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Coordinated Path Following Control of Multiple Wheeled Mobile

Robots Through Decentralized Speed Adaptation

Xianbo Xiang, Lionel Lapierre, Bruno Jouvencel and Olivier Parodi

Abstract— This paper addresses the problem of coordinated
path following of multiple wheeled mobile robots while keeping
a desired formation. The control laws proposed are categorized
into two envelopes, one is steering individual robots to trace
along predefined paths, and the other is ensuring tracked
paths to be well defined in the formation, by means of
decentralized speed adaption. Within this framework, geometric
paths following are built on Lyapunov theory and backstepping
techniques, while injecting helmsman like behavior into indi-
vidual path following control. Speed adaption with minimum
communication variable under the constraints of multi-robot
communication topology, is elaborately designed without rela-
tive speeds between neighboring robots requested. The simple
but effective controller design, enables multi-robot system to
be coordinated and stabilized into an invariant manifold, and
all speeds converge to desired profiles in addition. Simulation
results illustrate the efficacy of the solution proposed.

I. INTRODUCTION

Nowadays, there is growing interest in the problem of co-

ordinated control of multiple autonomous vehicles. Examples

include spacecraft formation flying control [1], cooperative

control of mobile robots [2], traffic automated highway

systems [3], and coordinated control of underwater vehicles

[4]. Control design on multi-vehicle system poses significant

theoretical and practical challenges, where coordinated path

following is one of them. Other than developing well-done

individual path following controller for each vehicle, the

counterpart strategy addressing the problem in this paper,

is that the dedicated controller dealing with inter-vehicle

speed adaptation to keep the coordinated formation, is de-

centralized. Moreover, the amount of information exchanged

between any two vehicles to fulfill the global control re-

quirements, is minimized to one single variable. This single

variable proposed here, is the curvilinear abscissa si (along

path length) parameterizing the ith path, and there are no

relative speeds between neighboring vehicles requested in

the control strategy of speed adaption, which is useful in

practical case.

As pointed out in the work of [5], [6], a leader-follower

structure for path following control is adopted. However in

[5], it requires a large amount of kinematics and dynamics

information, be exchanged between leader and follower,

besides complex computation of trajectory tracking con-

trollers as a complement of path following controller. In
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[6], an important idea of decoupling the spatial assignment

(predefined path) and temporal assignment (desired speed) is

proposed. The nonlinear feedback law yields convergence of

the two robots to the respective paths and forces the follower

to accurately track the leader asymptotically. Moreover, only

the path parameter of the leader is required to be sent

to the follower, which presents a minimum load in the

communication network. Unfortunately, this approach can

not be easily generalized to more than two robots. On the

other hand, the inherent centralized characteristic of the

leader-follower control system, is vulnerable by single-point

failure. For instance, any follower who can not keep up with

the leader will fail out of the group, and the whole group

will collapse if the leader is failed.

A natural way for coordinated control of multiple robots

is to built a leaderless strategy [7], and all robots have the

same priority to reach the coordinated task. This kind of

coordination scheme also exhibits robustness against single

robots failures, which means the strategy of decentralized

control for coordinating multiple robots is preferred to cen-

tralized control scheme. In addition, communication signals

required in decentralized system are significantly reduced

compared with those in centralized control system. There-

fore, decentralized control is much more applicable for real-

world communication situation, especially in the situation of

severely constrained bandwidth.

Furthermore, information flow among vehicles in the com-

munication network must be carefully treated, which plays a

key role in decentralized control of multiple vehicles. In [8],

[9], graph is introduced to represent communication network,

where each vehicle is one node and each communication

link is one edge in the graph. Subsequently, algebraic graph

theory supports a rigid methodology to explicitly interpret

the relationship between information flow and stability of

the cooperating behavior of multiple vehicles. Hopefully,

the elegant technique sheds some light into the problem of

coordinated path following for multi-vehicle system. In this

guidance, local convergence has been resulted by resorting to

feedback linearization approach to stabilize a fleet of wheeled

robots. The global performance has been obtained for fully

actuated underwater vehicles, and error dynamics derived

from path parameter is the root to design the coordinated

controllers in [10].

