
HAL Id: hal-00733827
https://hal.science/hal-00733827v1

Submitted on 19 Sep 2012 (v1), last revised 12 Nov 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional co-monotony of processes with an application
to peacocks

Gilles Pagès

To cite this version:
Gilles Pagès. Functional co-monotony of processes with an application to peacocks. 2012. �hal-
00733827v1�

https://hal.science/hal-00733827v1
https://hal.archives-ouvertes.fr


Functional co-monotony of processes with an application

to peacocks

Gilles Pagès ∗

Abstract

We show that several general classes of stochastic processes satisfy a functional co-monotony
principle, including processes with independent increments, Brownian diffusions, Liouville pro-
cesses. As a first application, we recover some recent results about peacock processes obtained by
Hirsch et al. in [11] (see also [3]) which were themselves motivated by a former work of Carr et al.
in [4] about the sensitivity of Asian options with respect to their volatility and residual maturity
(seniority).

Keywords Co-monotony; antithetic simulation method; processes with independent increments;
Liouville processes; fractional Brownian motion; Asian options, sensitivity.

1 Introduction

The aim of this paper is to show that the classical co-monotony principle for real-valued random vari-
ables also holds for large classes of stochastic processes like Brownian diffusion processes, Processes
with independent increments, Liouville processes, fractional Brownian processes, etc, if one consid-
ers the natural partial order on the space of real-valued functions defined on an interval.real-valued
functions. We also provide few examples of application, with a special emphasis on peacocks (English
quasi-acronym for “processus croissants pour l’ordre convexe”) inspired by recent works by Hirsch et
al. in [11], which find themselves their original motivation in [4] by Carr et al. about the sensitivities
of Asian options in a Black-Scholes Model.

The starting point of what can be called co-monotony principle finds its origin in the following
classical proposition dealing with one-dimensional real-valued random variables.

Proposition 1.1 (One dimensional co-monotony principle). Let X : (Ω,A,P) → R be a random
variable and let f, g : R → R be two monotone functions sharing the same (opposite) monotony
property.

(a) If f(X), g(X), f(X)g(X)∈ L1(P), then Cov(f(X), g(X)) ≥ 0 (≤ 0 respectively) i.e.

E f(X)g(X) ≥ E f(X)E g(X) (≤ respectively).

Furthermore, the inequality holds in a strict sense if and only if f(X) or g(X) is not P-a.s. constant.

(b) If f and g have the same constant sign, then integrability is no longer requested. As a consequence,
if f and g have opposite monotony, then

‖f(X)g(X)‖1 = Ef(X)g(X) ≤ Ef(X)Eg(X) = ‖f(X)‖1‖g(X)‖1.
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The inequalities are straightforward consequences of Fubini’s Theorem applied on (R×R,Bor(R)⊗2,P⊗2
X )

to the function (x, x′) 7→
(
f(x)− f(x′)

)(
g(x)− g(x′)

)
where PX denotes the distribution of X.

Typical applications of this scalar co-monotony principle are, among others, the antithetic sim-
ulation method for variance reduction and more recently a priori sign results for the sensitivity of
derivatives in Finance.

⊲ Antithetic simulation. Let X : (Ω,A,P) → R be a random variable and let ϕ : R → R be a

non-increasing function such that X
L∼ ϕ(X). Then for every monotone function f : R → R such that

f(X)∈ L2(P) and P
(
f(X) 6= Ef(X)

)
> 0, we have

Var
(f(X) + f ◦ ϕ(X)

2

)
=

2
(
Var(f(X)) + Cov(f(X), f ◦ϕ(X))

)

4
<

Var(f(X))

2

since Cov(f(X), f ◦ϕ(X)) < 0.
The variance is reduced by more than a 2 factor whereas the complexity of the simulation of

f(X)+f◦ϕ(X)
2 is only twice higher than that of f(X) (if one neglects the additional cost of the compu-

tation of ϕ(x) compared to that of x).

⊲ Sensitivity (vega of an option). Let f : (0,∞) → R be a convex function with (at most) polynomial
growth at 0 and +∞ in the sense that there exists a real constant C > 0 such that

∀x∈ (0,+∞), |f(x)| ≤ C(xr + x−r)

and let Z : (Ω,A,P) → R be an N (0; 1)-distributed random variable. Set for every σ > 0

ϕ(σ) = E f
(
eσZ−σ2

2

)
.

Although it does not appear as a straightforward consequence of its definition, one easily derives from
the above proposition that ϕ is a non-decreasing function of σ on (0,∞). In fact f is differentiable
outside an at most countable subset of (0,+∞) (where its right and left derivatives differ) and its
derivative f ′ is non-decreasing, with polynomial growth as well since

|f ′(x)| ≤ max
(
|f(x+ 1)− f(x)|, 2x−1|f(x)− f(x/2)|

)
, x∈ (0,+∞).

Since Z has no atom, one easily checks that one can interchange derivative and expectation to establish
that ϕ is differentiable with derivative

ϕ′(σ) = E

(
f ′
(
eσZ−σ2

2
)
eσZ−σ2

2 (Z − σ)
)
, σ > 0.

A Cameron-Martin change of variable then yields

ϕ′(σ) = E

(
f ′
(
eσZ+σ2

2
)
Z
)

so that, applying the co-monotony principle to the two non-decreasing (square integrable) functions

z 7→ f ′
(
eσz−

σ2

2

)
and z 7→ z, implies

ϕ′(σ) ≥ E

(
f ′
(
eσZ+σ2

2

))
E
(
Z
)
= E

(
f ′
(
eσZ+σ2

2

))
× 0 = 0.

Extensions of the above co-monotony principle to functions on Rd, d ≥ 2, are almost as classical as
the one dimensional case. They can be established by induction when both functions f(x1, . . . , xd) and
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g(x1, . . . , xd) defined on Rd are co-monotone in each variable xi (i.e. having the same or an opposite
monotony property not depending on i) and when the Rd-valued random vector X has independent
marginals.

Our aim in this paper is to show that this co-monotony principle can be again extended into a
functional co-monotony principle satisfied by various classes of stochastic processes X = (Xt)t∈[0,T ]

whose paths lie in a sub-space E of the vector space F([0, T ],R) of real valued functions defined on
the interval [0, T ], T > 0, equipped with the pointwise (partial) order on functions, defined by

∀α, β ∈ F([0, T ],R), α ≤ β if ∀ t∈ [0, T ], α(t) ≤ β(t).

Then a functional F : E → R is said to be non-decreasing if

∀α, β∈ E, α ≤ β =⇒ F (α) ≤ F (β).

The choice of E will be motivated by the pathwise regularity of the process X. The space E
will also be endowed with a metric topology (and its Borel σ-field) so that X can be seen as seen
as an E-valued random vector. The functionals F and G involved in the co-monotony principle will
be assumed to be continuous on E (at least PX-a.s;). Typical choices for E will be E = C([0, T ],R),
C([0, T ],Rd), ID([0, T ],R) or ID([0, T ],Rd) and occasionally Lp

Rd([0, T ], dt) (in this case we will switch
to the dt-a.e. pointwise order instead of the pointwise order). Then by co-monotony principle, we
mean that for every non-decreasing functionals F and G defined on E, PX-a.s. continuous,

EF (X)G(X) ≥ EF (X)EG(X).

(The case of non-increasing functionals follows by considering the opposite functionals and the opposite
monotony case by considering the opposite of only one of the functionals). Among the (classes of)
processes of interest, we will consider continuous Gaussian processes with nonnegative covariance
function (like the standard and the fractional Brownian motion, “nonnegative” Liouville processes), the
Markov processes with monotony preserving transitions (which includes of course Brownian diffusions),
processes with independent increments, etc.

The main problem comes from the fact that the naive point wise order on functional spaces is not
total so that the formal one-dimensional proof based on Fubini’s theorem no longer applies.

As applications of such functional results, we will be able to extend the above sign property
for the vega of a “vanilla” option (whose payoff function is a function of the risky asset ST at the
maturity T ) to “exotic” options. By “exotic”, we classically mean that their payoff is typically a
path-dependent functional F

(
(St)t∈[0,T ]

)
of the risky asset asset (St)t∈[0,T ]. The dynamics of this risky

asset is still a Black-Scholes model where Sσ
t = s0e

σWt+(r−σ2

2
)t, s0 > 0. Doing so we will retrieve Carr

et al. results about the sensitivity of Asian type options in a Black-Scholes model with respect to the
volatility (see [4]). We will also emphasize the close connection between co-monotony and the theory
of peacocks (1) characterized by Kellerer in [17] and recently put back into light in the book [11] (see
also the references therein). Let us briefly recall that an integrable process (Xλ)λ≥0 is a peacock if
for every convex function f : R → R such that E|f(Xλ)| < +∞, λ ≥ 0, the function λ 7→ E f(Xλ)
is non-decreasing. Kellerer’s characterization theorem says that a process is a peacock if and only if

there exists a martingale (Mλ)λ≥0 such that Xλ
L∼ Mλ, λ∈ R+. Moreover, the process (Mλ)λ≥0 can

be chosen to be Markovian. This proof being non-constructive, it does not help at all establishing
whether or not a process is a peacock. See also a new proof of Kellerer’s Theorem due to Hirsch and

1stands for the French acronym PCOC (Processus Croissant pour l’Ordre Convexe).
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Roynette in [13]. By contrast, one can find in [11] a huge number of peacocks with an explicit marginal
martingale representation characterized through various tools from stochastic processes theory.

