

cont(X,Zl(n)).

Lemma 9.4.5. Let f : S → SpecF be a smooth F-scheme of finite type.

Then there is a canonical isomorphism ΩS
l (Zl) ≃ f ∗ΩSpecF

l Zl.

Proof. Since f is smooth, f ∗ has a left adjoint f♯ which commutes with

Rl [4]. This implies formally that f ∗ commutes with Ωl. Since f ∗ also

commutes with Rl (ibid.), the conclusion follows. �

9.5. Towards the integral Friedlander conjecture. Theorem 9.4.3 and

its corollary look fantastic, but they are in some sense a trompe-l’œil: all

the hard l-adic information is concentrated in the object Γ = Ωl(Zl). To

explain this, let us evaluate this object against the motive of some smooth

variety detwisted: for simplicity we assume S = SpecF. Thus, if M =
M(X)(−n)[−i] with X a smooth F-scheme and n, i ∈ Z, we have

DMét(F)(M(X)(−n)[−i],Ωl(Zl)) = D̂ét(F,Zl)(Rl(M(X)(−n)[−i]),Zl)

= D̂ét(F,Zl)(Zl, Rf∗Zl(n)[i]) = H i
cont(X,Zl(n))

where f : X → SpecF is the structural morphism.

Nevertheless, Corollary 9.4.4 gives the flavour of the integral Friedlander

conjecture, to come. In order to get something interesting, we need to go to

the effective subcategory DMeff
ét (F).

9.6. The modified motivic cycle map. From Lemma 9.4.1 and Proposi-

tion 7.3.1, we deduce that the composite functor

DAeff
ét (S)

i
−→ DAét(S)

Rl−→ D̂ét(S,Zl)

has the right adjoint

Ωeff
l : D̂ét(S,Zl)

Ωl−→ DAét(S)
−eff

−→ DAeff
ét (S).

Using (9.3.2), we get a morphism for any M ∈ DAeff
ét (S):

(9.6.1) M ⊗ Γeff → Ωeff
l Rl(M)

where Γ = Ωl(Zl), as in Corollary 9.4.4. The most important case is M =
Z(n) for n ≥ 0, which we now record:

(9.6.2) Γeff(n)→ Ωeff
l Zl(n).
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The right hand side of (9.6.2) is denoted by Zl(n)
c in [46] and [47]. It

computes continuous étale cohomology with coefficients in Zl(n).

Definition 9.6.1. We call (9.6.2) the modified motivic cycle map.

9.7. The object Γeff . From now on, we assume that S = SpecF and l 6=
2.10 Of course, Corollary 9.3.2 tells us that (9.6.1) is an isomorphism when

M is strongly dualisable in DMeff
ét (F), but there are very few such objects:

we only have the objects of d≤0DMeff
gm,ét(F) (see below). The motive Z(n),

for n > 0, is certainly not of this kind. Nevertheless we are in a better

situation than in §9.5, in that it is possible to compute Γeff :

Proposition 9.7.1. We have a canonical isomorphism

(9.7.1) Zc ⊗ Zl
∼
−→ Γeff

where Zc is the object of Db(Fét,Z) recalled in §9.2. In particular, Γeff ⊗
Q ≃ Ql[0]⊕Ql[−1].

Proof. This corresponds to [46, Th. 6.3 and Cor. 6.4]. Let me repeat the

proof, which is a simple application of Theorem 2.2.1. We first construct

the map (9.7.1). For n ≥ 0, let d≤nDMeff
ét (F) be the localising subcategory

of DMeff
ét (F) generated by motives of varieties of dimension≤ n [78, §3.4].

The inclusion functor in : d≤n DMeff
ét (F) → DMeff

ét (F) has a right adjoint

ρn. Suppose n = 0: by §9.2 we have

ρ0Γ
eff ≃ Zc ⊗ Zl

and we get the map by adjunction.

It is clear that

Γeff ⊗ Z/l ≃ Ωeff
l (Z/l) = Z/l.

Combining this with (9.2.2), we find that the cone of (9.7.1) is uniquely

divisible. Hence it suffices to show that (9.7.1)⊗Q is an isomorphism.

Let X be a smooth projective F-variety, and let X → π0(X) be the

Stein factorisation of the structural morphism X → SpecF: π0(X) is the

“scheme of constants” of X . For i ∈ Z, we have a commutative diagram

H i
ét(π0(X),Zc ⊗Ql)

a
−−−→ H i

ét(X,Zc ⊗Ql)

c

y d

y

H i
cont(π0(X),Ql)

b
−−−→ H i

cont(X,Ql)

where the vertical maps are induced by (9.7.1)⊗Q.

In this diagram, c is an isomorphism by the result of §9.2. The map a
is an isomorphism for trivial reasons. The Riemann hypothesis over finite

fields and (4.2.2) imply that b is an isomorphism. Hence so is d.

10In order to work with DMét(F) rather than DAét(F).
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Thus (9.7.1)⊗Q induces an isomorphism when evaluated against the mo-

tive M(X)[−i] for any smooth projective X and any i ∈ Z. Since these

objects generate DMeff
ét (F,Q), (9.7.1)⊗Q is an isomorphism by Yoneda’s

lemma. �

The terminology of Definition 9.6.1 is now justified by

Corollary 9.7.2. Evaluating (9.6.2) against the motive of a smooth variety

X yields a map

Hj
ét(X,Z(n)

L
⊗Zc)⊗ Zl

cln,j
X−→ Hj

cont(X,Zl(n))

of the form (9.2.7). �

Remark 9.7.3. Let us record the other computations of [46, Cor. 6.10 and

6.12], which also rely on the Riemann hypothesis:

(1) For n ∈ Z, the cohomology sheaves of Ωeff
l Zl(n) ⊗Q are concen-

trated in [n, 2n+ 1]; in particular, Ωeff
l Zl(n)⊗Q = 0 for n < 0.

(2) For 0 ≤ m < n, ρm(Ω
eff
l Zl(n)⊗Q) = 0 (see proof of Proposition

9.7.1 for the definition of ρm).

9.8. The motivic Friedlander conjecture. We start with:

Lemma 9.8.1. For any M ∈ DMét(F) and ν ≥ 1, (9.6.1)⊗Z/lν is an

isomorphism (hence so is (9.6.2)⊗Z/lν).

Proof. Theorem 5.5.1 b) implies that Reff
l = Rl ◦ i and Ωeff

l become quasi-

inverse equivalence of categories when we pass to Z/lν coefficients. �

Proposition 9.8.2. Let X be a smooth F-variety and n ∈ Z. Then the

following are equivalent:

(i) The map cln,jX of Corollary 9.7.2 is an isomorphism for any j ∈ Z.

(ii) Same as (i), replacing cln,jX by cln,jX ⊗Q.