In the leading methods reviewed above for coordinated

path following control of multiple vehicles, there is a con-

sensus behind the different control techniques in [10] and

in [11]. That is, individual path following control and inter-

vehicle coordination are decoupled, so that the essence of

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4547



coordinating task is synchronizing suitable state variable to

keep the formation. Moreover, path can be parameterized by

the curvilinear path length, which means synchronization can

be achieved by adjusting the speed of each vehicles along

the path. Therefore, a direct way by regulating speeds of

vehicles is intuitive, and this straightforward mechanism is

able to simplify the solution, which is inspiring the simple

but effective control design in this paper. The decentralized

control laws on inter-vehicle speed adaption with minimum

communicated variables (i.e. path parameters), enables multi-

vehicle system without all-to-all communications, to be

stabilized into an invariant manifold.

This paper is organized as follows. Section II introduces

non-singular path following for individual vehicle, with

theoretical improvement by injecting helmsman like behav-

ior as a heading reference. Another important contribution,

however, is summarized in section III, where a decentralized

speed adaptation is designed for coordinated path following

of multiple vehicles under communication constraints. The

performance of the control system proposed is illustrated in

simulation in section IV. Finally, section V draws the con-

clusions and describes some problems that warrant further

research.

II. INDIVIDUAL PATH FOLLOWING

This section describes a sharped solution to the problem

of path following control for one individual unicycle-type of

mobile robot, where a helmsman-like behavior as a heading

reference is injected. This meaningful behavior embedded

in nonlinear controller design, is instrumental to render the

error vector exponentially converging to zero.

The problem of path following is firstly addressed in [12]

for kinematic model of wheeled mobile robot. Based on the

Serret-Frenet frame {F}, tracking error vector between robot

and the traced path is formulated. The origin of {F} is the

orthogonal projection of robot onto the path. However, it

creates a singularity when the robot is located at the center

of the path curvature such that the projection point is not

uniquely defined. Consequently, only a local convergence of

error vector is guaranteed. In order to bypass the singularity,

a virtual target moving along the the path is introduced in

[13]. Unfortunately, not only the speed of the virtual target

but also that of robot have to be adjusted. In [14], the

solution of global convergence is obtained by only steering

the rotational angle, with the help of one extra control

freedom to dexterously manipulate the speed of virtual target.

Meanwhile, this method has been successfully extended

from kinematics to dynamics. In this paper, this kind of

individual path following design will be stretched, and an

implicite helmsman-like behavior as a heading reference will

be highlighted here.

A. Kinematic and dynamic model

Consider Figure 1, where a unicycle-type of wheeled robot

follows a predefined spatial path. The robot has two identical

parallel, non-deformable rear wheels and a passive front

Fig. 1. Frame definition and description of problem posed

wheel. Let v and r denote the forward and rotational speed

of the robot.

Let P be an arbitrary point on the path to be followed

and Q be the center of mass of the moving robot. Associated

with P , consider the corresponding Serret-Frenet frame {F}.

The path S is parameterized by a moving target P on the

path, with curvilinear abscissa (along path length) denoted

by s. Let (x1, y1) denote the coordinates of Q in {F}. Let

the rotations from {F} to {I} and {B} to {I} be denoted

by the yaw angles ψF and ψB , respectively. Further, let

cc(s) and gc(s) denote the path curvature and its derivative

respectively, and then ψF = cc(s)ṡ. With the denotation of

variable ψ1 = ψB −ψF , the kinematic model of unicycle in

the Serret-Frenet frame can be derived as







ẋ1 = −ṡ(1 − ccy1) + vcosψ1

ẏ1 = −ccṡx1 + vsinψ1

ψ̇1 = r − ccṡ
(1)

where r = ψ̇B .

It is assumed the contact between the wheels of the robot

and the ground is pure rolling and non-slipping. The wheels

control provides the forward force F and angular torque N
applied on the robot’s center of mass. The robot mass and

moment of inertia are denoted m and I , respectively. The

dynamical model of the unicycle is obtained by augmenting

(1) with the equations

{

v̇ = F/m
ṙ = N/I

(2)

Without loss of generality, m = I = 1 is assumed in

appropriate units.