More generally, when applied in its “opposite” version, the co-monotony principle between non-
negative function simply provides a significant improvement of the Hölder inequality since it makes
the L1-norm sub-multiplicative. It can be used to produce less conservative bounds in various fields
of applied probability, like recently in [18, 25] where to provide bounds depending on functionals of a
Brownian diffusion process, in the spirit of the inequalities proposed in Section 5.3 for barrier options.

The paper is organized as follows: Section 2 is devoted to the finite-dimensional co-monotony
principle, Section 3 to the functional co-monotony principle for continuous processes, Section 4 to
càdlàg processes. Section 5 deals with examples of applications, to peacocks and to exotic options
for which we establish universal bounds (among price dynamics sharing the functional co-monotony
principle).

Notation: • x0:n = (x0, . . . , xn)∈ Rn+1, x1:n = (x1, . . . , xn)∈ Rn, etc. (x|y) =∑0≤k≤n xkyk denotes

the canonical inner product on Rn+1.

• We denote by ≤ the componentwise order on Rn+1 defined by x0:n ≤ x′0:n if xi ≤ x′i, i = 0, . . . , n.

• M(d, r) denotes the vector space of matrices with d rows and r columns. M∗ denotes the transpose
of matrix M .

• ⊥⊥ will emphasize in formulas the independence between two processes.

• ‖α‖sup = supt∈[0,T ] |α(t)| for any function α : [0, T ] → R.

• u+ denotes the positive part of the real number u. λd denotes the Lebesgue measure on (Rd,Bor(Rd)).

• X L∼ µ means that the random vector X has distribution µ.

2 Finite-dimensional co-monotony principle

2.1 Definition and main results

Definition 2.1. (a) Let (P (x, dy))x∈R be a transition probability, i.e. a family of probability measures
such that for every x∈ R, P (x, dy) is a probability measure on (R,Bor(R)) and for every B∈ Bor(R),
x 7→ P (x,B) is a Borel function. The transition (P (x, dy))x∈R is monotony preserving if, for every
bounded or nonnegative monotone function f : R → R, the function Pf defined for every real number
x∈ R by Pf(x) =

∫
f(y)Px, dy) is monotone with the same monotony.

(b) Two Borel functions Φ, Ψ : Rd → R are componentwise co-monotone if, for every i∈ {1, . . . , d},
and every (x1, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1, both section functions xi 7→ Φ(x1, . . . , xi, . . . , xd) and
xi 7→ Ψ(x1, . . . , xi, . . . , xd) have the same monotony not depending on (x1, . . . , xi−1, xi+1, . . . , xd) nor
on i.

(c) If Φ and −Ψ are co-monotone, Φ and Ψ are said to be anti-monotone.

In finite dimension, the main result is the following.

Proposition 2.1. (a) Let X = (Xk)0≤k≤n be an R-valued Markov chain defined on a probability space
(Ω,A,P) having a (regular) version of its transitions

Pk−1,k(x, dy) = P(Xk∈ dy |Xk−1 = x), k = 1, . . . , n

which are monotony preserving in the above sense. Then, for every pair of co-monotone functions
Φ,Ψ : Rn+1 → R such that Φ(X), Ψ(X), Φ(X)Ψ(X)∈ L1(P),

EΦ(X)Ψ(X) ≥ EΦ(X)EΨ(X). (2.1)

4



If Φ and Ψ are monotone with opposite monotony, the reverse inequality holds. In both cases, if Φ
and Ψ both take values in R+ or R− then the inequalities remain true (in R) without integrability
assumption.

(b) If the random variables X0, . . . ,Xn are independent, the conclusion remains true under the follow-
ing weak co-monotony assumption: there exists a permutation τ of the index set {0, . . . , n} such that
for every i∈ {0, . . . , n} and every (x0, . . . , xi−1, xi+1, . . . , . . . , xn)∈ Rn, xi 7→ Φ(x0, . . . , xi, . . . , xn) and
xi 7→ Ψ(x0, . . . , xi, . . . , xn) have the same monotony, possibly depending on (xτ(0), . . . , xτ(i−1)). Then
the same conclusion as in (a) holds true.

Proof. (a) One proceeds by induction on n ∈ N. If n = 0, the result follows from the scalar
co-monotony principle applied to X0 (with distribution µ0).

(n) =⇒ (n+1): Assume Φ(X0:n+1) and Ψ(X0:n+1) are square integrable. We may assume by changing
if necessary the functionals into their opposite that both Φ and Ψ are componentwise non-decreasing.
Put FX

k = σ(X0, . . . ,Xk), k = 0, . . . , n. It follows from the Markov property that

E

(
Φ(X0:n+1) | FX

n ) = Φ(n)(X0:n)

where
Φ(n)(x0:n) = Pn,n+1

(
Φ(x0:n, .)

)
(xn).

In particular, we have E
(
Φ(X0:n+1)

)
= E

(
Φ(n)(X0:n)

)
. We have accordingly

E

(
Φ(X0:n+1)Ψ(X0:n+1) | FX

n ) =
(
Pn,n+1

(
Φ(x0:n, .)Ψ(x0:n, .)

)
(xn)

)
|xk=Xk,k=0,...,n

.

Applying the one dimensional co-monotony principle with Pn,n+1(xn, dy) to Φ(x0:n, .) and Ψ(x0:n, .)
we get for every (x0:n)∈ Rn+1,

Pn,n+1

(
Φ(x0:n, .)Ψ(x0:n, .)

)
(xn) ≥ Pn,n+1

(
Φ(x0:n, .)

)
(xn)Pn,n+1

(
Ψ(x0:n, .)

)
(xn)

= Φ(n)(x0:n)Ψ
(n)(x0:n) (2.2)

so that, considering X0:n+1 and taking expectation, we get

EΦ(X0:n+1)Ψ(X0:n+1) ≥ E

(
Φ(n)(X0:n)Ψ

(n)(X0:n)
)
.

It is clear that for every i∈ {0, . . . , n−1}, xi 7→ Φ(n)(x0, . . . , xn) is non-decreasing since the transition
Pn,n+1 is a nonnegative operator. Now let xn, x

′
n∈ R, xn ≤ x′n.

Pn,n+1

(
Φ(x0, . . . , xn, .)

)
(xn) ≤ Pn,n+1

(
Φ(x0, . . . , x

′
n, .)

)
(xn) ≤ Pn,n+1

(
Φ(x0, . . . , x

′
n, .)

)
(x′n)

where the first inequality follows from the non-negativity of the operator Pn,n+1 and the second follows
from its monotony preserving property since xn+1 7→ Φ(x0:n+1) is non-decreasing. The function Ψ(n),
defined likewise, shares the same properties.

An induction assumption applied to the Markov chain (Xk)0≤k≤n completes the proof since

E

(
Φ(n)(X0:n)Ψ

(n)(X0:n)
)

≥ EΦ(n)(X0:n)EΨ
(n)(X0:n)

= EΦ(X0:n+1)EΨ(X0:n+1). �

(b) By renumbering the (n + 1)-tuple (X0, . . . ,Xn) we may assume τ = id. Then the transition
Pk−1,k(xk−1, dy) = PXk

(dy) does not depend upon xk−1 so that Pk−1,kf is a constant function.
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Then (2.2) holds as an equality and the monotony of Φ(n) in each of its variable x0, . . . , xn is that
of Φ for the same variables. A careful inspection of the proof of claim (a) then shows that the weak
co-monotony is enough to conclude. �

As a straightforward consequence of the fact that the functions x0:n 7→ xk and x0:n 7→ xℓ are co-
monotone, we derive the following corollary which provides a necessary condition for the co-monotony
property.

Corollary 2.1. If X = (Xk)0≤k≤n is a monotony preserving Markov chain in the sense of (a) in the
above proposition and if Xk∈ L2, k = 0, . . . , n, then,

∀ k, ℓ∈ {0, . . . , n}, Cov(Xk,Xℓ) = EXkXℓ − EXkEXℓ ≥ 0

i.e. the covariance matrix of the chain has nonnegative entries.

Example. Let A,B∈ Bor(Rn+1) be two Borel sets such that, for every x = x0:n∈ A, x+ tei∈ A for
every t∈ R+ and every i∈ {0, . . . , n} (where ei denotes the i

th vector of the canonical basis of Rn+1),
idem for B. Then for any Rd-Markov chain X = (Xk)0≤k≤n, having monotony preserving transitions
(in the sense of Proposition 2.1(a)), we have

P
(
(X0, . . . ,Xn) ∈ A ∩B

)
≥ P

(
(X0, . . . ,Xn) ∈ A

)
P
(
(X0, . . . ,Xn) ∈ B

)
.

The monotony preserving property of the transitions Pk−1,k cannot be relaxed as emphasized by
the following easy counter-example.