(iii) The map c̄l
n,j
X of (9.1.1) is bijective for any j ∈ Z (Friedlander’s

conjecture), and the composition as in Remark 2.2.3

ρn,jX : Hj
cont(X̄,Ql(n))

G −֒→ Hj
cont(X̄,Ql(n)) −→→ Hj

cont(X̄,Ql(n))G

is bijective for any j ∈ Z.

Proof. This is an elaboration of the proof of [47, Prop. 3.9]:

The equivalence (i) ⇐⇒ (ii) follows from Lemma 9.8.1. We now prove

(ii) ⇐⇒ (iii).

Using (4.2.2), (9.2.4) and the commutative diagram (4.3.2) applied to

C = Rf∗Ql(n)) for f : X → SpecF the structural morphism, one checks
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that cln,jX ⊗Q fits in a diagram of short exact sequences

0→Hj−1(X,Q(n))Ql
→Hj(X,Qc(n))Ql

→ Hj(X,Q(n))Ql
→0

fj−1

y cln,j
X

⊗Q

y c̄l
n,j
X

y
0→Hj−1

cont(X̄,Ql(n))G→Hj
cont(X,Ql(n))→Hj

cont(X̄,Ql(n))
G→0

where −Ql
:= − ⊗Q Ql, Q

c(n) := Z(n)
L
⊗Zc ⊗ Q. Moreover, f j =

ρn,jX ◦ c̄l
n,j
X .

If cln,jX ⊗Q is bijective, we get the surjectivity of c̄l
n,j
X and the injectivity

of f j−1. So if cln,j+1
X ⊗Q is also bijective, then c̄l

n,j
X and ρn,jX are bijective.

Conversely, if c̄l
n,j
X , ρn,j−1

X and c̄l
n,j−1
X are bijective, then cln,jX ⊗Q is bi-

jective. �

Theorem 9.8.3. ForX smooth projective and n ≥ 0, consider the following

conditions:

A(X, n): Conjectures 2.1.1 and 3.1.1 hold for (X, n).

B(X, n): cln,jX is an isomorphism for all j ∈ Z.

Let d = dimX . Then

B(X, n) +B(X, d− n)⇒ A(X, n) + A(X, d− n)

and

A(X ×X, d) + A(X, n)⇒ B(X, n).

In particular, the validity of B(Xm, n) for all (m,n) is independent of l.

Proof. This is a DM version of the equivalence between conjectures 3.1 and

3.2 of [47]. Let me recall the proof:

1) By Proposition 9.8.2 and Theorem 2.2.1, B(X, n) is equivalent to the

following three conditions put together:

(i) H i(X,Q(n)) = 0 for i 6= 2n.

(ii) Conjecture 3.3.1 holds for (X, n).
(iii) Condition Sn of Remark 2.2.3 holds for X .

2) By Theorem 2.2.2 and Remark 2.2.3, (ii) + (iii) for (X, n) and (X, d−
n) ⇐⇒ A(X, n) + A(X, d − n), where d = dimX . In particular we get

the first implication in Theorem 9.8.3.

3) It remains to see that A(X×X, d)+A(X, n)⇒ (i): this follows from

Theorem 8.0.2. �

Corollary 9.8.4. a) The following are equivalent:

(i) Conjectures 2.1.1 and 3.1.1.
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(ii) cln,jX is an isomorphism for all smooth projective X and any n ≥ 0,

j ∈ Z.

(iii) cln,jX is an isomorphism for all smooth X and any n ≥ 0, j ∈ Z.

(iv) (9.6.2) is an isomorphism for any n ≥ 0.

(v) For any n > 0, (Ωeff
l Zl(n))(−1) ∈ DMeff

ét (F).

(vi) Γ ∈ DMeff
ét (F); equivalently, Γeff ∼

−→ Γ.

(vii) Same as (vi), replacing DMét(F) by DMét(F,Zl).

b) If this holds, then (9.6.1) is an isomorphism for any M ∈ DMeff
gm,ét(F). In

particular, for such M and for any N ∈ DMeff
ét (F), there is an isomorphism

DMeff
ét (F)(N,M ⊗ Zc)⊗ Zl

∼
−→ D̂ét(F,Zl)(Rl(N), Rl(M)).

Proof. a) (i) ⇐⇒ (ii): this follows from Theorem 9.8.3.

(ii) ⇐⇒ (iv): this is formal, since DMeff
gm,ét(F) is generated by the

M(X) for X smooth projective.11

(iv)⇒ (iii)⇒ (ii) is trivial.

(iv) ⇐⇒ (v) ⇐⇒ (vi): this follows from Corollary 7.5.1.

(vi) ⇐⇒ (vii) is formal. (Note that the right adjoint to DMét(F) →
DMét(F,Zl) is just given by restriction of scalars.)

b) Applying the functor −eff to the isomorphism of Theorem 9.4.3, we

get an isomorphism

(M ⊗ Γ)eff
∼
−→ Ωeff

l Rl(M).

If (vi) holds, the obvious isomorphism (M ⊗Γeff)eff
∼
−→ M ⊗Γeff yields

an isomorphism M ⊗ Γeff ∼
−→ Ωeff

l Rl(M), that one checks is (9.6.1). �

The next corollary follows from Lemma 9.4.5:

Corollary 9.8.5. Suppose that the equivalent conditions of Corollary 9.8.4

hold, and let S be a smooth F-scheme of finite type. Then there is a canon-

ical isomorphism

M ⊗ Zl ⊗ Zc ∼
−→ ΩlRl(M)

for any strongly dualisable M ∈ DAét(S). �

10. DUALITY AND FINITE GENERATION

Motivated by the last isomorphism of Corollary 9.8.4, we define here a

new category DAW (F) out of DAét(F) by using the product µ : Zc
L
⊗Zc →

Zc from Appendix A. We shall then prove that the equivalent statements

11One may avoid the use of Gabber’s theorem here by using the equivalence (i) ⇐⇒
(ii) of Proposition 9.8.2 and working in DMgm(F,Q): then only de Jong’s theorem is

needed.
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of corollary 9.8.4 are also equivalent to the finite generation (as Z[1/p]-
modules) of the Hom groups for the constructible objects of DAW (F).

10.1. l-adic duality. Let D̂b
c(F,Zl) be the full subcategory of D̂ét(F,Zl)

consisting of perfect complexes: it is equivalent to the derived category

of bounded complexes of finitely generated Zl[[G]]-modules. A form of

Verdier duality is the following (cf. [68, Ch. I, Ann. 2]):

Proposition 10.1.1. The “global sections” functor RΓ : D̂b
c(F,Zl) →

Db(Zl) has a right adjoint Π, and Π(X) ≃ X [1] where X ∈ Db(Zl) is

viewed as a complex of constant sheaves in D̂b
c(F,Zl). �

Corollary 10.1.2. Let C ∈ D̂b
c := D̂b

c(F,Zl). Then

a) The composition

HomD̂b
c
(Zl, C)× HomD̂b

c
(C,Zl[1])→ HomD̂b

c
(Zl,Zl[1]) = Zl

is a perfect duality modulo torsion.

b) The compositions

HomD̂b
c
(Zl, C)× HomD̂b

c
(C,Z/lν[1])→ HomD̂b

c
(Zl,Z/l

ν [1]) = Z/lν

induce a perfect duality of finite groups

HomD̂b
c
(Zl, C)tors ×HomD̂b

c
(C,Zl[2])tors → Ql/Zl.