With the above notation, the problem of path following

for single robot can be formulated as below:

Individual Path Following. Given a predefined path to

be followed by a individual robot, and given a desired speed

profile vd(t) ≥ vmin > 0 for the robot speed v, derive a

feedback control law for F and N to drive x1, y1, ψ1, and

v − vd asymptotically to zero.
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B. Nonlinear controller design

The controller design for individual path following, is

implemented in two steps.

(1) design a yaw angle as a heading reference, where a

Line-of-sight (LOS) angle stands up, and a helmsman-like

behavior is capsuled inside.

(2) design nonlinear controllers to drive the robot onto the

path under the LOS guidance, which are based on Lyapunov

theory and backstepping techniques.

1) Heading reference design: In order to follow the

desired path, the most important thing is to steer the robot in

the right heading to approach the objective, and the desired

speed is of second interest. However, the performance of

moving towards the path could be quite different, depending

on the situation whether a reasonable heading is chosen and

a wise computerized ’helmsman’ is onboard .

Fig. 2. Illustration of the LOS angle as a heading reference

Classic LOS law for heading reference is popularly applied

in marine vehicles [15],[16], and this method enlightens us

on designing the heading reference for wheeled robot here.

As depicted in figure 2, the coordinate origin of vehicle is

(x, y), and the LOS point on the path is (xlos, ylos). Thus,

the desired yaw angle under LOS guidance is

ψlos = arctan(
ylos − y

∆
)

Originally, the control parameter ∆(> 0) is interpreted as the

distance ahead of the ship along the x-axis, i.e. look ahead

distance towards the straight-line path.

Here we choose LOS angle as a heading reference ,

when vehicle tracking arbitrary path, and the parameter ∆ is

extended to look at the distance along the tangential path in

Serret-Frenet frame.

Revisiting figure 1, in the ideal case of ψ1 equal to the

desired heading δ, we can see that ψ1 = ψB − ψF , is the

corresponding LOS angle ψlos described in figure 2. That

means the guidance yaw angle can be defined as

δ = arctan(
−y1
∆

) (3)

Where ∆ can be given by

∆ = k0 | cc(s) | +ǫ, 0 < k0 < k0max, ǫ > 0 (4)

In the situation of arbitrary path as in picture 1, the look

ahead distance ∆, manipulated by a wise helmsman, will

steer the vehicle onto the tangential path. By commanding a

large ∆, the ’helmsman’ gives a mild approach to the smooth

curve, while a small ∆ bringing more aggressive approach

to the sharp curve. Explicitly, it is convenient for controller

in the Serret-Frenet frame to provide the information of

curvature, which means the helmsman behavior can be well

embedded in the path following design proposed in this

paper. Normally, ∆ could be chosen equal to two vehicle’s

length, which is corresponding to a standard choice in

LOS algorithms. Moreover, we can see later, that the LOS

guidance is also instrumental in nonlinear controller design

to sharpen the performance of convergence.

2) Kinematic controller: Consider the following Lya-

punov function candidate

V1 =
x2

1 + y2
1 + (ψ1 − δ)2

2
(5)

Resorting to the kinematics model (1), the derivative of V1

is

V̇1 =x1(v cosψ1 − ṡ) + y1v sin δ+

(ψ1 − δ)(ψ̇1 − δ̇ + y1v
sinψ1 − sin δ

ψ1 − δ
)

It is straightforward to show that the choice
{

ṡ = k1x1 + vcosψ1

ψ̇1 = δ̇ − y1v
sinψ1−sin δ

ψ1−δ
− k2(ψ1 − δ)

(6)

where k1 and k2 are positive gains, lead to

V̇1 = −k1x1
2 + y1v sin δ − k2(ψ1 − δ)2

With the heading reference designed in (3),

V̇1 = −k1x1
2 −

vy1
2

√

y12 + ∆2
− k2(ψ1 − δ)2 (7)

That means V̇1 < 0 outside the origin.

3) Dynamic controller: In the overall control loop, the

kinematic controller actually acts as a reference subsystem,

giving the desired signals for the control subsystem based

on the dynamics level. Using backstepping techniques [17],

the control law in kinematic level can be extended to deal

with vehicle dynamics.