Counter-example. Let X = (X0,X1) be a Gaussian bi-variate random vector with distribution

N
(
0;
[ 1 ρ
ρ 1

])
where the correlation ρ∈ (−1, 0)). One checks that the transition P0,1(x0, dx1) reads

on bounded or nonnegative Borel functions

P0,1(f)(x0) := E(f(X1) |X0 = x0) = Ef
(
ρ x0 +

√
1− ρ2 Z

)
, Z

L∼ N (0; 1).

This shows that P0,1 is monotony. . . inverting. In particular we have EX0X1 = ρ < 0 = EX0 EX1. In
fact it is clear that (X0,X1) shares the co-monotony principle if and only if ρ ≥ 0. In the next section
we extend this result to higher dimensional Gaussian vectors .

2.2 More on the Gaussian case.

Let X = (X0, . . . ,Xn) be a centered Gaussian vector with covariance matrix Σ = [σij ]0≤i,j≤n. This
covariance matrix characterizes the distribution of Σ so it characterizes as well whether or not X
shares a co-monotony property in the sense of (2.1). But can we read easily this property on Σ?

As mentioned above, a necessary condition for co-monotony is obviously that

∀ i, j∈ {0, . . . , n}, σij = Cov(Xi,Xj) ≥ 0.

In fact this simple condition does characterize co-monotony: this result, due to L. Pitt, is established
in [22].

Theorem 2.1 (Pitt, 1982). A Gaussian random vector X with covariance matrix Σ = [σij]0≤i,j≤n

shares a co-monotony property (2.1) if and only if

∀ i, j∈ {0, . . . , n}, σij ≥ 0.
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Remarks. • Extensions have been proved in [15]. Typically, if Z ∼ N (0; In+1), under appropriate
regularity and integrability assumptions on a function h : Rn+1 → R, one has

(
∀x∈ Rn+1,

∂2h

∂xi∂xj
(x) ≥ 0

)
=⇒

(
σij 7→ E

(
h(
√
ΣZ)

)
is non-decreasing

)
.

• Another natural criterion for co-monotony – theoretically straightforward although not easy to
“read” in practice on the covariance matrix itself – is to make the assumption that that there exists
a matrix A = [aij]0≤i≤n,1≤j≤r, r ∈ N∗, with nonnegative entries aij ≥ 0 such that Σ = AA∗. Then

X
L∼ AZ, Z

L∼ N (0; Ir). So every component is a linear combination with nonnegative coefficients of
the components of Z and Proposition 2.1(b) straightforwardly implies that X shares the co-monotony
property (2.1).

However, surprisingly, this criterion is not a characterization in general: if n + 1 ≤ 4, symmetric
matrices Σ with nonnegative entries can always be decomposed as Σ = AA∗ where A has non negative
entries. But if n + 1 ≥ 5, this is no longer true. The negative answer is inspired by a former
counter-example – originally due to Horn – when n + 1 = r ≥ 5, reported and justified in [10] (see
Equations (15.39) and (15.53) and the lines that follow, see also [6] for an equivalent formulation). To
be precise, the nonnegative symmetric 5× 5 matrix Σ (with rank 4) defined by

Σ =




1 0 0 1/2 1/2
0 1 3/4 0 1/2
0 3/4 1 1/2 0

1/2 0 1/2 1 0
1/2 1/2 0 0 1




has nonnegative entries but cannot be written AA∗ where A has nonnegative entries. Another reference
of interest about this question is [1].

2.3 Application to the Euler scheme.

The Euler scheme of a diffusion is an important example of Markov chain to which one may wish to
apply the co-monotony principle. Let X = (Xt)t∈[0,T ] be a Brownian diffusion assumed to be solution
to the SDE

dXx
t = b(t,Xx

t )dt+ σ(t,Xx
t )dWt, t∈ [0, T ], X0 = x.

Its Euler scheme with step h = T/n and Brownian increments is entirely characterized by its transitions

Pk,k+1(f)(x) = E f
(
x+ hb(tnk , x) + σ(tnk , x)

√
hZ
)
, Z

L∼ N (0; 1), k = 0, . . . , n− 1,

where tnk = k
nT , k = 0, . . . , n. One easily checks that if the function b is Lipschitz continuous in x

uniformly in t∈ [0, T ] and if σ(t, x) = σ(t) is deterministic and lies in L2([0, T ], dt), then, for n large
enough, the Euler transition P is monotony preserving.

This follows from the fact that x 7→ x + hb(t, x) is non-decreasing provided h∈ (0, 1
[b]Lip

), where

[b]Lip is the uniform Lipschitz coefficient of b.

3 Functional co-monotony principle

The aim of this section is to extend the above co-monotony principle to continuous time processes
relying on the above multi-dimensional co-monotony result. To do so, we will view processes as
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random variables taking values in a path vector subspace E ⊂ F([0, T ],R) endowed with the (trace
of the) Borel σ-field of pointwise convergence topology on F([0, T ],R), namely σ

(
πt, t ∈ [0, T ]

)
where

πt(α) = α(t), α∈ E. Consequently, a process X having E-valued paths can be seen as an E-valued
random variable if and only if for every t∈ [0, T ], Xt is an R-valued random variable (which is in some
sense a tautology since it is the lightest definition of a stochastic process).

We consider on E the (partial) order induced by the natural partial “pointwise order” on F([0, T ],R)
defined by

∀α, β∈ F([0, T ],R), α ≤ β if ∀ t∈ [0, T ], α(t) ≤ β(t).

Definition 3.1. (a) A measurable functional F : E → R is monotone if it is either non-decreasing or
non-increasing with respect to the order on E.

(b) A a pair of measurable functionals are co-monotone if they are both monotone, with the same
monotony.

Then, in order to establish a functional co-monotony principle (see the the definition below) our
approach will be transfer a finite dimensional co-monotony principle satisfied by appropriate converging
(time) discretizations of the process X of interest. Doing so we will need to equip E with a topology
ensuring the above convergence for the widest class of (P

X
-a.s. continuous) functionals. That is why

we will consider as often as we can the sup-norm topology, not only on C([0, T ],R) but also on the
Skorokhod space ID([0, T ],R) of càdlàg (French acronym for right continuous left limited) functions
defined on [0, T ] since there are more continuous functionals for this topology than for the classical
Skorokhod (or J1) topology. We recall that D

T
:= σ

(
πt, t ∈ [0, T ]

)
is the Borel σ-field related to both

the ‖ .‖sup-norm and the J1-topology on the Skorokhod space.
We will also consider (see SectionCadlagMarkov) the space Lp([0, T ], µ), 0 < p < +∞ with its

usual Lp(µ)-norm where µ is a finite measure on [0, T ]). In the latter case (which is not – strictly
speaking – a set of functions), we will consider the “µ-a.e.” (partial) order

α ≤µ β if α(t) ≤ β(t) µ(dt)-a.e.

A functional F monotone for the order ≤µ is called µ-monotone. The definition of µ-co-monotony
follows likewise.

Definition 3.2. A process X whose paths take values in a normed vector space (E, ‖ . ‖E) satisfies a
co-monotony principle if, for every bounded, co-monotone, P

X
-a.s. continuous measurable functionals

F , G : E → R,
EF (X)G(X) ≥ EF (X)EG(X).

Extensions. • The extension to square integrable or nonnegative continuous functionals is canonical
by a standard truncation procedure: replace F by FK := (−K) ∨

(
F ∧K), K > 0, and let K go to

infinity.

• Furthermore, the inequality also holds for pairs of co-monotone functionals F , G whose truncations
F

K
and G

K
are are limits in L2(P

X
) of P

X
-a.s. continuous co-monotone functionals.

We will often rely on the following technical lemma.

Proposition 3.1. (a) Let (Xn)n≥1 be a sequence of independent E-valued random vectors defined on
(Ω,A,P) where (E, ‖ . ‖E ,≤) is a partially ordered normed vector space (2). Assume that, for every
n ≥ 1, Xn satisfies a co-monotony principle i.e. for every pair of PXn-a.s. continuous bounded Borel
measurable functionals F,G : E → R

EF (Xn)G(Xn) ≥ EF (Xn)EG(Xn).

2For every α, β, γ∈ E and every λ∈ R+, α ≤ β ⇒ α+ γ ≤ β + γ and λ ≥ 0 ⇒ λα ≤ λβ.
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Let (an)n≥1 be a sequence of real numbers such that the series X =
∑

n≥1 anXn converges a.s. for the
norm ‖ . ‖E . Then X satisfies a co-monotony principle.

(b) Assume furthermore that (E, ‖ . ‖E ) is a Banach space with an unconditional norm, that the Xn

are nonnegative processes for the order on E and that
∑

n≥1Xn converges in L1
E(P). Then, for every

sequence of independent random variables (An)n≥1 taking values in a fixed compact interval of R and
independent of (Xn)n≥1, the series X =

∑
n≥1AnXn satisfies a co-monotony principle in the sense of

Definition 3.2.

Remark. When E = C([0, T ],R), Lévy-Itô-Nisio’s Theorem (see e.g. [19], Theorem 6.1, p.151) shows
to some extent the equivalence between functional convergence in distribution and a.s. convergence
for series of independent processes as above.

