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Abstract

A methodology is proposed to approximate large-scale networked sys-
tems by a lower dimensional networked system. We first group the nodes
into m communities which will form the m vertices of the reduced network.
We then associate an appropriate scalar dynamics to each community; in
that way, the dimension of the new model is equal to m. The main idea is
to approximate each node trajectory by the trajectory of its community.
The edges are derived by considering some linear combinations of the link
strengths between the elements of each community. Finally, the initial
conditions are selected to guarantee the asymptotic consistency of the re-
duced model with the original system. Thus, we prove the asymptotic
convergence of any state of the original system to its corresponding com-
munity state according to some distance. It has to be emphasized that
our approach is flexible as the user is free to select the reduced system
dimension m.

1 Introduction

For any proof or the complete version of the paper please contact one
of the authors

Networks and networked systems are ubiquitous in diverse areas of science
and engineering, e.g. in biology, in communication systems, in economy etc. In
the past decades, the analysis of dynamical networks has received an increas-
ing interest in the control and dynamical systems communities. As a result, a
distinct research field has appeared at the intersection of systems theory and
graph theory, see [1, 2, 3, 4] to mention a few. A way to overcome the diffi-
culties induced by the high dimension of these systems consists in developing
approximate low dimensional models. Such approximations are of great interest
for the simulation and the analysis of large-scale networked systems. Various
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methodologies are available for reducing the dimension and / or the complexity
of linear and nonlinear systems (see [5, 6] and the references therein). When
dealing with systems in network, we aim at working with a reduced model which
allows us to approximate the trajectory of each node (not only some given out-
puts), which make the results in [5, 6] not suitable. In [7, 8], the nodes which are
assumed to be synchronized are assimilated to a single node, giving rise to the
concept of meta-populations. It has to be noted that the idea of grouping nodes
is related to the problem of community or cluster detection in static networks,
see for instance [9, 10, 11, 12]. For networks of oscillators which are known
to exhibit synchronization properties, reduced models have been developed to
maintain the convergence speed and some asymptotic behaviour properties (see
[13] and the references therein).

In this paper, we propose a methodology to approximate a class of linear
networked systems by lower dimensional networked systems. We start by parti-
tioning the nodes into m groups called communities to which we assign a scalar
state variable. The main idea is to approximate the trajectory of each node by
the trajectory of its associated community. These communities form the nodes
of the reduced network which is thus of dimension m. Their choice as well as
their number can be freely set by the user. We define the community dynamics
to be some projection of its inner element dynamics and we give a condition
to select the initial condition of the reduced model. In that way, we show that
the error between the community trajectory and the trajectory of its inner ele-
ments is upper bounded by a term that tends to zero as time grows according to
some distance. The derived results are applied to the case where the collective
dynamics are given by a stochastic matrix which ensures a consensus among
all the nodes [14]. Like in [13], the approximation maintains the asymptotic
behaviour of the original system but, in addition, we are also able to quantify
the quality of the approximation at any time (even during the transient period).
Furthermore, our approach is flexible as the dimension of the reduced model can
be freely set depending on the desired level of accuracy. It has to be noted that
we do not require the synchronization of all the nodes within a community as
opposed to [7, 8].

The paper is organized as follows. After having recalled some definitions
in Section 2, the problem we solve is presented in Section 3. The reduced
model is built up in Section 4 and it is shown to appropriately approximate the
original system in Section 5. We then focus on the case where the overall system
dynamics is given by a stochastic matrix in Section 6 for which some of the
previous assumptions are relaxed. An illustrative example is finally presented
in Section 7.

2 Preliminaries

Let G = (V, E) denotes a connected directed graph with the set of vertices
(nodes) V and the set of edges E . Each node is labeled by vi ∈ V, i = 1, . . . , n
and one says that (i, j) ∈ E if there exists an edge between vi and vj .



Definition 1 A path in a given graph G = (V, E) is a union of edges
⋃p
k=1(ik, jk)

such that ik+1 = jk, ∀k ∈ {1, . . . , p− 1}, p ∈ N. Two nodes i, j are connected
in a graph G = (V, E) if there exists at least a path in G joining i and j (i.e.
i1 = i and jp = j). If all the nodes are connected we say the graph is strongly
connected or simply connected if additionally the graph is undirected. In this
paper, a community is defined as a group of nodes with no specific property.