Proof. Proposition 10.1.1 yields an isomorphism

RΓHomF(C,Zl[1])
∼
−→ Hom(RΓ(C),Zl)

where HomF denotes the internal Hom of D̂b
c(F,Zl). Taking cohomology,

we get

HomD̂b
c
(C,Zl[q + 1])

∼
−→ Hq(Hom(RΓ(C),Zl))

and we conclude with the well-known exact sequences

0→ Ext1Zl
(HomD̂b

c
(Zl, C[1− q]),Zl)→ Hq(Hom(RΓ(C),Zl))

→ HomZl
(HomD̂b

c
(Zl, C[−q]),Zl)→ 0

for q = 0,−1. (We leave it to the reader to verify that the corresponding

isomorphisms are really induced by the pairings in a) and b).) �

10.2. An abstract construction. LetM be a unital, symmetric monoidal

category and let Γ be a commutative monoid inM [56, Ch. VII, §3]. We

shall construct a new (unital, symmetric) monoidal category M(Γ) and a

pair of adjoint functors

M
γ∗

⇆
γ∗
M(Γ)

with γ∗ symmetric monoidal.
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For this, we observe that the endofunctor M 7→ M ⊗ Γ has the struc-

ture of a monad [56, Ch. VI, §1]; we defineM(Γ) as the Kleisli category

associated to this monad (ibid., §5, Th. 1). Recall its definition:

• The objects ofM(Γ) are the objects ofM.

• Given two objects M,N ,

M(Γ)(M,N) =M(M,N ⊗ Γ).

• Composition is defined by using the multiplication of Γ.

This construction comes with an adjunction (γ∗, γ∗) as required. Let us

describe these two functors:

• γ∗ is the identity on objects and acts on morphisms via the unit of

Γ.

• γ∗ sends an object M to M ⊗ Γ and acts on morphisms via the

multiplication of Γ.

The only thing which is not in Mac Lane’s book is the symmetric monoid-

al structure onM(Γ) and γ∗: this will be left to the reader.

10.3. An artificial category. Recall from Appendix A that the object Zc

of DMét(F) is provided with a multiplication µ : Zc
L
⊗Zc → Zc; together

with the map η : Z[0] → Zc, one checks that Zc has the structure of a

commutative monoid. This will be better justified in §11.

Definition 10.3.1. Let f : S → SpecF be a smooth scheme of finite type,

and let A be a commutative ring.

a) We write DAW (S,A) for the category DAét(S,A)(f
∗Zc), with the nota-

tion of the previous subsection.

b) If S = SpecF, we write DAW (F, A) for DAW (SpecF, A) and define

DAeff
W (F), DAgm,W (F) and DAeff

gm,W (F) as the corresponding thick subcat-

egories.

In particular, we have a symmetric monoidal functor γ∗ : DAét(S,A)→
DAW (S,A) with right adjoint γ∗, and

Lemma 10.3.2. There is a unique symmetric monoidal functor

RW
l : DAW (S,Zl)→ D̂ét(S,Zl)

such that Rl = RW
l ◦ γ

∗.

Proof. The definition of RW
l on objects is forced since γ∗ is the identity on

objects; we need to define RW
l (f) for f ∈ DAW (S,Zl)(M,N). Thus f is a

morphism from M to N ⊗ f ∗Zc in DAét(S,Zl). We then get

Rl(f) : Rl(M)→ Rl(N ⊗ f ∗Zc) ≃ Rl(N)⊗ f ∗Rl(Z
c).
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But Rl(η) : Zl[0] → Rl(Z
c) is an isomorphism, in view of the cohomol-

ogy sheaves of Zc; this gives the desired morphism. �

One interest of the categories DAW (S,A) is that they allow us to refor-

mulate the equivalent conditions of Corollary 9.8.4 in a way which justifies

the title of this paper:

Proposition 10.3.3. a) The conditions of Corollary 9.8.4 a) are also equiv-

alent to the following: the restriction of RW
l to DAgm,W (F,Zl) is fully faith-

ful.

b) If they are verified, then the same is true for the restriction of RW
l to

strongly dualisable objects of DAW (S,Zl), for any S ∈ Sm(F).

Proof. a) By part b) of Corollary 9.8.4, the conditions of its part a) imply

the said full faithfulness. Conversely, if we specialise to motives M(X)
and Z(n)[i] for X smooth and n ≥ 0, i ∈ Z, we get back Condition (iii) of

Corollary 9.8.4 a).

b) This follows similarly from Corollary 9.8.5. �

Recall the generator e ∈ H1
ét(F,Z

c) of (9.2.5). We may view it as a

map e ∈ DAW (F)(Z,Z[1]); it is easy to see that e2 = 0, for example

by using its compatibility with the generator of (4.3.1). Therefore, for any

M,N ∈ DAW (F), we have a complex of abelian groups

(10.3.1) . . .
·e
−→ DAW (S)(M,N [j])

·e
−→ DAW (S)(M,N [j+1])

·e
−→ . . .

Lemma 10.3.4. The complex (10.3.1) has torsion cohomology groups.

Proof. It is equivalent to show that the complex

. . .
·e
−→ DAét(S,Q)(M,N⊗Qc[j])

·e
−→ DAét(S,Q)(M,N⊗Qc[j+1])

·e
−→ . . .

is acyclic. Inspection shows that the map

e : Q[0]⊕Q[−1] ≃ Qc → Qc[1] ≃ Q[1]⊕Q[0]

inducing the differentials is the identity on Q[0] and 0 on the other sum-

mands. The claim then follows from a simple computation. �

10.4. Two pairings. We now imitate §10.1. Let M ∈ DAW (F). Compo-

sition of morphisms defines a pairing

(10.4.1)

Hom(Z,M)/tors⊗ Hom(M,Z[1])/tors→ Hom(Z,Z[1]) = Z[1/p].

Here the value of the target group comes from (9.2.5) (recall thatDMét(F),
hence DAW (F), is Z[1/p]-linear).

Thanks now to (9.2.2), we have a canonical isomorphism

Hom(Z,Q/Z[1]) ≃ (Q/Z)′
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(given by the choice of the arithmetic Frobenius of F). Here we wrote

(Q/Z)′ for
⊕

l 6=pQl/Zl. Thus we get a pairing

(10.4.2) Hom(Z,M)⊗ Hom(M,Q/Z[1])→ (Q/Z)′.