Proof. We may assume without loss of generality that the two functionals F and G are non-decreasing.
We first show the result for the sum of two independent processes, i.e. we assume ak = 0, k ≥ 3 (and
a1a2 6= 0). By Fubini’s Theorem

EF
(
a1X1 + a2X2

)
G
(
a1X1 + a2X2

)
= E

( [
E
(
F
(
a1X1 + a2α

)
G
(
a1X1 + a2α

))]
|α=X2

)
.

Let Cont(F ) denote the set of elements of E at which F is continuous. It follows, still from Fubini’s
Theorem, that

1 = P
(
a1X1 + a2X2∈ Cont(F ))

)
=

∫
PX2(dα2)PX1

(
F (a1.+ a2α2)

)

so that PX2(dα2)-a.s. α1 7→ F (a1α1 + a2α2

)
and α1 7→ G(a1α1 + a2α2

)
are PX1-a.s. continuous.

Noting that these functionals are co-monotone (non-decreasing if a1 ≥ 0, non-increasing if a1 ≤ 0),
this implies

E
(
F (a1X1 + a2α2)G(a1X1 + a2α2)

)
≥ E

(
F (a1X1 + a2α2)

)
E
(
G(a1X1 + a2α2)

)
.

Now, both

α2 7→ EF (a1X1 + a2α2) =

∫
PX1(dα1)F (a1α1 + a2α2)

and

α2 7→ EG(a1X1 + a2α2) =

∫
PX1(dα1)G(a1α1 + a2α2)

are co-monotone (non-decreasing if a2 ≥ 0, non-increasing if a2 ≤ 0) and one checks that both are
PX2(dα2)-a.s. continuous which implies in turn that

E

([
EF (a1X1 + a2 α)

]
|α=X2

[
EG(a1X1 + a2 α)

]
|α=X2

)

≥ E

([
EF (a1X1 + a2 α)

]
|α=X2

)
E

([
EG(a1X1 + a2α)

]
|α=X2

)

= EF (a1X1 + a2X2)EG(a1X1 + a2X2)

where we used again Fubini’s Theorem in the second line.
One extends this result by induction to the case where X = X1 + · · ·+Xn.

To make n go to infinity, we proceed as follows: let Gn = σ(Xk, k ≥ n + 1). By the reverse
martingale convergence theorem, we know that for any bounded measurable functional Φ : E → R,

E (Φ(X) | Gn) = [EΦ(X1 + · · · +Xn + α̃n)]α̃n=X̃n
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where X̃n = X−(X1+· · ·+Xn). We know from the above case n = 2 that, for Φ = F , G P
X̃n

(dα̃n)-a.s.,
α 7→ Φ(α+ α̃n) is PX1+···+Xn(dα)-continuous so that

EFG(X1 + · · · +Xn + α̃n) ≥ EF (X1 + · · ·+Xn + α̃n)EG(X1 + · · ·+Xn + α̃n).

This equality also reads

E (FG(X) | Gn) ≥ E (F (X) | Gn)E (G(X) | Gn)

which in turn implies by letting n→ ∞

EF (X)G(X) ≥ EF (X)EG(X)

owing to the reverse martingale convergence theorem.

(b) For every bounded sequence (an)n≥1, it follows from the unconditionality of the norm ‖ . ‖E that∑
n≥1 anXn a.s. converges in L

1
E(P). Then it follows from (a) that, for every n ≥ 1,

E

(
F
( n∑

k=1

akXk

)
G
( n∑

k=1

akXk

))
≥ EF

( n∑

k=1

akXk

)
EG

( n∑

k=1

akXk

)
.

Now for every k∈ {1, . . . , n}, the function defined on the real line by ak 7→ EF
(∑n

i=1 aiXi

)
has the

same monotony as F since Xk ≥ 0 and is bounded. Consequently for any pair F , G of bounded
co-monotone Borel functionals,

E

([
EF (

n∑

k=1

akXk)
]
|a1:n=A1:n

[
EG(

n∑

k=1

akXk)
]
|a1:n=A1:n

)

≥ E

([
EF (

n∑

k=1

akXk)
]
|a1:n=A1:n

)
× E

([
EG(

n∑

k=1

akXk)
]
|a1:n=A1:n

))
.

The conclusion follows for a fixed n ≥ 1 by preconditioning. One concludes by letting n go to infinity
since F and G are continuous. �

A first application to Gaussian processes. Let X = (Xt)t∈[0,T ] be a continuous centered Gaussian
process with a covariance operator CX defined on the Hilbert space L2

T
:= L2([0, T ], dt) into itself by

CX(f) = E(〈f,X〉L2
T
X) =

∫ T

0
E(XsX.)f(s)ds∈ L2

T
.

The process X can be seen as a random vector taking values in the separable Banach space C([0, T ],R)
(equipped with the sup-norm). Assume that CX admits a decomposition as follows

CX = AA∗, A : (K, | . |K ) −→ C([0, T ],R), A continuous linear mapping,

where (K, | . |K ) is a separable Hilbert space.
Then, we know from Proposition 1 (and Theorem 1) in [20], that for any orthonormal basis (or

even any Parseval frame, see [20]) (en)n≥1 of K that the sequence (A(en))n≥1 is admissible for the
process X in the following sense: for any i.i.d. sequence (ξn)n≥1 of normally distributed random
variables defined on a probability space (Ω,A,P)





(i)
∑

n≥1

ξnA(en) a.s. converges in (C([0, T ],R), ‖ . ‖sup)

(ii)
∑

n≥1

ξnA(en)
L∼ X.
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Assume furthermore that all the continuous functions A(en) are nonnegative. Then, for every n ≥ 1,
the continuous stochastic process Xn = ξnA(en) satisfies a co-monotony principle (for the natural
pointwise partial order on C([0, T ],R)). This makes up a sequence of independent random elements of
C([0, T ],R). It follows from Proposition 3.1(a) that the process X satisfies a co-monotony principle.

Example: Let us consider the standard Brownian motionW with covariance function EWtWs = s∧t.
One checks that CW = AA∗ where A : L2

T
→ C([0, T ],R) is defined by

Af ≡
(
t 7→

∫ t

0
f(s)ds

)
∈ C([0, T ],R).

Applied to the orthonormal basis en(t) =
√

2
T sin

(
πn t

T

)
, n ≥ 1, we get

A(en)(t) =
√
2T

1− cos
(
πnt
T

)

πn
≥ 0, t ∈ [0, T ], n ≥ 1,

so that

W̃ =
√
2T
∑

n≥1

ξn
πn

(
1− cos

(
πn

.

T

))
, (ξn)n≥1 i.i.d., ξ1

L∼ N (0; 1),

is an a.s. converging series for the sup-norm which defines a standard Brownian motion. As a con-
sequence, the standard Brownian motion satisfies a co-monotony principle (in the sense of Defini-
tion 3.2). (3)

The above approach is clearly neither the most elementary way nor the most straightforward to
establish the co-monotony principle for the Wiener process as we will see further on. Furthermore,
like in finite dimension, it is not true that there is an equivalence between the fact that a continuous
process X satisfies a co-monotony principle and the existence of a decomposition CX = AA∗ and of an
orthonormal basis (or Parseval frame) whose image by A is made of nonnegative functions. Thus, no
such decomposition is known to us for the fractional Brownian motion (with Hurst constant H 6= 1

2)
although it satisfies a co-monotony principle (see Section 3.3.3 further on).

3.1 From [0, T ] to R+

We state our results for processes defined on a finite interval [0, T ]. However they can be extended
canonically on R+, provided that there exists a sequence of positive real constants TN ↑ +∞ such that
PX(dα)-a.s. on E ⊂ F(R+,R), α

Tn ≡
(
t 7→ α(.∧Tn)

)
converges in E toward α for the topology on E.

Such a sequence does exits the topology of convergence on compact sets but also for the Skorokhod
topology on the positive real line. Then the transfer of co-and anti-monotony property (if any) from
the stopped process XTn to X is straightforward for bounded functionals. The extension to square
integrable or nonnegative functionals follows by the usual truncation arguments.

3.2 Continuous Markov Processes

We use implicitly that the Borel σ-field of
(
C([0, T ],R), ‖ . ‖sup

)
is σ

(
πt,∈ [0, T ]

)
, where πt(α) = α(t)

for every α∈ C([0, T ],R) and every t∈ [0, T ].

3The fact that A(L2
T
) is the Cameron-Martin space i.e. the reproducing space of the covariance operator, which is

obvious here, is a general fact for any such decomposition (see [20]).
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Proposition 3.2. Let X = (Xt)t∈[0,T ] be a continuous Markov process defined on a probability space
(Ω,A,P) with transition operators (Ps,t)0≤s≤t≤T satisfying the monotony preserving property. Let
F, G : C([0, T ],R) → R be two co-monotone functionals, PX-a.s. continuous with respect to the sup
norm topology. If F (X), G(X), F (X)G(X) are integrable or F and G have PX-a.s. a constant common
sign, then

EF (X)G(X) ≥ EF (X)EG(X).

Proof. We may assume that F and G are both non-decreasing for the natural order on C([0, T ],R).
Let n ∈ N, n ≥ 1. We introduce the uniform mesh tnk = kT

n , k = 0, . . . , n and, for every function
α∈ C([0, T ],R), the canonical linear interpolation approximation

α(n)(t) =
tnk+1 − t

tnk+1 − tnk
α(tnk ) +

t− tnk
tnk+1 − tnk

α(tnk+1), t∈ [tnk , t
n
k+1], k = 0, . . . , n− 1.