Let ψ (desired value) be the reference signal of ψ1 (actual

value), which is derived from kinematic model. Let ε be the

error between ψ̇ and ψ̇1 . Then







ψ̇ = δ̇ − y1v
sinψ1−sin δ

ψ1−δ
− k2(ψ1 − δ)

ε = ψ̇1 − ψ̇
ε̇ = −(ψ1 − δ) − k3ε

(8)

With above equation, the control input of N is

N =ṙ = ψ̈1 + ccs̈+ gcṡ
2

= ψ̈ + ccs̈+ gcṡ
2 − (ψ1 − δ) − k3ε

(9)

Augment V1 in Lyapunov function canditate V2, then

V2 = V1 +
ε2

2
(10)

Substitute ψ̇1 with ε+ ψ̇ when computing V̇1, the derivative

of V2 is

V̇2 = −k1x1
2 + y1v sin δ − k2(ψ1 − δ)2 + ε(ε̇+ (ψ1 − δ))
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With (3) and (8), there is

V̇2 = −k1x1
2 −

vy1
2

√

y12 + ∆2
− k2(ψ1 − δ)2 − k3ε

2 (11)

That means V̇2 < 0 outside the origin.

Proposition 1: Let guidance heading be given by (3), and

control law be given by (9) for some ki > 0(i = 1, 2, 3).
Let min{k1, k2, k3} ≥ v

∆
, v ≥ vmin > 0 and ∆ > 0

be guaranteed. Then the equilibrium point (x1, y1, ψ1) =
(0, 0, 0), is globally uniformly exponentially stable.

This proposition can be derived from (11), and there are

two remarks here:

(1)Singularity is bypassed by the introduction of an extra

degree of freedom for control design, which is attached to

the virtual target. See [14] in detailed analysis.

(2)Actually, this is a sharped solution to the traditional

path following control, both on mathematic level (perfor-

mance of global convergence) and physic level (performance

of helmsman-like behavior).

III. COORDINATED PATH FOLLOWING

Before addressing this problem, the communication topol-

ogy among the multi-robot system has to be explicitly

represented. The algebraic graph theory is a useful tool, to

derive decentralized controller for a team of robots.

A. Preliminaries of algebraic graph theory

We will review the basic concept of graph and matrices as-

sociated with graph, which are the preliminaries of algebraic

graph theory and Laplacian matrix.

An communication topology is defined by a undirected

graph G(V,E) with N vertices in a set of vertices V , and

a set of edges E with edges eij = (vi, vj) ∈ E, vi, vj ∈ V .

Vertex vi and vj are connected if (vi, vj) ∈ E, and two

vertices on the same edge are adjacent. The adjacent matrix

A of graph G, is a square matrix of size |V |, whose ijth
element aij = 1 if (vi, vj) ∈ E, and is zero otherwise. The

degree matrix D of an undirected graph G, is the diagonal

matrix with the number of its neighbors of each vertex along

the diagonal denoted by deg(vi), where the set of neighbors

of node i is denoted by Ni = {j : (vi, vj) ∈ E}. The

Laplacian matrix L of an undirected graph is defined as L =
D − A. A path is a sequence of edges from vi to vj , such

that two consecutive vertices are adjacent. A graph is said

connected if there is a path between any distinct pair of

vertices.

Lemma 1: From [18], the laplacian potential L of a (con-

nected) undirected graph is positive semi-define and satisfies

the following identity, STLS =
∑

i,j∈E(si − sj)
2, where

S = [s1, s2, ..., sn]
T is the state vector of vertices. si can be

position, velocity, acceleration, etc.

Lemma 2: From [18], the Laplacian matrix of a connected

graph, only has one single zero eigenvalue and the corre-

sponding eigenvector is the vector of ones, ~1.

B. Coordinated controller design

Deliberately, the design of control input F in dynamics

level, is lagged here. Consider Lyapunov function candidate,

Vv = 1

2
(v − vd)

2. It is trivial to choose the control law

v̇ = v̇d − k4(v − vd) where k4 > 0, or rather that

F = v̇ = v̇d − k4(v − vd) (12)

With (12), control force solely drives the robot speed v
converging to desired speed vd assuming vd(t) ≥ vmin > 0
, with performance of global uniform exponential stable. It

indicates that controlling v is completely decoupled with

other control behaviors, such as, driving the robot onto the

path with x1, y1, ψ1 equal to zero. This important theoretic

root endows the controller with another dedicated ability

of speed adaptation among robots, without degrading the

performance of robot’s convergence to the path.