The tautological exact sequence

0→ Hom(M,Z[1])⊗Q/Z→ Hom(M,Q/Z[1])

→ Hom(M,Z[2])tors → 0

shows that (10.4.2) induces a pairing

(10.4.3) Hom(Z,M)tors ⊗Hom(M,Z[2])tors → (Q/Z)′.

Lemma 10.4.1. Let R be a commutative ring and A×B → R be a pairing

of flat R-modules.

a) Suppose that the pairing is non-degenerate after ⊗Rl for some prime

ideal l ofR, where Rl is the completion of R at l. Then it is non-degnenerate.

b) Assume that R is a Noetherian domain with quotient field K. If moreover

A⊗R K or B ⊗R K is a finite-dimensional K-vector space, then A and B
are finitely generated.

c) In the case of b), suppose moreover that the pairing is perfect after ⊗Rl

for every l. Then it is perfect.

Proof. a) and b) are exactly the contents of [48, Lemma 3.9]: we refer to

loc. cit. for the proof. The latter involves the composition

Al
a
−→ HomR(B,R)l

b
−→ HomRl

(Bl, Rl)

where Al = A ⊗R Rl, etc. Since B is finitely generated and Rl is flat over

R [13, II.3.4, Th. 3 (iii)], b is injective (ibid., I.2.10, Prop. 11), thus if ba is

bijective so is a. If this is true for all l, then A → Hom(B,R) is bijective

by the same proof as [13, II.3.3, Th. 1]. This proves c). �

Theorem 10.4.2. The conditions of Corollary 9.8.4 are also equivalent to

the following:12

(i) DAW (F,Z[1/2])(M,Z) is a finitely generated Z[1/2p]-module for

any M ∈ DAgm,W (F,Z[1/2]).
(ii) DAW (F,Z[1/2])(M,N) is a finitely generated Z[1/2p]-module for

any M,N ∈ DAgm,W (F,Z[1/2]).
(iii) For some prime l 6= 2, p, DAW (F,Zl)(M,N) is a finitely generated

Zl-module for any M,N ∈ DAgm,W (F,Zl).

These conditions imply:

12For the reason why 2 is inverted, see Theorem 6.8.1.
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(*) For any M ∈ DAgm,W (F,Z[1/2]), (10.4.1) is a perfect pairing of

finitely generated free Z[1/2p]-modules and (10.4.3) is a perfect

pairing of finite groups.

Proof. Let (**) the condition of Proposition 10.3.3 a): we show (**)⇒ (i)

+ (*)⇒ (ii)⇒ (iii)⇒(**).

(**)⇒ (i) + (*): we first observe that Rl(M) ∈ D̂b
c(F,Zl) for any l 6= p.

Indeed, this is true for M = M(X), f : X → SpecF smooth by Deligne’s

finiteness theorem for l-adic cohomology (recall that Rl(M(X)) = (Rf∗Zl)
∗).

Let A = DAW (F,Z[1/2])(M,Z). Clearly, (**) implies that A ⊗ Zl is

finitely generated over Zl for any l 6= p. Further, Corollary 10.1.2 implies

the conclusion of (*) after ⊗Zl. Lemma 10.4.1 then implies that A/Ators

is a finitely generated free Z[1/p]-module, that (10.4.3) is perfect and that

A{l} is finite for all l 6= p.

To get (i), we observe that the full subcategory of DAgm,ét(F,Z[1/2])
formed of those M such thatDAW (F,Z[1/2])(M,Z[i]) is finitely generated

for all i ∈ Z is triangulated and thick (stable under direct summands). Thus

we may reduce to M = M(X)(−n) with X smooth projective and n ≥ 0.

In this case, it is known that

D̂b
c(F,Zl)(Rl(M(X)(−n)),Zl[i]) = H i

cont(X,Zl(n))

is torsion-free for almost all l [16, Th. 2]. Hence DAW (F,Z[1/2])(M,Z[i])
has finite torsion, hence is finitely generated, for any i. This also finishes to

prove (*).

(i)⇒ (ii): this is clear from the formula

DAW (F,Z[1/2])(M,N) ≃ DAW (F,Z[1/2])(N∗ ⊗M,Z).

(ii)⇒ (iii): this is obvious.

(iii) ⇒ (**): let M,N ∈ DAgm,W (F,Zl). By hypothesis, we have a

homomomorphism of finitely generated Zl-modules:

(10.4.4) DAW (F,Zl)(M,N)→ Dc(F,Zl)(Rl(M), Rl(N)).

To work in a triangulated category, we place ourselves in DMét(F,Zl)
and rewrite the above as

DMét(F,Zl)(M,N ⊗ Zc)→ DMét(F,Zl)(M,ΩlRl(N)).

Let C(N) be a cone of the map N ⊗ Zc → ΩlRlN in Dét(F). By the

same argument as in the proof of Lemma 9.8.1, C(N) = 0 if N is torsion,

which implies that C(N) is uniquely divisible in general. Then the exact

sequence

DMét(F,Zl)(M,ΩlRl(N))→ DMét(F,Zl)(M,C(N))

→ DMét(F,Zl)(M,N ⊗ Zc[1])
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shows that the Ql-vector space DMét(F,Zl)(M,C(N)) is an extension of

two finitely generated Zl-modules, hence is 0. Applying this to N [−1] in-

stead of N , we get the bijectivity of (10.4.4). �

Remark 10.4.3. To control the torsion in Hom groups, we used [16, Th. 2]

which rests ultimately on a theorem of Gabber on the torsion in the l-adic

cohomology of smooth projective varieties [26]. This ingredient is not in

the spirit of the rest of the paper: is there a way to avoid it?

Corollary 10.4.4. Suppose that the conditions of Corollary 9.8.4 a) hold.

Then, for any M,N ∈ DAgm,W (F,Z[1/2]), the complex (10.3.1) is bounded

and has finite cohomology groups.

Proof. It follows from Lemma 10.3.4 and Theorem 10.4.2 that, under the

conditions of Corollary 9.8.4 a), the cohomology groups of (10.3.1) are

finite. It remains to see its boundedness. In terms of DAét(F,Z[1/2]),
amounts to the vanishing of DAét(F,Z[1/2])(M,N ⊗ Zc[j]) for |j| ≫ 0.

By duality, we may reduce to N = Z. The vanishing is stable under cones

and direct summands, so it suffices to check it on motives of the form

M = M(X)(−n), X ∈ Sm(F). This amounts to the vanishing of the

cohomology groups H i
ét(X,Zc(n)) for |j| ≫ 0. In view of the cohomol-

ogy sheaves of Zc, this reduces to the same vanishing for Hj
ét(X,Z(n));

since X has finite étale cohomological dimension, this in turn reduces in

view of (5.6.1) to the same vanishing for Hj
ét(X,Q(n)). This group is 0 for

j > 2n by (4.1.1) and Theorem 5.5.2 b). To get the boundedness below we

may even reduce to X smooth projective, and then Hj
ét(X,Q(n)) = 0 for

j < 2n by the assumption and Theorem 8.0.2. �

In [51], we shall use Corollary 10.4.4 to give a conjectural expression for

the special values of the zeta function of M , generalising Lichtenbaum’s

conjecture up to a power of p (cf. [50, Th. 72]).