One checks that ‖α − α(n)‖sup ≤ w(α, T/n) goes to 0 as n → ∞ where w(α, .) denotes the uniform
continuity modulus of α. As a consequence, X having a.s. continuous paths by assumption, the
sequence (X(n))≥1 of interpolations of X a.s. uniformly converges toward X.

Then set for every n ≥ 1 and every x = x0:n∈ Rn+1,

χn(x, t) =
tnk+1 − t

tnk+1 − tnk
xk +

t− tnk
tnk+1 − tnk

xk+1, t∈ [tnk , t
n
k+1], k = 0, . . . , n− 1

and
Fn(x) = F (χn(x, .)).

It is clear that if x ≤ x′ in Rn+1 (in the componentwise sense) then Fn(x) ≤ Fn(x
′) since χn(x, .) ≤

χn(x′, .) as functions. This is equivalent to the fact that Fn is non-decreasing in each of its variables.
On the other hand X(n) = χ

(
(Xtn

k
)0≤k≤n, .

)
so that Fn

(
(Xtn

k
)0≤k≤n

)
= F (X(n)). The sequence

(Xtn
k
)0≤k≤n is a discrete time Markov chain whose transition operators Ptn

k
,tn
k+1

, k = 0, . . . , n−1 satisfy
the monotony preserving property. As a consequence, it follows from Proposition 2.1 that if F and G
are bounded, for every n∈ N,

EF (X(n))G(X(n)) ≥ EF (X(n))EG(X(n)).

One derives the expected inequality by letting n go to infinity since F and G are continuous with
respect to the sup norm. The extension to unbounded functionals F or G follows by the usual
truncation arguments. �

Examples. (a) Wiener integrals. Let Xt =
∫ t
0 f(s)dWs, t∈ [0, T ], where f ∈ L2([0, T ], dt) and W =

(Wt)t∈[0,T ] is a standard Wiener process. Then X admits a continuous modification which is a process
with independent increments, hence a continuous Markov process whose transitions Ps,t(x, dy) =

N
(
0;
∫ t
s f

2(u)du
)
are monotony preserving since they do not depend on x∈ R.

See also Section 3.3 for a simpler proof based on a Gaussian argument.

(b) Brownian diffusions. We consider the Brownian diffusion

SDE ≡ dXx
t = b(t,Xx

t )dt+ σ(t,Xx
t )dWt, X

x
0 = x

where b : [0, T ]×R → R is Lipschitz continuous in x, uniformly in t∈ [0, T ] and σ : [0, T ]×R → R (is
continuous) with linear growth in x, uniformly in t∈ [0, T ] and satisfies

∀x, y∈ R, ∀ t∈ [0, T ], |σ(t, x)− σ(t, y)| ≤ ρ(|x− y|),
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where

ρ : R → R is increasing, ρ(0) = 0 and

∫

0+

du

ρ2(u)
= +∞.

Then the equation (SDE) satisfies a weak existence property since b and σ are continuous with linear
growth: its Euler scheme weakly functionally converges to a weak solution of (SDE) as its step T/n
goes to 0 (see Theorem 5.3 in [14]). It also satisfies a strong uniqueness property (see Proposition 2.13
in [16]) hence a strong existence-uniqueness property. This implies the existence of (Feller) Markov
transitions (Ps,t(x, dy))t≥s≥0 such that, a.s. for every x∈ R, Ps,t(f)(x) = E(f(Xt) |Xs = x) (see e.g.
Theorem 1.9 in [23]). Furthermore the flow (Xx

t )x∈R,t∈[0,T ] satisfies a comparison principle (Yamada-

Watanabe’s Theorem) i.e. for every x, x′ ∈ R, x ≤ x′, P-a.s., for every t ∈ [0, T ], Xx
t ≤ Xx′

t . The
functional co-monotony principle follows immediately.

Remarks. • When σ(x, t) = σ(t), σ continuous, the result can be derived from the co-monotony
principle for the Euler scheme (see Section 2) since this scheme functionally weakly converges toward
Xx as its step T/n goes to 0.

• This result is strongly related to strong uniqueness of solutions of (SDE). The above conditions are
not minimal, see e.g. [7] for more insights on these aspects.

Application to Brownian bridge. Up to a canonical space-time rescaling and a translation by a
deterministic function, we may focus on the standard Brownian bridge on the unit interval defined by
Xt =Wt − tW1, t∈ [0, 1]. We know, e.g. from [23], that X is solution to an SDE

dXt = − Xt

1− t
dt+ dBt, X0 = 0,

where B = (Bt)t∈[0,1] is a standard Brownian motion. Let η∈ (0, 1). The process (Xt)t∈[0,1−η] satisfies
a co-monotony principle since b(t, x) = − x

1−t and σ(t, x) = 1 are continuous on [0, 1 − η] × R and
Lipschitz continuous in x uniformly in t ∈ [0, 1 − η] (which implies strong existence and pathwise
uniqueness for the SDE on [0, 1 − η]). Consequently (Xt)t∈[0,1−η] satisfies a co-monotony principle
for every η∈ (0, 1). Then, for every ‖ . ‖sup-continuous functional Fη : C([0, 1],R) → R, the functional
Fη(α) = F

(
(α((1 − η)t)t∈[0,1])

)
, α ∈ C([0, 1 − η],R) is also continuous. Furthermore Fη converges

towards F as η → 0 which implies that the Brownian bridge itself satisfies a co-monotony principle.

3.3 Continuous Gaussian processes

Let X = (Xt)t∈[0,T ] be a continuous centered Gaussian process. Its (continuous) covariance function
C

X
is defined on [0, T ]2 as follows

∀ s, t∈ [0, T ], C
X
(s, t) = EXsXt.

We establish below the functional counterpart of Pitt’s Theorem.

Theorem 3.1 (Functional Pitt’s Theorem). Let X = (Xt)t∈[0,T ] be a continuous Gaussian process
with covariance operator C

X
.

(Xt)t∈[0,T ] satisfies a co-monotony principle if and only if ∀ s, t∈ [0, T ], C
X
(s, t) ≥ 0.

Proof. We follow the lines and the notations of the proof of Proposition 4.2. We replace the monotony
preserving argument on the Markov transition by Pitt’s Theorem: for every n ≥ 1, (Xn

tn
k
)0≤k≤n is a

centered Gaussian process with a covariance matrix Σn =
[
C

X
(tnk , t

n
ℓ , )
]
0≤k,ℓ≤n

having nonnegative
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entries. Hence, the function Fn and Gn being non-decreasing in each of its variables, one has for every
n ≥ 1,

EFn(X)Gn(X) ≥ EFn(X)EGn(X).

One concludes by noting that Fn(X) = F (X(n)) (idem for G) and by letting n go to infinity. �

We inspect below several classical classes of Gaussian processes.

3.3.1 Liouville processes

Definition 3.3. Let f : [0, T ] → R be a locally ρ-Hölder function, ρ∈ (0, 1], in the following sense:
there exists ϕ∈ L2([0, T ], dt), ρ∈ (0, 1], a∈ (0,+∞) such that

(Lρ,a) ≡





(i) ∀ t, t′∈ [0, T ], |f(t)− f(t′)| ≤ [f ]ρ,ϕ|t− t|ρϕ(t ∧ t′)

(ii)

∫ t

0
f2(s)ds = O(ta).

(3.3)

Then the Gaussian process defined for every t∈ [0, T ]

Xt =

∫ t

0
f(t− s)dWs

admits a continuous modification called Liouville process (related to f) with covariance function

C
X
(s, t) =

∫ s∧t

0
f(t− u)f(s− u)du.

Justification: First note that f ∈ L2(dt) since f(t)| ≤ |f(0)|+ tρ|ϕ(0)|. Then, for every t, t′∈ [0, T ],
t ≤ t′,

Xt′ −Xt =

∫ t′

t
f(t′ − s)dWs +

∫ t

0
(f(t′ − s)− f(t− s))dWs

so that

E|Xt′ −Xt|2 =

∫ t′

t
f2(t′ − s)ds+

∫ t

0

(
f(t′ − s)− f(t− s)

)2
ds

≤
∫ t′−t

0
f2(s)ds+ [f ]2ρ,ϕ|t′ − t|2ρ

∫ T

0
ϕ2(s)ds

≤ Cf (|t′ − t|a + |t′ − t|2ρ)
≤ Cf |t′ − t|(2ρ)∧a

so that, using the Gaussian feature of the process X

E|Xt′ −Xt|p ≤ Cf,p|t′ − t|p(ρ∧a/2)

for every p ≥ 2 which in turn implies, owing to Kolmogorov’s continuity criterion, that (Xt)t∈[0,T ]

admits a version
(
ρ ∧ a

2 )− η
)
-Hölder continuous for any small enough η > 0.