Therefore, the feasible strategy for coordinated path fol-

lowing is that

(1) each robot will recruit its own path following control

law to track the path,

(2) and then, adjusting the desired speed of each robot,

make the synchronizing parameters, tracked curvilinear ab-

scissa (length along the path) si(i = 1, 2, · · · , n) herein, to

be equal.

In this paper, it is assumed that, (1) the communications

between any pair of robot is reciprocal (i.e. bidirectional link)

and the graph is undirected, such that L is symmetric, and

(2) the communication graph is connected.

Coordinated Path Following. Consider n robots with

kinematic and dynamic models given by (1) and (2), respec-

tively. Given n spatial parallel paths to be followed by robots,

and a desired profile Vd for the final speed along the paths,

derive feedback control laws, so that x1,i, y1,i, ψ1,i ,vi−vdi
,

and si − sj (i = 1, 2, ..., n) tend to zero asymptotically.

The coordinated controller design for coordinated path

following, is derived in four steps as following.

Step1: Given individual path following control law (9) for

each robot, the multi-robot system uniformly globally expo-

nentially reach the largest invariant set {ΩPath|(x1,i, y1,i) =
02, ψi = 0, i = 1, 2, · · · , n}

Step2: Given individual path following control law (12)

for each robot, the multi-robot system uniformly globally ex-

ponentially reach the largest invariant set {Ωv|(x1,i, y1,i) ∈
ℜ2, ψi ∈ ℜ, vi = vdi, i = 1, · · · , n}

Step3: Let’s study the trajectories of the robots onto the

largest invariant set ΩPath and Ωv . Under these two invariant

sets, that is {ΩPath ∩ Ωv}, all of robots are on their own

paths and will move along these paths with desired speeds.

That means, each robot coincides with the corresponding

virtual target moving on the individual path. So, we can claim

that Ṡ = Vd as along as the control laws exist, where the

desired speed profile Vd = [vd1, vd2, . . . , vdn]
T , and S =

[s1, s2, . . . , sn]
T .

Considering Lyapunov candidate function VS = 1

2
STLS,

VS has a quadric form such that VS ≥ 0, as illustrated in

Lemma 1. It is assumed there are reciprocal communication
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links among each pair of nodes, which contributes to sym-

metric Laplacian matrix L = LT . Then, the time-derivative

of VS is V̇S = STLṠ.

Let the desired speed profile be

Vd = {va~1 − vbtanh[LS]} (13)

Note that:

(1) [LS] = [L1S, . . . , LnS]T , tanh[LS] =
[tanh(L1S), . . . , tanh(LnS)]T , and Li represents the

ith row of Laplacian matrix L.

(2) All robots have the same the minium and maxim

speeds, noted as vmin and vmax respectively, and vmax >
vmin > 0. Let (va− vb) ≥ vmin and (va + vb) ≤ vmax, and

va > vb > 0, to guarantee vdi ∈ [vmin, vmax] in (13).

Proposition 2: Consider the communication topology of

multi-robot system represented by a connected graph with

reciprocal links, let individual path following controller be

given by (9) and (12). Let decentralized speed adaptation be

given by (13). Then the multi-robot system globally asymp-

totically synchronized to an invariant manifold {ΩS |LS =
0}, that is s1 = s2 = . . . = sn. Meanwhile, the speeds of

all robots globally asymptotically convergence to a constant

value va(> 0).
Proof: As the trajectories of the system asymptotically

converge to the invariant set ΩPath and Ωv , Ṡ equals to

Vd.

V̇S = vaS
TL~1 − vb[LS]T tanh[LS]

From Lemma 2, L~1 = 0. tanh(x) is an odd function,

(LiS)tanh(LiS) ≥ 0. In addition, vb > 0, such that

vb[LS]T tanh[LS] ≥ 0. So, V̇S = −vb[LS]T tanh[LS] ≤ 0.

That means, VS is a nonnegative and monotonically decreas-

ing function, has a well-defined limit limt→∞VS = l1, which

means VS = STLS is bounded.