3 Problem formulation

We consider a directed fixed graph G = (V, E). Each vertex vi, i ∈ {1, . . . , n},
represents a dynamic agent and the state trajectory of the networked system
is given by x(·) = (x1(·), x2(·), . . . , xn(·))> ∈ Rn where xi(t) is a real value
assigned to vi at the moment t. It is worth noting that xi denotes generically
the state of the agent vi while xi(t) and xi(·) represent the state value at time
t and the state trajectory of the agent vi, respectively.

The initial conditions are given by xi(0) = x0i , ∀i = 1, n. The agents update
their state by making a linear combination of its own state and the state of its
neighbors

xi(t+ 1) =

n∑
j=1

aijxj(t), ∀i ∈ {1, . . . , n}, ∀t ≥ 0, (1)

where aij 6= 0 if and only if (i, j) ∈ E . The collective dynamics is described by
the matrix A = [aij ]1≤i,j≤n:

x(t+ 1) = Ax(t), ∀t ≥ 0. (2)

Model (2) can be used to represent the temperature dynamics in buildings hav-
ing a large number of rooms for instance (see [15]). In this case, xi represents
the temperature of the room i. The temperature transfer between neighboring
rooms is described by the gain aij while aii models the decentralized feedback
action in room i. The dimension reduction is here related to the limitations on
the deployment of sensors in the rooms. Thus, one approximates the tempera-
ture of neighboring rooms by the temperature given by a single sensor x̃Ci

. The
model may also represent the process of negotiation in a collectivity in order to
take a common decision, where xi represents the opinion of agent i. At each
iteration, an agent updates its opinion by making an weighted average of its
own opinion and those of its neighbors. In this case, the dimension reduction is
related to the presence of moderators who lead the discussions in their group,
collect an averaged opinion x̃Ci

, and exchange it with the others moderators.
We assume that the following condition holds in Sections 4-5.

Assumption 1 The matrix A is symmetric non-negative primitive matrix with
the spectral radius ρ(A) = 1.

The above assumption is imposed to assure some convergence properties for the
collective dynamics (see the next section for details) and allows us to consider
the case of symmetric stochastic matrices.



To build the reduced model, we start by defining a set of communities Ci,
i ∈ {1, . . . ,m} to which we associate a scalar state x̃Ci ∈ R. We define the
state vector of the communities by x̃ = (x̃C1

, . . . , x̃Cm
) ∈ Rm. The number

of communities m ∈ {1, . . . , n} is a design parameter and the groups Ci, i ∈
1, . . . ,m are freely chosen by the designer. In practice, m and Ci, i ∈ {1, . . . ,m}
are usually chosen such that connectivity or dynamical properties are stronger
inside the group than outside. This allows us to built the graph G̃ = (Ṽ, Ẽ)
where

• the set of vertices is Ṽ = {C1, . . . , Cm}.

• the set of edges is Ẽ is defined such that an edge between Ci and Cj exists
if and only if at least an edge connecting a vertex of Ci with a vertex of
Cj exists in E .

We are interested in solving the problem below:

Problem 1 Find a communities state dynamics and an appropriate initial con-
dition x̃0 such that it exists a function ϕm : R+ 7→ R+ which tends to 0 as time
grows and it holds that ‖x(t)−Kx̃(t))‖ ≤ ϕm(t), where K ∈ Rn×m is a designed
matrix.

4 Design of the lower dimensional model

We first present the dynamics that are assigned to each community, then we
show how the initial conditions of the new system need to be selected.

4.1 Community dynamics

Since the matrix A satisfies Assumption 1, the Perron-Frobenius theorem (see
Section 8.3 in [16]) guarantees that:

• 1 is a simple eigenvalue of A.

• The components ui of the Perron eigenvector u of A associated to 1 are
all positive.

• lim
t→∞

At = uu>.

The vector u plays a key role in the design of the reduced model. We denote by

{e1, . . . , en} the canonical basis of Rn and uCi
=
∑
i∈Ci

uiei ∈ Rn we introduce

the following matrices

K =

(
uC1

‖uC1
‖
,
uC2

‖uC2
‖
, . . . ,

uCm

‖uCm
‖

)
∈ Rn×m,

E = KK> ∈ Rn×n.
(3)



Lemma 1 The following properties hold:

1. E is a projector i.e. E2 = E and E> = E. So ‖E‖ = 1;

2. EuCi
= uCi

, ∀t ≥ 0, i ∈ 1, . . . ,m and Eu = u.