Proposition 3.3. Let Xt =

∫ t

0
f(t − s)dWs, t ∈ [0, T ], be a continuous Liouville process where

W is a standard B.M. defined on a probability space (Ω,A,P) and f satisfies (Lρ,a) for a couple
(ρ, a) ∈ (0, 1] × (0,+∞). If furthermore f is λ-a.e. nonnegative, then X satisfies a co-monotony
principle.
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The proof of the proposition is straightforward since f ≥ 0 λ1-a.e. implies that the covariance
function C

X
is nonnegative.

Example: If f(u) = uH−1/2 with H∈ (0, 1], then f satisfies (La,ρ) with a = 2H and ρ∈ (0, 12 −H)
if H < 1

2 , ρ = H − 1
2 if H > 1

2 (and ρ = 1 if H = 1
2). This corresponds to the pseudo-fractional

Brownian motion with Hurst constant H.

3.3.2 Wiener integrals depending on a parameter

Now we consider a class of processes which is wider than Liouville’s class and for which we provide a
slightly less refined criterion of existence (as a path wise continuous process).

Xt =

∫ ∞

0
f(t, s)dWs, t∈ [0, T ],

where f : [0, T ] × R+ → R satisfies a dominated ρ-Hölder assumption reading as follows: there exists
ϕ∈ L2(R, dt), non-increasing, and ρ∈ (0, 1] such that

(L′
ρ) ≡ ∀ t, t′∈ [0, T ], ∀ s∈ R+, |f(t′, s)− f(t, s)| ≤ [f ]ρ|t′ − t|ρϕ(s).

Such a process has a continuous modification since t 7→ Xt is ρ-Hölder from [0, T ] → L2(P) and
Gaussian (still owing to Kolmogorov’s continuity criterion).

As for Liouville processes, if furthermore, for every t ∈ [0, T ], f(t, .) is λ1-a.e. nonnegative, then
the process X satisfies a co-monotony principle.

Example. Let fH(t, s) = (t+ s)H− 1
2 − sH− 1

2 , H∈ (0, 1].

• If H ≥ 1/2, fH satisfies (L′
H− 1

2

) with ϕ(s) = 1.

• If H∈ (0, 12 ], fH satisfies (L′
1
2
−H

) with ϕ(s) = s2H−1.

3.3.3 Fractional Brownian motion with Hurst constant H∈ (0, 1]

The fractional Brownian motion is a continuous Gaussian process characterized by its covariance
function defined by

∀ s, t∈ [0, T ], CH(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
.

Since u 7→ uH is H-Hölder and |t − s|2 ≤ t2 + s2, it is clear that C(s, t) ≥ 0. Consequently, the
fractional Brownian motion satisfies a co-monotony principle.

Remark. An alternative approach could be to rely on the celebrated Mandelbrot-Van Ness represen-
tation of the fractional Brownian motion with Hurst constant H∈ (0, 1], given by

BH
t =

∫ +∞

0

(
(t+ s)H− 1

2 − sH− 1
2

)
dW 1

s

︸ ︷︷ ︸
=:B

H,1
t

+

∫ t

0
|t− s|H− 1

2dW 2
s

︸ ︷︷ ︸
=:BH,2

t

where W 1 and W 2 are independent standard Brownian motions. These two Wiener integrals define
pathwise continuous independent processes, both satisfying the co-monotony principle for PBH,i-a.s.
‖ . ‖sup-continuous functionals, consequently their sum satisfies a co-monotony principle for PBH -a.s.
‖ . ‖sup-continuous functionals owing to Lemma 3.1(b).
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4 Comonotony principle for càdlàg processes

4.1 Processes with independent increments

We consider a general càdlàg process with independent increments (PII) (Xt)t≥0 defined on a prob-
ability space (Ω,A,P). We rely on its Lévy-Khintchine decomposition as exposed in [14], chap. II,
section 3. First one can decompose X as the sum

X = X(1) ⊥⊥
+ X(2)

where X(1) and X(2) are two independent PII: X(1) is a PII without fixed discontinuities and X(2) is
a pure jump PII, possibly jumping only at a deterministic sequence of times, namely

X
(2)
t =

∑

n≥1

Un1{tn≤t}, t∈ [0, T ],

where (tn)n≥1 is a sequence of [0, T ]-valued real numbers and (Un)n≥ is a sequence of independent
random variables satisfying the usual assumption of the three series theorem

∑

n

P(|Un| ≥ 1) < +∞,

∑

n

EUn1{|Un|≤1} < +∞,

∑

n

E
(
U2
n1{|Un|≤1} − (EUn1{|Un|≤1})

2
)
< +∞.

Proposition 4.1. A PII satisfies a co-monotony principle on (ID([0, T ],R), ‖ . ‖sup).

Proof. Owing to Lemma 3.1(a), we will inspect successively the cases of PII without fixed disconti-
nuities and of pure jumps.

Step 1. X is a PII without fixed discontinuities: This means that X(2) ≡ 0. The classical (pathwise)
Lévy-Khintchine formula for PII without fixed discontinuities says that, a truncation level ε > 0 being
fixed, X reads as the sum of three mutually independent processes as follows

∀ t∈ [0, T ], Xt = bε(t) +Wc(t)

⊥⊥
+
∑

s≤t

∆Xs1{|∆Xs|>ε}

⊥⊥
+ M ε

t

where bε is a continuous function on [0, T ], c is a nonnegative non-decreasing continuous function on
[0, T ] with c(0) = 0 and M ε

t is a pure jump martingale satisfying

E

(
sup
s∈[0,t]

|M ε
s |2
)

≤ 4

∫

R\{0}
x21{|x|≤ε}ν

X([0, t] × dx)

where the measure νX is the Lévy measure of X, i.e. the dual predictable projection of the jump
measure µX(ds, dx) =

∑
s∈[0,T ] 1{∆Xs 6=0}∆Xs. The Lévy measure is characterized by the fact that,

for every bounded Borel function g : R → R null in the neighbourhood of 0,

∫

[0,t]

∫

R\{0}
g(x)(µX (ds, dx)− νX(ds, dx)), t ≥ 0, is a local martingale.
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In particular for any such function we get the compensation formula

E

(∑

t≤T

g(∆Xt)
)
=

∫
g(x)νX ([0, T ] × dx)

which extends to any nonnegative function g or satisfying

∫

R\{0}
|g(x)|νX([0, T ] × dx) < +∞. The

Lévy measure νX satisfies

νX({0} × R) = νX({t} × dx) = 0,

∫

R

(x2 ∧ 1)νX([0, t] × dx) < +∞, t∈ R+.

In what follow, we make the convention that ∆α∞ = 0 for any càdlàg function α defined on R+.

First, owing to Lemma 3.1(a) and the result about the standard Brownian in Section 3, we can
assume that c ≡ 0 in what follows, i.e. that there is no Brownian component. Then we define two
independent marked Poisson processes with positive jumps as follows

X̃ε,±
t =

∑

s≤t

(∆Xs)±1{(∆Xs)±>ε}

and X̃ε = X̃ε,+− X̃ε,−. For each process, we define their inter jump sequence (Θ̃ε,±
n )n≥0 i.e., with the

convention Θ̃ε,±
0 = 0,

Θ̃ε,±
n+1 = min{s > S̃±

n | (∆X
S̃ε,±
n +s

)± > ε}∈ (0,+∞], n ≥ 0,

where S̃ε,±
n = Θ̃ε,±

1 + · · ·+ Θ̃ε,±
n .

Both processes X̃ε,+ and X̃ε,− are independent since they have no common jumps. Furthermore
the four sequences (Θ̃ε,±

n )n≥1 and (∆X̃ε,±

S̃±
n

)n≥1 are mutually independent and made of mutually inde-

pendent terms.

Let F be a bounded measurable non-decreasing defined on functional on ID([0, T ],R). Now, for
every n ≥ 1, we define on R2n the function Fn by

Fn(ξ1, θ1, . . . , ξn, θn) = F
(( n∑

k=1

(ξk)+ 1{θ1+···+θn≤t}

)
t∈[0,T ]

)
, ξ1, . . . , ξn∈ R, θ1, . . . , θn∈ R.

It is straightforward that the functions Fn are non-decreasing in each variable ξi and non-increasing
in each variable θi∈ R+.

For every n ≥ 1, set X̃ε,n,±
t =

n∑

k=1

(
∆X

S̃ε,±
k

)
±
1
{S̃ε,±

k
≤t}

so that

F (X̃ε,n,±) = Fn

(
((∆XS̃ε,±

k

)±, Θ̃
ε,±
k )k=1,...,n

)
.

Consequently, if F and G are co-monotone (measurable) functionals on ID([0, T ],R), it follows from
Proposition 2.1(b) (co-monotony principle for mutually independent random variables) that

EF (X̃ε,n,±)G(X̃ε,n,±) ≥ EF (X̃ε,n,±)EG(X̃ε,n,±).

Now
sup

t∈[0,T ]
|X̃ε,±

t − X̃ε,n,±
t | ≤

∑

k≥n+1

(
∆X

S̃ε,±
k

)
±
1
{S̃ε,±

k
≤T}
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so that
P
(

sup
t∈[0,T ]

|X̃ε,±
t − X̃ε,n,±

t | > 0
)
≤ P(S̃±

n+1 ≤ T ) → 0 as n→ ∞

since the process X has finitely many jumps of size greater than ε on any bounded time interval.
The continuity of F and G transfers the co-monotony inequality to X̃ε,±. In turn, the independence
of these two processes, combined with Lemma 3.1(a), propagates co-monotony to the global Poisson
process X̃ε.