10.5. Rational coefficients.

Proposition 10.5.1. The following conditions are equivalent:

(i) The Beilinson and Parshin conjectures hold for any smooth projec-

tive F-variety.

(ii) For any M ∈ DMgm(F,Q), the composition pairing

DMgm(F,Q)(Z,M)⊗ DMgm(F,Q)(M,Z)→ DMgm(F,Q)(Z,Z) = Q

is non-degenerate.

If this is the case,

a) The Hom groups in DMgm(F,Q) are finite-dimensionalQ-vector spaces.

b) The functor Φ of (8.0.1) induces an equivalence of categories

Db(Mnum(F,Q))
∼
−→ DMgm(F,Q).
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c) There is a unique t-structure on DMgm(F,Q) such that S[−w] is in the

heart for any S ∈Mnum(F,Q) of pure weight w.

d) For any M ∈ DMgm(F,Q), the action of Frobenius on Rl(M) is semi-

simple and its characteristic polynomial is independent of l.

Proof. The full category of DMgm(F,Q) consisting of those M such that

the hypothesis of (ii) is satisfied for M [i] for any i ∈ Z is thick and trian-

gulated. Hence (ii) is equivalent to the same statement restricted to M =
M(X)(−n)[−i], X smooth projective, n ≥ 0, i ∈ Z. Then the equivalence

between (i) and (ii) (for this specific X) is an observation essentially due to

Jakob Scholbach:

In this case, the said pairing is of the form

Hi(X,Q(n))×H i(X,Q(n))→ Q.

By Poincaré duality, the left group may be rewritten H2d−i(X,Q(d−n)).
Suppose i = 2n. Then we find the intersection pairing between ratio-

nal Chow groups. To say that it is nondegenerate is equivalent to say that

rational and numerical equivalences agree.

Suppose i 6= 2n. Then either i > 2n or 2d− i > 2(d− n). So one of the

two groups in the pairing is 0, and (ii) is equivalent to the vanishing of the

other, which is Parshin’s conjecture.

a) follows from (i) by internal duality and reduction to smooth projective

varieties. For b), see the proof of [50, Th. 56]. By [44], Mnum(F,Q) is

semi-simple and by [52], any simple S ∈ Mnum(F,Q) has a weight; then

c) follows readily from b). Finally, d) follows from b) and Theorem 2.2.1,

since M is a direct sum of shifted simple motives. �

Remarks 10.5.2. 1) Proposition 10.5.1 d) may be applied in particular to

the motives M(X) and Mc(X) of Definition 6.7.1, for X of finite type over

F.

2) If we consider DAW (F,Q), the isomorphism stemming from (9.2.4)

DAW (F,Q)(M,N) ≃ DM(F,Q)(M,N)⊕ DM(F,Q)(M,N [−1])

easily shows that (10.4.1) boils down to the pairing of Proposition 10.5.1

(ii).

3) Let l 6= p. Using Theorem 5.5.1 b) and the duality of Proposi-

tion 10.1.1, it is easy to see that one has a perfect pairing for any M ∈
DAgm,W (F,Z/l):

Hom(Z,M)× Hom(M,Z[1])→ Hom(Z,Z[1]) = Z/l.

This suggests that the conditions of Proposition 10.5.1 might be equiva-

lent to those of Theorem 10.4.2. Unfortunately a proof of this fails, as we

shall see in Remark 11.6.2.
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11. WEIL-ÉTALE REFORMULATION

11.1. Lichtenbaum’s Weil-étale topology and cohomology.

Definition 11.1.1 (Lichtenbaum [55]). a) Let X/F be a scheme of finite

type, and let X̄ = X ⊗F F̄. A Weil-étale sheaf on X is

• a sheaf F on X̄;

• a map ϕF : ϕ∗F → F , ϕ the Frobenius of F.

Weil-étale sheaves form the Weil-étale topos of X . There is an underlying

site XW described in [55, §2].

b) If F is an abelian Weil-étale sheaf, one defines

H0
W (X,F) := H0

ét(X̄,F)ϕF .

c) Weil-étale cohomology is defined as the derived functors of H0
W .

The definition of the Weil-étale cohomology yields short exact sequences

0→ H i−1
ét (X̄,F)ϕ → H i

W (X,F)→ H i
ét(X̄,F)ϕ → 0

which show that Weil-étale cohomology commutes with filtering direct lim-

its of sheaves and has finite cohomological dimension.

There is a morphism γ from the Weil-étale topos to the étale topos (forget

that Frobenius acts continuously), hence adjoint functors: Ab(Xét)
γ∗

⇄
γ∗
Ab(XW ).

11.2. Two basic results. They are due to Geisser [28, Th. 5.1 and 5.3]:

Theorem 11.2.1. a) For any C ∈ D(Xét), the map

Rγ∗Z
L
⊗C → Rγ∗γ

∗C

of (9.3.2) is an isomorphism.

b) Rγ∗γ
∗Z ≃ Zc.

Note that b) is the promised better justification of the monoid structure

on Zc (see beginning of §10.3)!

Since D(Xét) is generated by strongly dualisable objects13 and γ∗ pre-

serves compact objects, a) is in fact a formal consequence of Corollary 9.3.2

and Remark 9.3.3. One will find another proof of b) in Appendix A.

The description of Zc given in §9.2 then gives:

Corollary 11.2.2. a) One has long exact sequences

· · · → H i
ét(X,C)→ H i

W (X, γ∗C)→ H i−1
ét (X,C)⊗Q

∂
−→ H i

ét(X,C)→ . . .

13namely, locally constant constructible sheaves
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for C a complex of étale sheaves on X , where ∂ is described by (9.2.3).

b) If C is torsion, H i
ét(X,C)

∼
−→ H i

W (X, γ∗C).
c) If C is a complex of sheaves of Q-vector spaces,

H i
W (X, γ∗C) ≃ H i

ét(X,C)⊕H i−1
ét (X,C).

11.3. Inflicting the Weil-étale topology on DA. One can faithfully follow

the template of [4, §3] and get triangulated categories D̃AW (S,A) for S a

F-scheme of finite type and A a commutative ring of coefficients. To do

this we should define a Weil-étale site SmW (S). We can do it by simply

mimicking Lichtenbaum’s definition in [55]:

We first define a “big Weil-étale” site SchW (F). Objects of the under-

lying category are F̄-schemes of finite type. Let S̄ be such a scheme; for

n ∈ Z we write S̄(n) = (ϕn)∗S̄; there is a canonical F̄ -morphism S(n) → S
(iterated relative Frobenius). If S̄, T̄ ∈ SchW (F) with S̄ connected, a mor-

phism S̄ → T̄ is a F̄-morphism S̄ → T̄ (n) for some n ∈ Z; for S̄ arbitrary a

morphism from S̄ to T̄ is a collection of such morphisms over the connected

components of S̄. Finally, coverings are étale coverings.