The state dynamics of each community is defined by

x̃i(t+ 1) =

m∑
j=1

ãij x̃j(t), ∀t ≥ 0 (4)

where ãij are linear combinations of the link strength between elements in Ci
and Cj which are defined by

ãij =
1

‖uCi
‖‖uCj

‖
u>Ci

AuCj
, ∀i, j.

It is noteworthy that no link connects Ci and Cj if no elements of Ci is connected

with an element in Cj . Considering Ã = (ãij)1≤i,j≤m, the collective dynamics
of the communities state is then given by

x̃(t+ 1) = Ãx̃(t), ∀t ≥ 0. (5)

It has to be noted that Ã = K>AK ∈ Rm×m. We also notice that A symmetric
implies Ã symmetric. An interesting observation that will be used in the sequel
reveals that K>K = Idm.

4.2 Community initial conditions

We recall that x̃0 stands for the initial condition for the communities dynamics
(5). The following proposition gives a condition for selecting x̃0 guaranteing the
asymptotic consistency of the reduced model with the original one.

Proposition 1 Let w , K>u. If w>x̃0 = u>x0 , x∗, then one obtains
limt→∞ ‖x(t) − Kx̃(t)‖ = 0. Moreover, w is the left Perron eigenvector of
Ã.

Following Proposition 1, we select x̃0 such that w>x̃0 = u>x0. Therefore, a
computationally simple choice is x̃0 = K>x0. If we want to minimize the initial
error we may compute x̃0 such that x̃(0) = argminw>x̃=u>x0‖Kx̃− x(0)‖.

Remark 1 Like in [13], it is possible to relate the spectral properties of the
reduced model and the original one. Precisely, the spectrum of the matrix Ã can
be characterized as follows. If λ is an eigenvalue of EA associated to the left
eigenvector vλ then one and only one of the following statements holds:

1. K>vλ = 0.

2. λ is an eigenvalue of Ã associated to the eigenvector wλ = K>vλ. Indeed,
if If K>vλ 6= 0 one has w>λ Ã = w>λK

>AK = v>λ EAK = λv>λK = λw>λ .



5 Trajectory approximation bounds

We are now ready to define the function ϕm(·) that solves Problem 1 with the
matrix K defined in (3).

Theorem 1 Let 1 = λ1(A) > |λ2(A)| ≥ . . . ≥ |λn(A)| ≥ 0 be the eigenvalues
of the matrix A and x̃0 be chosen as in Proposition 1. A solution to Problem 1
is given by

ϕm(t) = |λ2(A)|t
(
‖Kx̃(0)− x(0)‖

+t‖E − Idn‖‖K
(
x̃(0)− x∗w

)
‖
)
.

(6)

We note that the dependence of ϕm(·) on m in (6) is hidden in the structure
of K and w. In the particular case of stochastic symmetric matrices studied in
the next section, this dependence is evident, see (11).

Remark 2 1) From Lemma 1, E is a projector different to Idn when m < n as
we can easily check that Idn − E is also a projector so ‖E − Idn‖ = 1. Conse-

quently, (6) may be simplified as ϕm(t) = |λ2(A)|t
(
‖Kx̃(0)−x(0)‖+t‖K

(
x̃(0)−

x∗w
)
‖
)

.

2) Due to the presence of the second term in the right hand side of (6), the
function ϕm(·) may be increasing during few iterations before starting an al-
most exponential decrease to 0 (as seen in an example in Section 7, see Figure
1).
3) As mentioned in Section 3, the dimension of the reduced model m can be freely
selected. We show in simulations in Section 7 that the approximation accuracy
degrades as m decreases. For m = n (i.e. no complexity reduction is made) one
has K = Idn = K̃ ⇒ E = Idn and x̃(0) = x(0). Thus, (6) states that the two
trajectories coincide which means that our reduction is coherent. For m = 1, the
transient is lost and the dynamics is approximated by the asymptotic behavior.
4) Our approach requires to know the initial condition x0 of the original large-
scale system (see Proposition 1) that may be hard to achieve in practice. There-
fore, we investigate the case where x0 is subject to bounded uncertainties. The
initial condition of (5) is taken to lie inside a sphere centered in x0 and radius
ε i. e. ‖x(0)− x0‖ ≤ ε with ε > 0. We see that (5) leads to

x(t) = At(x0 + (x(0)− x0)) = Atx0 +At(x(0)− x0).