Noting that F and F (bε + .) have the same monotony (if any), one derives that X −M ε satisfies
the co-monotony principle for every ε > 0. One concludes by noting that ‖M ε‖sup → 0 as ε → 0 in
L2. �

4.2 Càdlàg Markov processes and ‖ . ‖Lp
T
(µ)-continuous functionals

It is often convenient to consider some path spaces of the form Lp([0, T ], µ) where µ is a σ-finite
measure and p∈ [1,+∞), especially because of the properties of differentiation on these spaces which
allow the natural introduction of gradient fields. Of course, less functionals are continuous for such
a topology than with the ‖ . ‖sup-norm topology when the process X has continuous (or even càdlàg)
paths.

Then, following the lines of the proof of Proposition 4.2 but with a new canonical approximation
procedure of a function α, this time by a stepwise constant function, one shows the following property.

Proposition 4.2. Let (Xt)t∈[0,T ] be a càdlàg Markov process defined on a probability space (Ω,A,P)
with transitions operators (Ps,t)0t≥s≥0 satisfying the monotony property. Let µ be a finite measure on
([0, T ],Bor([0, T ])) and let p∈ [1,+∞). Let F,G : ID([0, T ],R) → R be two µ-co-monotone functionals,
P

X
-a.s. continuous with respect to the Lp

T
(µ)-norm on ID([0, T ],R). If F (X), G(X) and F (X)G(X)

are integrable or have P
X
-a.s. a common constant sign, then

EF (X)G(X) ≥ EF (X)EG(X).

Proof. For every α∈ ID([0, T ],R), we define α(n) =
∑n−1

k=0 α(t
n
k+1)1[tn

k
,tn
k+1)

+α(T )1{T} with, as usual,

tnk = kT
n , k = 0, . . . , n. It is clear that α(n)(t) → α(t) at every t∈ [0, T ] and that the sequence (α(n))n≥1

is bounded by ‖α‖sup. Hence α(n) converges to α in every Lp
T
(µ), 1 ≤ p < +∞. The rest of the proof

is similar to that of Proposition 4.2. �

5 Applications

5.1 Functional antithetic simulation method

Of course, the first natural application is a functional version of the antithetic simulation method which
was briefly described in the introduction. In fact, if a process X taking values in a vector subspace
E ⊂ F([0, T ],R) (partially ordered by the pointwise order) satisfies a functional co-monotony principle
in the sense of Definition 3.2 and is invariant in distribution under a continuous non-increasing mapping
T : E → E (by T non-increasing we mean that α ≤ β ⇒ T (α) ≥ T (β), α, β∈ E) that for any sup-norm
continuous monotone functional F : E → R (square integrable or with constant sign)

Cov(F (X), F ◦T (X)) = EF (X)F ◦T (X) − (EF (X))2 ≤ 0.

As a consequence, in order to compute EF (X) by a Monte Carlo simulation, it follows that the

computation of (independent copies of)
F (X) + F ◦ T (X)

2
will induce, for a prescribed simulation
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budget, a lower variance than than a simulation only computing (independent copies of) F (X) like in
the scalar framework. In practice such simulations rely on discretization schemes of X for which the
co-monotony principle is only true asymptotically (when the discretization step will go to zero). So is
the case for the Euler scheme of a Brownian diffusion with non deterministic diffusion coefficient).

It remains that this strongly suggests, in order to compute EF (X) where X = (Xt)t∈[0,T ] is a
Brownian diffusion and F is a monotone P

X
-a.s. sup-norm continuous functional, to simulate system-

atically two coupled paths of an Euler scheme (with a small enough step): one with a sequence of
Brownian increments (Wtn

k+1
−Wtn

k
)k≥0 and one with its opposite −(Wtn

k+1
−Wtn

k
)k≥0.

5.2 Sensitivity of a class of path-dependent options

Let µ be a finite measure on ([0, T ],Bor([0, T ])) and, for every p ∈ [1,+∞), let q denote its Hölder
conjugate. Note that, of course, ID([0, T ],R) ⊂ L∞

T
(µ) ⊂ ∩p≥1L

p
T
(µ).

Definition 5.1. (a) Let p∈ [1,+∞). A measurable functional F : Lp
T
(µ) → R is regularly differen-

tiable on ID([0, T ],R) if, for every α ∈ ID([0, T ],R), there exists a measurable “gradient” functional
∇F :

(
[0, T ]× ID([0, T ],R),Bor([0, T ]) ⊗DT

)
→ R such that





(i) ∇F (., α)∈ Lq
T
(µ)

(ii) lim‖h‖
L
p
T

(µ)
→0,h∈Lp

T
(µ)

∣∣∣F (α+h)−F (α)−
∫ T

0 ∇F (s,α)h(s)µ(ds)

∣∣∣
‖h‖

L
p
T

(µ)
= 0.

(5.4)

(b) Furthermore, a gradient functional ∇F is monotone if, for every t∈ [0, T ], ∇F (t, .) is monotone
on ID([0, T ],R) and if this monotony does not depend on t∈ [0, T ].

Proposition 5.1. Let X = (Xt)t∈[0,T ] be a (càdlàg) PII such that, for every u ∈ R, L(u, t) =

E euXt is bounded and bounded away from 0 over [0, T ] so that, in particular, the function Ψ(u, t) =
logE euXt can be defined as a real valued function. Let F : Lp

T
(µ) → R be a measurable functional,

regularly differentiable with a monotone gradient ∇F on ID([0, T ],R) satisfying the following Lipschitz
continuity assumption

∀α, β∈ ID([0, T ],R), |F (α) − F (β)| ≤ [F ]Lip‖α− β‖Lp
T
(µ).

Set, for every σ > 0,

f(σ) = E

(
F
(
eσX.−Ψ(σ,.)

))
. (5.5)

Then, under the above assumptions, the function f is (differentiable and) non-decreasing.

Remark. At least for Lévy processes, the assumption supt∈[0,T ] Ee
uXt < +∞, u∈ R, is satisfied as

soon as E euXt < +∞ for every u∈ R (see [24], Theorem 25.18, p.166).

Before proving the proposition, we need the following technical lemma about the regularity of
function L whose details of proof are left to the reader.

Lemma 5.1. Under the assumption made on the function L in Proposition 5.1, the function Λ defined
on R2

+ by Λ(a, t) = E ea|Xt| is finite. Then for every a∈ (0,+∞), L is Lipschitz continuous in u on
[−a, a], uniformly in t∈ [0, T ], with Lipschitz coefficient (upper-bounded by) Λ(a, T ). Furthermore, for
every u∈ R, there exists κu,T > 0 and ε = ε(u, T ) > 0 such that

∀ t∈ [0, T ], ∀u′∈ [u− ε, u+ ε], L(u, t) ≥ κu,T .
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Proof of Proposition 5.1. Formally, the derivative of f reads

f ′(σ) = E

(∫ T

0
∇F

(
eσX.−Ψ(σ,.), t

)
eσXt−Ψ(σ,t)(Xt −Ψ′

σ(σ, t)
)
µ(dt)

)

=

∫ T

0
E

(
∇F

(
eσX.−Ψ(σ,.), t

)
eσXt−Ψ(σ,t)(Xt −Ψ′

σ(σ, t)
))
µ(dt).

To justify that this interchange of differentiation and expectation in the first line is valid we need

to prove that the ratio
F

(
eσ

′X.−Ψ(σ′,.)

)
−F

(
eσX.−Ψ(σ,.)

)

σ′−σ , σ′ 6= σ, σ, σ′ ∈ [ǫ0, 1/ǫ0], ǫ0 > 0, is L1+η-
bounded for an η > 0. Without loss of generality, we may assume that p = 1 + η > 1 since ‖ . ‖Lp

T
≤

µ([0, T ])
1
p
− 1

p′ ‖ . ‖
Lp′

T

if 1 ≤ p ≤ p′. This follows from the Lipschitz continuity of F and from the

properties of the Laplace transform L established in Lemma 5.1.

Let Gt := σ(Xs − Xt, s ∈ [t, T ]). This σ-field is independent of FX
t . Elementary computations

show that, for every t∈ [0, T ],

E

(
∇F

(
eσX.−Ψ(σ,.), t

)
| Gt

)
= Φ

(
Xt−

Ψ(σ, .)

σ
,
(
Xs−

Ψ(σ, .)

σ

)
s∈[0,t]

, t
)

where, for every β∈ ID([0, t],R),

Φ(ξ, β, t) = E

(
∇F

(
eσ(X.−Xt)−(Ψ(σ,.)−Ψ(σ,t))+σβ(t)1(t,T ] + eσβ1[0,t], t

))
.

Note that, for every t∈ [0, T ], the function Φ(., ., t) is non-decreasing in both remaining arguments.
Now

f ′(σ) =

∫ T

0
E

(
Φ
((
Xs−

Ψ(σ, .)