If S/F is of finite type, we define SmW (S) as the full subsite of SchW (F)
whose objects are smooth S̄-schemes.

One still has a pair of adjoint functors

DAét(S,A)
γ∗

⇄
γ∗
D̃AW (S,A).

Here are some good features of this construction:

Lemma 11.3.1. a) γ∗ is fully faithful if A = Z/lν .

b) Theorem 11.2.1 a) remains valid here.

c) The functor γ∗ factors canonically as a composition

DAét(S,A)
γ∗

−→ DAW (S,A)
ι
−→ D̃AW (S,A)

where DAW (S,A) is the category from Definition 10.3.1 a) and ι is fully

faithful. Moreover, the functor γ∗ of §10.3 is the restriction to DAW (S,A)
of the present functor γ∗.

d) If A = Z/lν , DAW (S,A) is a triangulated subcategory of D̃AW (S,A).

Proof. a) follows from Corollary 11.2.2 b). b) is formal by localisation

from Theorem 11.2.1 a). c) follows formally from b) and Theorem 11.2.1

b). Finally, d) follows easily from a). �

Remark 11.3.2. Unfortunately DAW (S,A) is not a triangulated subcate-

gory of D̃AW (S,A) in general, e.g. for A = Z or Q. Indeed, consider a

fibre F of the map e ∈ D̃AW (F)(Z,Z[1]) coming from (9.2.5) (see above

(10.3.1)). Then F is represented by a Weil-étale sheaf (still denoted by
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F ), extension of Z by itself. (One can check that the Frobenius ϕ acts on

F ≃ Z⊕ Z by

ϕ(m,n) = (m,m+ n),

compare [46, (4.1)] and Appendix A, but we won’t need this here.)

I claim that F is not in the essential image of γ∗. It is enough to show

this for its image FQ in D̃AW (F,Q). If FQ were of the form γ∗C for

C ∈ DAét(F,Q), we would have

γ∗FQ ≃ γ∗γ
∗C ≃ C ⊗ γ∗Q ≃ C ⊗Qc ≃ C ⊕ C[1].

But it is easy to compute γ∗FQ as the fibre of γ∗e: one finds

γ∗FQ ≃ Q⊕Q[1].

One would then have C ⊕ C[1] ≃ Q ⊕ Q[1] in DAet(F,Q). Taking

cohomology sheaves, this easily gives C ≃ Q[0]. Hence a contradiction,

since then FQ = γ∗C = Q[0] would be of Q-rank 1.

11.4. The Weil-étale l-adic realisation functor. Remark 11.3.2 leads to

Definition 11.4.1. We write DAW (S,A) for the localising subcategory of

D̃AW (S,A) generated by DAW (S,A) = γ∗DAét(S,A). It is a ⊗-triangul-

ated subcategory.

Lemma 11.4.2. If A = Z/ln, DAW (S,A) = DAW (S,A) ≃ DAét(S,A).

Proof. This follows formally from Lemma 11.3.1 a). �

Proposition 11.4.3. Let l 6= 2. The functor RW
l of Lemma 10.3.2 extends

to DAW (S), and has a right adjoint ΩW
l . Similarly with coefficients Zl.

Proof. It suffices to do it with Zl coefficients. This follows immediately

from Ayoub’s construction of Rl [4, Def. 5.6]: it is the composition of two

functors

DAét(S,Zl)→ DAét(S,Z/l
•)→ Dét(S,Z/l

•)

where DAét(S,Z/l
•) is the “profinite” version of DAét(S,Zl) described in

[4, §5]. There is an obvious functor

DAét(S,Z/l
•)

γ∗

−→ DAW (S,Z/l•)

where the right category is defined similarly, and γ∗ has a right adjoint γ∗.
These adjoints are clearly compatible with the projections

DAét(S,Z/l
•)

s∗ét−→ DAét(S,Z/l
s), DAW (S,Z/l•)

s∗
W−→ DAW (S,Z/ls).

By [4, Lemma 5.3], the (s∗ét) form a conservative set of functors, and the

same proof shows that the same holds for the (s∗W ). From this and Lemma

11.4.2, one deduces that the unit and counit of the adjunction (γ∗, γ∗) are
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isomorphisms, hence γ∗ and γ∗ are quasi-inverse equivalences of categories.

The functor RW
l is then defined as the composition

DAW (S,Zl)→ DAW (S,Z/l•)
γ∗
−→ DAét(S,Z/l

•)
Rl−→ Dét(S,Z/l

•).

It remains to show that the image of RW
l is contained in D̂ét(S,Zl). This

is a localising subcategory of Dét(S,Z/l
•); since it contains the image of Rl

and since γ∗DAét(S,Zl) generates DAW (S,Zl), D̂ét(S,Zl) also contains

the image of RW
l . The existence of ΩW

l follows fromTheorem 7.1.2. �

On the other hand, there are too many objects in D̃AW (S,A):

(1) Even if A = Z/lν , γ∗ is not essentially surjective. For exam-

ple, the free Z/lν [ϕ, ϕ−1]-module of rank 1 defines an object of

D̃AW (F,Z/lν) which is not in the essential image of γ∗. In par-

ticular, it is not clear whether RW
l extends to D̃AW (F).

(2) DAW (F,Q) is not dense in D̃AW (F,Q). For example, the sheaf

Q〈n〉 where Frobenius acts by multiplication by qn has no nonzero

Weil-étale cohomology if n 6= 0 (this example was given by Geisser).

Hence it is right orthogonal toDAgm,W (F,Q), hence toDAW (F,Q).

11.5. A reformulation of Proposition 10.3.3. The following statement is

a bit more elegant:

Proposition 11.5.1. The conditions of Corollary 9.8.4 a) are also equiva-

lent to the following: the unit map

Zl → ΩW
l RW

l Zl

of the adjunction in Proposition 11.4.3 is an isomorphism.

Proof. Using Theorem 11.2.1 a) and the fact that γ∗DAét(F,Zl) generates

DAW (F,Zl), this is formally equivalent to Corollary 9.8.4 a) (vii). �

11.6. A reformulation of Theorem 10.4.2. Consider the composite func-

tor

D(Z[1/2p]) ≃ d≤0DA(F,Z[1/2p])→ DAét(F,Z[1/2])

→ DAW (F,Z[1/2]).

It commutes with representable direct sums and preserves compact ob-

jects, hence has a right adjoint RΓ wich in turn has a right adjoint Π.

The cohomology groups of RΓ(Z) are given by (9.2.5); in particular, we

have a canonical mapRΓ(Z)→ Z[1], which yields a map in DAW (F,Z[1/2])

(11.6.1) Z[−1]
θ
−→ Π(Z).