Moreover, it is straightforward to show that V̈S is bounded

so that V̇S is uniformly continuous. Then, using Barbalat’s

lemma, V̇S tends to 0 as t tends to ∞, or rather that V̇S =
−vb[LS]T tanh[LS] tends to 0. With (LiS)tanh(LiS) ≥ 0,

(LiS)tanh(LiS) = 0, and LiS = 0 at last.

Now, we can conclude that the state of the system con-

verges to the largest invariant subset, i.e. invariant manifold

M = {S ∈ ℜn|LS = 0}, under decentralized control law of

speed adaptation(13).

If the graph is connected, the invariant manifold M implies

that, S are eigenvectors of L corresponding to the single zero

eigenvalue from Lemma 2. In another word, S belong to span

{~1} and M = {S ∈ ℜn|s1 = s2 = . . . = sn}.

Step4: We use LaSalle’s invariance principle [19] to

concatenate the two previous convergence properties, since

our system can be considered as autonomous.

Let Ω = ℜ2. The first and second step of the proof showed

that every solution starting in Ω asymptotically converges

to the invariant {Ωpath ∩ Ωv}. The third step showed that

the largest invariant set of {Ωpath ∩ Ωv}, is the invariant

manifold M . Therefore, every bounded solution starting in

Ω converges to invariant manifold M which indeed is s1 =
s2 = . . . = sn, as t tends to ∞.

Consequently, Vd = {va~1 − vbtanh[LS]} = va~1, which

means each robot will always have the same velocity, to keep

the same state value of si upon synchronizing the state S, so

the robots will be coordinated to follow the predefined paths

in in-line formation.

IV. SIMULATIONS

This section contains the results of simulation that il-

lustrate the performance obtained with the control laws

developed.

Four unicycle-type of wheeled mobile robots were re-

quired to follow four corresponding circumferences, which

are with the same center but different radii ri (i = 1, 2, 3, 4),

respectively, while keeping synchronization with in-line for-

mation. That means the normalization of the along paths

lengths ŝi = si/ri and normalization speed v̂i = vi/ri , will

be the same. Actually, these normalized parameters make the

truth, that the rotating speeds of virtual robots with respect to

the same center of circles(i.e.anglar frequencies), as well as

normalized lengths along paths, are synchronized. Therefore,

the in-line formation of multi-robot system is built.

The radius of the circumferences are r = [5, 10, 15, 20]m.

Four robots are with initial velocities of v0 = [2, 2, 2, 2]m/s.
The maxim and minium speed of the robots are, vdmax =
6m/s and vdmin = 0.1m/s. The initial positions are x =
[0, 0, 0, 0]m and y = [0,−5,−10,−15]m. The initial tracing

error vectors are x1 = [5, 5, 5, 5]m and y1 = [5, 5, 5, 5]m.

The initial error angles are ψ1 = [pi/4, pi/4, pi/4, pi/4].
The Laplacian matrix, corresponding to the communica-

tion topology of the multi-robot system, is

L = D −A =









2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2









As illustrated in figure 3, the along path lengths of differ-

ent robots converge to the same normalized value. The speed

converge to the desired speed profile Vd = [1, 2, 3, 4]m/s, as

illustrated in figure 4. The normalized errors sij (= ŝi− ŝj)
and vij (= v̂i− v̂j) are illustrated in figure 5 and 6, decaying

to 0 respectively.

Fig. 3. Coordinated path following in in-line formation.
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Fig. 4. Coordinated speeds in in-line path following.

Fig. 5. Normalized along path errors in in-line path following.

V. CONCLUSIONS AND FUTURE WORKS

The paper addressed the problem of coordinated path

following of multiple robots. There are two-layer controllers

for each robot, decoupled in geometric task and dynamic

speed adapting task. One is the individual path following

controller, which drives the robot converging to the paths,

with a helmsman-like behavior embedded in heading refer-

ence design. The other is the controller for coordination in

global sense, which is realized by means of decentralized

speed adaptation. The minium communication variables is

requested here, and the communication topology is not

necessarily all-to-all. A formal proof of convergence for

each (individual/coordinated path following) controller is

derived in detail, and simulations illustrated the efficacy of

the solution proposed. Further work will address the case

where multiple robots are required to following generalized

spatial paths. Switching topology and time delays inside the

communication network are also of interest to be integrated

into coordinated path following.
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