σ

)
s∈[0,t]

, t
)
eσ(Xt−

Ψ(σ,t)
σ

)
(
Xt −Ψ′

σ(σ, t)
))
µ(dt). (5.6)

Set Q(t) = eσXt−Ψ(σ,t).P. It is classical that (Xs)s∈[0,t] is still a PII under Q(t) with exponential
moment at any order and a log-Laplace transform Ψ(t) given by

Ψ(t)(u, s) = Ψ(σ + u, s)−Ψ(σ, s).

Note that Ψ(t) does not depend on t but on σ. Consequently, for every s∈ [0, t],

EQ(t)

(
Xs

)
=
∂Ψ(t)

∂u
(0, s) = Ψ′

σ(σ, s)

where Ψ′
σ(σ, s) denote the partial derivative of ψ with respect to σ. Putting X̃s = Xs − Ψ′

σ(σ, s), we
get

f ′(σ) =

∫ T

0
EQ(t)

(
Φ
((
X̃s +Ψ′

σ(σ, s)−
Ψ(σ, s)

σ

)
s∈[0,t]

, t
)
X̃t

)
µ(dt). (5.7)

Applying the co-monotony principle to the PII X̃ and to the two non-decreasing Lp
T
(µ)-continuous

functionals F (α) = Φ
((
α(s)+Ψ′

σ(σ, s)− Ψ(σ,s)
σ

)
s∈[0,t]

)
and G(α) = α(t) yields that, for every t∈ [0, T ],

EQ(t)

(
Φ
((
X̃s +Ψ′

σ(σ, s)−
Ψ(σ, s)

σ

)
s∈[0,t]

, t
)
X̃t

)
≥ 0

since EQ(t)
X̃t = 0. As a consequence, f is a non-decreasing function. �
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Corollary 5.1. Under the assumptions of Proposition 5.1 on the càdlàg PII X, the process σ 7→∫ T

0
eσXt−Ψ(σ,t)µ(dt), σ∈ R+, is a peacock (with the definition recalled in the introduction).

Proof. Let ϕ : R → R be a convex function and, for every A > 0, let ϕA be defined by ϕ′
A(x) = ϕ(x)

if x∈ [−A,A] and ϕA affine and differentiable on (−∞,−A] ∪ [A,+∞). It is clear that ϕA ↑ ϕ since

ϕ takes values in (−∞,+∞]. Then set ϕA,ε = EϕA(x+ εZ) where Z
L∼ N (0; 1). The function ϕA,ε is

(finite) convex, infinitely differentiable, Lipschitz continuous and converges uniformly to ϕA when ε→
0. The functional FA,ε(α) = ϕA,ε

( ∫ T
0 α(t)µ(dt)

)
satisfies the assumptions of the above Proposition 5.1

so that the function fA,ε defined by (5.5) is non-decreasing. Letting ε→ 0 and A→ +∞ successively

implies that the function f related to the original functional F (α) = ϕ
( ∫ T

0 α(t)µ(dt)
)
by (5.5) is

non-decreasing which completes the proof. �

Remarks. • In fact this proof remains close in spirit to that proposed in [11]. Roughly speaking we
replace the notion of conditional monotony used in [11] by a functional co-monotony argument (which
also spares a time discretization phase). The notion of conditional monotony and its applications have
been extensively investigated in the recent PhD thesis of A. Bogso (see [3]). Conditional monotony
has been developed on the basis of finite dimensional distributions of a process but it is clear that a
functional version can be derived for (continuous) functionals. Then, when the parameter of interest
is time, the connection with functional co-monotony looks clear since it corresponds to a weak form
of the functional co-monotony principle restricted to couples of functionals of the form F (αt) and
G(α) = g(α(t)) (αt denotes the stopped function α at t).

• As already noticed in [11], specifying µ into δT or 1
T λ|[0,T ] provides the two main results for peacocks

devised from eσXt−Ψ(σ,t). When µ = 1
T λ|[0,T ] one can combine the above results with some self-

similarity property of the PII process (Xt)t∈[0,T ] (if any) to produce other peacocks. So is the case
with the seminal example investigated in [4] where the original aim was, for financial purposes, to
prove that (

1

t

∫ t

0
eBs−

s
2 ds

)

t∈(0,T ]

is a peacock.

Many other examples of this type are detailed in [11, 3].

Application to a class of Asian options. As concerns the sensitivity of exotic derivatives, one
can derive or retrieve classical results in a Black-Scholes model for the class of Asian options with
convex payoff. To be precise, we consider payoffs functionals of the form ΦT = ϕ

(
1
T

∫ T
0 Ssds

)
where

ϕ is a nonnegative convex function (with linear growth) and St = s0e
(r−σ2

2
)t+σWt , t ∈ [0, T ], where

s0 > 0, σ > 0 and W is a standard Brownian motion (r is a possibly negative interest rate). The
holder of an option contract “written” on this payoff receives in cash at the maturity T > 0 the value
of the payoff Φ

T
. Classical arbitrage arguments yield that the premium or price at time 0 of such an

option is given by

Premium0(s0, σ, r, T ) = e−rTEϕ
( 1

T

∫ T

0
Ssds

)
.

By considering the measure µ(dt) = ert 1T λ|[0,T ](dt), one derives from Corollary 5.1 that σ 7→
Premium0(s0, σ, r, T ) is non-decreasing. When r = 0 a change of variable shows that the premium is
also non-decreasing as a function of the maturity T .
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5.3 Application to bounds on barrier options

Let S = (St)t∈[0,T ] be a càdlàg nonnegative stochastic process defined on a probability space (Ω,A,P),
modeling the price dynamics of a risky asset. We will assume that P is a pricing measure in the sense
that derivatives products “written” on the asset S are priced under P. In particular we do not ask P

to be risk-neutral. We assume for convenience that the zero-coupon bond (also known as the riskless
asset) is constant equal to 1 (or equivalently that all interest rates are constant equal to 0) but what
follows remains true if this bond is deterministic.

For notational convenience, for a càdlàg function α : [0, T ] → R, we will denote by ∗αt := infs≤t αs,
(t ∈ [0, T ], the running minimum of the function α and by α∗

t := sups≤t αs its running maximum
process.

We assume throughout this section that the asset price dynamics (St)t∈[0,T ] satisfies a functional
co-monotony principle. This seems is a quite natural and general assumption given the various classes
of examples detailed above.

We will focus on Down-and-In Call and Down-and-Out Call with maturity T . The payoff functional
of a Down-and-In Call with maturity T is defined for every strike price K > 0 and every barrier
L∈ (0, S0) by

FD&I(α) =
(
α(T )−K)+1{∗αT≤L}.

This means that the holder of the Down-and-In Call written on the risky asset S contract receives
FD&I(S) at the maturity T , namely ST −K at the maturity T > 0 provided this flow is positive and
the asset attained at least once the (low) barrier H between 0 and T > 0.

The premium of such a contract at time 0 is defined by CallD&In(K,L, T ) = EFD&I(S). We will
denote by Call(K,T ) = E (S

T
−K)+ the premium of the regular (or vanilla) Call option with strike

K (and maturity T ).

Proposition 5.2. If the nonnegative càdlàg process (St)t∈[0,T ] satisfies a functional co-monotony
principle, then the following semi-universal bound holds:

CallD&In(K,L, T ) ≤ Call(K,T )P(∗ST ≤ L).

Proof. For every α∈ ID([0, T ],R) and every ε > 0, we have

FD&I(α) ≤
(
α(T ) −K)+

((
1− ∗αT − L

ε

)
+
∧ 1

)
.

The two functionals involved in the product of the right hand side of the above equation are clearly
anti-monotone, nonnegative and continuous with respect to the sup-norm, consequently

CallD&In(K,L, T ) ≤ Call(K,T )E

((
1− ∗ST − L

ε

)
+
∧ 1

)
.

The result follows by letting ε→ 0 owing to Fatou’s Lemma. �

As concerns the Down-and-Out Call with payoff

FD&O(α) =
(
α(T )−K)+1{∗αT>L}

for which the holder of the option receives ST −K at the maturity T > 0 if this flow is positive and if
the asset did not attain the (low) level H between 0 and T > 0, one gets, either by a direct approach
or by using the obvious parity equation CallD&In(K,L, T ) + CallD&Out(K,L, T ) = Call(K,T ),

CallD&Out(K,H, T ) ≥ Call(K,T )P(∗ST > L).
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Similar bounds can be derived for for Up-and-In and Up-and-Out Calls with barrier L > S0 (and
strike K), namely

CallU&Out(K,L, T ) ≤ Call(K,T )P(∗ST ≤ L)

and
CallU&In(K,L, T ) ≥ Call(K,T )P(∗ST > L).

5.4 A remark on running extrema

If a càdlàg process X = (Xt)t∈[0,T ] satisfies a co-monotony principle and X
T
and supt∈[0,T ]Xt have

no atom so that, for every x, y ∈ R, x ≤ y, α 7→
(
1{α(T )≥x},1{supt∈[0,T ] α(t)≥y}

)
is P

X
-a.s. ‖ . ‖sup-

continuous, then

∀ y∈ R, P
(

sup
t∈[0,T ]

Xt ≥ y
)
= inf

x≤y
P
(

sup
t∈[0,T ]

Xt ≥ y |X
T
≥ x

)
.
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