52 BRUNO KAHN

Theorem 11.6.1. The conditions of Corollary 9.8.4 a) are equivalent to the

invertibility of (11.6.1).

Proof. Let M ∈ DAW (F,Z[1/2]). Evaluating (11.6.1) against M produces

a map

DAW (F,Z[1/2])(M,Z[1])
θM−→ D(Z[1/2p])(RΓ(M),Z).

The right hand side fits in an exact sequence

0→ Ext1(DAW (F,Z[1/2])(M,Z[1]),Z[1/p])→ D(Z[1/2p])(RΓ(M),Z)

→ Hom(DAW (F,Z[1/2])(M,Z),Z[1/p])→ 0

One checks that θM induces the pairings (10.4.1) and (10.4.3), and that

its bijectivity is equivalent to their perfectness (compare proof of Corollary

10.1.2). �

Remark 11.6.2. As in §10.5, one easily sees that, in (11.6.1), θ ⊗ Z/m is

an isomorphism for any m 6= 0. Hence θ is an isomorphism if and only if

θ ⊗Q is an isomorphism. The problem to go further is that the map

Π(Z)⊗Q→ Π(Q)

is not a priori an isomorphism. It will be, provided Π commutes with homo-

topy colimits, which happens if and only if RΓ preserves compact objects

(Lemma 7.1.4), in other words, if Hom(M,Z[i]) is finitely generated and 0
for almost all i, for any M ∈ DAW (F). . .

The isomorphisms Tor(Z/m,Z/m) ≃ Z/m provide a pairing in D(Z)

Q/Z×Q/Z→ Q/Z[1].

This pairing is perfect after⊗Q (in D(Q)) and after
L
⊗Z/m (inD(Z/m))

for any m. But it is clearly not perfect, since Hom(Q/Z,Q/Z) is not a tor-

sion group.

12. A POSITIVE CASE OF THE CONJECTURES

12.1. Motives of weight ≤ 1. Write

w≤1DMeff
gm,ét(F)

for the thick subcategory of DMeff
gm,ét(F) generated by the M(X) with X

smooth of dimension 0 and the Φ(h1(C)) where C is a smooth projective

curve and Φ is the integral version of the functor in (8.0.1). (Note that C
always has a zero-cycle of degree 1 by Weil’s theorem, hence an integral

Chow-Künneth decomposition.)
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12.2. A positive result. The aim of this section is to prove:

Theorem 12.2.1. If M ∈ w≤1DMeff
gm,ét(F), (9.6.1) is an isomorphism.

Proof. By Lemma 9.8.1, it suffices to prove this after tensoring with Q.

For simplicity, we drop Φ from the notation: we reduce to the case M =
M(Y ), Y smooth (projective) of dimension 0, or M = h1(C), C a smooth

projective curve. The case of an Artin motive is trivial and left to the reader.

As we shall see, that of h1 of a curve follows essentially from Theorem

2.2.1 plus Tate’s theorem on homomorphisms of abelian varieties [76].

It is equivalent to show that the morphism of Corollary 9.8.4 b) is an

isomorphism for any N when M = h1(C) and after tensoring with Q. We

reduce as usual to N = M(X)[−i], X smooth projective and i ∈ Z.

Observe that the l-adic realisation of h1(C) is Tl(J)[1], where J is the

Jacobian of C. Thus we want to show that the homomorphism

(12.2.1) DMeff
gm,ét(k)(M(X),Γeff⊗h1(C)[i−1])⊗Q → H i

cont(X, Vl(J))

is an isomorphism for all i ∈ Z.

By duality, the left hand side of (12.2.1) is isomorphic to

DMét,eff
gm (k)(M(X)⊗ h1(C),Γeff(1)[i+ 1])⊗Q

which is a direct summand of

H i+1
ét (X×C,Γeff(1))⊗Q ≃ H i+1

ét (X×C,Z(1))⊗Ql⊕H
i+2
ét (X×C,Z(1))⊗Ql

cf. (9.2.4) and (9.7.1). We have

H i
ét(X × C,Z(1))⊗Ql =

{
Pic(X × C)⊗Ql if i = 2

0 otherwise.

Using the isomorphism (theorem of the cube + finiteness of Pic0(X×C))

Pic(X ×C)⊗Ql ≃ NS(X)⊗Ql⊕NS(C)⊗Ql⊕Hom(Alb(X), J)⊗Ql

we see that the direct summand DMét(k)(M(X)⊗h1(C),Z(1)[2])⊗Ql of

H2
ét(X × C,Z(1))⊗Ql gets identified with Hom(Alb(X), J)⊗Ql.

A weight computation shows that the right hand side of (12.2.1) is

H i
cont(X, Vl(J)) =





H1
cont(X̄, Vl(J))

G si i = 1

H1
cont(X̄, Vl(J))G si i = 2

0 otherwise.

Moreover, the action of G on H1
cont(X̄, Vl(J)) ≃ Hom(Vl(Alb(X)), Vl(J))

is semi-simple, hence the composition

H1
cont(X̄, Vl(J))

G → H1
cont(X̄, Vl(J))→ H1

cont(X̄, Vl(J))G
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is an isomorphism; by Lemma 4.3.1, this isomorphism may be identified

with cup-produit by e ∈ H1
cont(k,Ql):

H1
cont(X, Vl(J))

e
−→ H2

cont(X, Vl(J)).

Poincaré duality now realises H i
cont(X, Vl(J)) as a direct summand of

H i+1
cont(X × C,Ql(1)).
In (12.2.1), the two sides are therefore 0 for i 6= 1, 2; for i = 1, 2 they fit

in a commutative diagram

Hom(Alb(X), J)⊗Ql
u

−−−→ Hom(Vl(Alb(X)), Vl(J))
G

|| ≀

y
Hom(Alb(X), J)⊗Ql

v
−−−→ Hom(Vl(Alb(X)), Vl(J))G.

By Tate’s theorem [76], u is an isomorphism. The diagram shows that so

is v, hence (12.2.1) is indeed an isomorphism for any i ∈ Z. �

APPENDIX A. A LETTER TO T. GEISSER

Paris, May 2, 2004.

Dear Thomas,

To start with, let Γ be a group, A a Γ-module and e ∈ H1(Γ, A) a class.

To e corresponds an extension of Γ-modules

0→ A→ A′ → Z→ 0.

It is an exercise of homological algebra to check that A′ may be de-

scribed14 as Z× A (the underlying abelian group) with Γ-action given by

a(r, s) = (r, re(a) + as).

This can be used as follows. Given a complex of Γ-modules C, cup-

product by e

·e : Hi(Γ, C)→ H
i+1(Γ, A

L
⊗C)

may be described, up to sign, as the boundary morphism ∂C of the exact

triangle

A
L
⊗C → A′

L
⊗C → C

∂C→ A
L
⊗C[1].

(This is another exercise of homological algebra: observe that e = ∂Z(1)
and compare [67, Ch. VIII, §3, Prop. 5]).