By defining x̃0 as in Proposition 1 and noting that the spectral radius of A is
equal to 1 in view of Assumption 1, one obtains that ‖Kx̃(t)−x(t)‖ ≤ ϕm(t)+ε.
Hence, the uncertainties will decrease the precision of the approximation but the
distance between trajectories of the reduced system and the original one remains
bounded.

Remark 3 At each time t, we may define for the community Ci a kind of
barycenter given by the ith component of K>x(t). Then, Theorem 1 can be
completed by computing the distance between the trajectory of the reduced model



and the trajectory of the barycenters vector: ‖x̃(t)−K>x(t)‖ ≤ ‖K>‖‖Kx̃(t)−
x(t)‖ ≤ ‖Kx̃(t)− x(t)‖ ≤ ϕm(t) for t ≥ 0.

6 Dimension reduction in the stochastic matrix
case

We now consider the case where the matrix A is a stochastic which is renamed
P in this section for the sake of clarity. A slightly different methodology is
proposed. Unlike the previous case, we prove the existence of the function
ϕm(·) but we do not give its explicit definition when P is not symmetric.

This scenario is interesting since it describes the process of state synchro-
nization which is often desired in parallel computation, negotiation, etc. The
following classical conditions are assumed to hold in this section.

Assumption 2 The graph G = (V, E) is connected and (i, i) /∈ E , ∀i ∈ 1, . . . , n.

That assumption implies that the matrix P is irreducible and aperiodic which
thus guarantees that P is primitive but not necessarily symmetric as opposed
to Assumption 1.

We rewrite the collective dynamics as (instead of (2))

x(t+ 1) = Px(t), ∀t ≥ 0. (7)

Let u be the left Perron vector of P while 1n ∈ Rn (i.e. the column vector having
all the entries equal 1) is the right Perron vector of P . Then, lim

t→∞
x(t) = x∗1n.

In this case uCi
=
∑
i∈Ci

ei ∈ Rn which means that ‖uCi
‖ =

√
|Ci|. We use the

matrices S and S̃ defined below instead of K in (3)

S̃ =



u>
C1

‖uC1
‖2

u>
C2

‖uC2
‖2

...
u>
Cm

‖uCm‖2


∈ Rm×n,

S = (uC1
, uC2

, . . . , uCm
) ∈ Rn×m.

(8)

We can then define a row stochastic matrix F that gives the collective dynamics
of communities. We note that S̃S = Idm and

E = SS̃ =


E1

|C1|
E2

|C2|
...
Em

|Cm|

 ∈ Rn×n (9)



where Ei is the matrix obtained by the juxtaposition of |Ci| copies of eCi . The
collective dynamics of the communities state is defined by

x̃(t+ 1) = Fx̃(t), ∀t ≥ 0 (10)

where F = S̃PS ∈ Rm×m, therefore

F = (fij)1≤i,j≤m, fij =
1

|Ci|
e>Ci

PeCj , ∀i, j.

We see that an edge between Ci and Cj exists if and only if at least an edge
between an element belonging to Ci and one belonging to Cj exists as for (4).

In other words, G is connected if and only if G̃ is. Moreover P is irreducible
if and only if F is. In addition, as stated in the following lemma, the matrix
F is stochastic and aperiodic which implies that the Perron-Frobenius theorem
applies to F .

Lemma 2 P row stochastic matrix implies F row stochastic. Moreover F is
aperiodic if P is aperiodic.

Remark 4 P doubly stochastic does not generally imply F doubly stochastic.

Indeed, consider S̃ =

(
1 0 0
0 1

2
1
2

)
, P =

 2
3

1
3 0

1
3

1
3

1
3

0 1
3

2
3

 doubly stochastic and

S =

 1 0
0 1
0 1

. Then, (1, 1)F =
(
5
6 ,

7
6

)
, so F is not column stochastic.