All this can be [made] topological. In particular, for Γ = Ẑ, A = Ẑ and

e = e we get a corresponding A′ = M̂ such that M̂ ⊗Q/Z = M̃ (notation

from [46, §4]).

14Up to sign, as in all this letter.
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This first justifies the claim in loc. cit., Prop. 4.4 that the bottom row in

the diagram is cup-product by e. Second, it gives another way to look at M :

it is the push-out of the extension

(A.0.2) 0→ Ẑ⊗Q→ M̂ ⊗Q→ Q→ 0

by the projection Ẑ ⊗Q → Ẑ ⊗Q/Z = Q/Z. Viewed from this side, we

may recover γ : Q→M as the composite Q→ Ẑ⊗Q→ Q/Z→M .

Another thing you asked me is to explain the proof of [46, Cor. 4.8].

First, by Theorem 4.6, the map

H
1(Fp,Z

c)⊗ Zl = H
1(Fp,Z

c ⊗ Zl)→ H
1(Fp,Zl(0)

c) = H1
cont(Fp,Zl)

is an isomorphism and therefore sends a generator e0 of H1(Fp,Z
c) to ue,

where u is an l-adic unit. To prove that u = 1, it suffices to go mod lν for

all ν and to prove that the induced map

Z = H
1(Fp,Z

c)→ H1(Fp,Z/l
ν) = Z/lν

is the projection. For this, observe that by definition of M̃ and M , we have

a short exact sequence

(A.0.3) 0→ Z→M → M̃ → 0

and that the map Z→M splits the exact sequence of [46, Lemma 4.3]. This

implies that e0 ∈ H1(Ẑ,Zc) is the image of the generator of H0(Ẑ,Z) =

H1(Ẑ,Z[−1]) under the map of complexes

(A.0.4) Z[−1]→ Zc

defined by (A.0.3). Another way to formulate this is that the morphism

defined by e0 in the derived category is realised by (A.0.4). To prove the

claimed compatibility, we now have to identify the cone of (A.0.4) tensored

with Z/lν with M̂
L
⊗Z/lν . This cone is [Q → M̃ ]; we have a string of

quasi-isomorphisms

[Q→ M̃ ]⊗Z/lν
∼
−→ M̃

L
⊗Z/lν [−1] ≃ M̂

L
⊗Q/Z

L
⊗Z/lν [−1] ≃ M̂

L
⊗Z/lν .

Then for the second claim of Corollary 4.8. First note that the statement

is nonsense. In fact, the splitting Qc ≃ Q⊕Q[−1] of Corollary 4.5 defines

a “projection onto H0” Qc → Q and an “inclusion of H1” Q[−1] → Qc.

(Note that the only endomorphism of Q ⊕Q[−1] that induces the identity

on cohomology is the identity because Ext1
Ẑ
(Q,Q) = 0, so these projec-

tion and inclusion are unambiguous.) The correct statement is now that the

corresponding composition

Qc → Q→ Qc[1]

is given by cup product by e.
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In order to make sense of this claim, I should define a product

Qc
L
⊗Qc → Qc

matching the product

Ql(0)
c
L
⊗Ql(0)

c → Ql(0)
c

which corresponds to the “continuous” product Ql ⊗ Ql → Ql. There is

a stupid way to do this, and then one can use the isomorphism of Theorem

4.6 b) tensored with Q and the obvious description of cup-product by e
on Ql(0)

c: this is ugly but it works, and rationally this is all there is to it.

Nevertheless let me do all this integrally as it might be useful. We have a

short exact sequence of topological modules over Ẑ:

0→ Ẑ→ M̂ ⊗Q→M → 0

hence a flat version of Zc is given by the length 1 complex

(A.0.5) [Q⊕ Ẑ→ M̂ ⊗Q]

(note that, as already remarked, the map γ : Q → M lifts canonically to

M̂ ⊗Q via (A.0.2).) This gives us a version of Zc
L
⊗Zc:

[Q⊕ (Q⊗ Ẑ)2 ⊕ Ẑ→ (M̂ ⊗Q)2 → (M̂ ⊗Q)⊗2].

We define the product Zc
L
⊗Zc → Zc by the cochain map which is the

projection on Q⊕ Ẑ in degree 0 and the sum in degree 1. With this defini-

tion, the diagrams

Zc
L
⊗Zc −−−→ Zc

y
y

Z/lν
L
⊗Z/lν −−−→ Z/lν

obviously commute coherently (for solid versions of the maps obtained by

naı̈vely tensoring the flat version of Zc by Z/lν), which proves the compat-

ibility with the product Zl(0)
c
L
⊗Zl(0)

c → Zl(0)
c. If we now tensor with

Q, we find that on Qc ≃ Q ⊕Q[−1], this product is given by the identity

Q → Q in degree 0 and the sum Q ⊕Q → Q in degree 1. From this and

the description (A.0.4) of the first map of the composition

Qc[−1]
·e0−→ Qc

L
⊗Qc → Qc

you easily deduce the second claim of [46, Cor. 4.8].

You might also be interested in the following construction of an isomor-

phism Zc ∼
−→ Rγ∗Z. By adjunction I need to give a map ϕ : γ∗Zc → Z.
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Now to describe γ∗Zc, I may use a discrete version of the topological Ẑ-

module M̂ , say M̄ :

0→ Z→ M̄ → Z→ 0.

Then a flat version of γ∗Zc is given by

Q⊕ Z→ M̄ ⊗Q

(r, s) 7→ (0, s− r)

(the discrete version of (A.0.5)), and there is an obvious Z-equivariant map

ϕ from this complex to Z[0] ((r, s) 7→ s). You will easily check by consid-

ering cones that the diagram

Z Z

γ∗e0

y e1

y

γ∗Zc[1]
ϕ

−−−→ Z[1]

commutes, where e1 is the generator of H1(Z,Z) = Ext1Z[Z](Z,Z). By

adjunction it follows that the diagram

Z Z

e0

y ẽ1

y

Zc[1]
ϕ̃

−−−→ Rγ∗Z[1]

commutes, where ϕ̃ and ẽ1 denote the maps corresponding to ϕ and e1
under adjunction. This implies that H1(Ẑ,Zc)

∼
−→ H1(Ẑ, Rγ∗Z) under ϕ̃;

passing to the open subgroups of Ẑ we get that ϕ̃ induces an isomorphism

on the H1s. Since it also obviously induces an isomorphism on the H0s,

this proves that it is a quasi-isomorphism.

I hope this is useful.

Best regards,

Bruno
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[24] G. Faltings, G. Wüstholz, Rational points, Vieweg, 1984.

[25] E. Friedlander, V. Voevodsky Bivariant cycle cohomology, in Cycles, transfers

and motivic cohomology theories, Ann. of Math. Studies 143, Princeton Univ.

Press, 2000, 137–187.

[26] O. Gabber Sur la torsion dans la cohomologie l-adique d’une variété, C. R. Acad.
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