The result below shows us how the initial condition of the reduced model
(10) needs to be selected. It is obtained by following similar lines as in the proof
of Proposition 1.

Proposition 2 Consider v the left Perron vector of the matrix EP . The vec-
tor w = S>v is the left Perron eigenvector of F . If x̃0 is chosen such that
w>x̃0 = u>x0 then (7) and (10) share the same consensus value meaning that
limt→∞ ‖x(t)− Sx̃(t)‖ = 0.

The previous proposition ensures that Problem 1 is solved when P is primi-
tive but not necessarily symmetric. However we have not been able to depict an
explicit formula for ϕm(·). When the graph G is a connected undirected graph,
then P is symmetric and we can give an expression for ϕm(·) as in Theorem 1.

Proposition 3 Let P be a symmetric stochastic matrix and 1 = λ1(P ) >
|λ2(P )| ≥ . . . ≥ |λn(P )| ≥ 0 be the eigenvalues of P . Let also x̃0 be chosen
as in Proposition 2 and x∗ = x̃∗ the common consensus value of the algorithms
(7) and (10). A solution to Problem 1 is given by K = S and

ϕm(t) = |λ2(P )|t
(
‖Sx̃(0)− x(0)‖

+t‖E − Idn‖‖S
(
x̃(0)− x∗1m

)
‖
)
.

(11)



Remark 5 1) Since the norm of S is given by max
1≤i≤m

|Ci|, (11) also says that

large complexity reductions (i. e. m very small and large communities) may
lead to lower precision of the trajectory approximation close to initial conditions.
Therefore, there is a trade-off between the complexity reduction and the quality
of the trajectory approximation as illustrated in simulations in Section 7.
2) The ith component of the vector S̃x(t) ∈ Rm is the average of the states
corresponding to the vertices belonging to the ith community of the network and
‖S̃‖ = 1

mini∈{1,...,m} |Ci| . Consequently, Remark 3 gives a bound on the distance

between the trajectory of a community and the average of the trajectories of its
elements.

7 Numerical example

We illustrate the theoretical results presented in Section 6. We randomly gen-
erate the initial condition with values in the interval [0, 100] and the intercon-
nection graph for a network of 2000 nodes. The full model is given by (7) with
P = Id2000 − αL where L is the Laplacian matrix associated to the intercon-
nection graph and α < 1

d with d the greatest value on the diagonal of L. Next,
several approximations of the model are built up by following the procedure
presented in Section 6. We consider the scenarios where the reduced models
have 5, 10, 20, 50, 100 and 2000 nodes, respectively, in order to emphasize the
trade-off between the complexity reduction and the precision of the trajectory
approximation. We have observed that the simulation time decreases from more
than 1 minute for 2000 nodes to about 1 second for 100 nodes. Obviously the
simulation time depends on the computation capacity of our machine. Nonethe-
less, when the networks consists of hundred of thousands or billions of nodes
the full model is not even tractable while the reduced model is. The maximum
distance between the real trajectories and approximated ones over time, which
is defined below, is depicted in Figure 1,

dist(t) = ‖Sx̃(t)− x(t)‖∞. (12)

One can see that this maximal distance is decreasing as a function of the size
m of the reduced model and for m = n = 2000 the distance is all the time equal
zero. The overall behavior of the reduced models is given in Figures 2 and 3.

8 Conclusions and further works

We have used a size reduction methodology to approximate the trajectories
of the elements of a large scale networked system. For that purpose, we have
grouped the nodes into communities. Next, we have defined the dynamics and an
appropriate initial condition for the communities network. We have shown that
the trajectory of a community approximate the behavior of all its elements and
we have given an upper-bound on the precision of the approximation. Future
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Figure 1: Evolution of the maximum distance (12) between the real trajectories
and approximated ones over time for m = 5, m = 10, m = 20, m = 50, m = 100
and m = 2000, respectively.
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Figure 2: Blue lines represent the trajectory of the full system and the red lines
the trajectory of the reduced one for m = 5 and m = 10, respectively.

works should consider the case of directed interaction topology described by
non-symmetric matrices (as started in Section 6). An extension of these results
to the case of nonlinear dynamics is also under investigation.
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Figure 3: Blue lines represent the trajectory of the full system and the red lines
the trajectory of the reduced one for m = 20 and m = 50, respectively.
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