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ABSTRACT

This paper addresses the problem of recovering an image
degraded by a linear operator and corrupted with an additive
Gaussian noise with a signal-dependent variance. The con-
sidered observation model arises in several digital imaging
devices. To solve this problem, a variational approach is
adopted relying on a weighted least squares criterion which
is penalized by a non-smooth function. In this context, the
choice of an efficient optimization algorithm remains a chal-
lenging task. We propose here to extend a recent primal-dual
proximal splitting approach by introducing a preconditioning
strategy that is shown to significantly speed up the algorithm
convergence. The good performance of the proposed method
is illustrated through image restoration examples.

Index Terms— preconditioning, convex optimization,
image restoration, denoising, deconvolution, total variation,
regularization.

1. INTRODUCTION

In many image processing tasks such as denoising, inpainting
and deblurring, one has to solve an inverse problem where
an image x̂ needs to be estimated from observed data y re-
lated to the original image x through a linear model and some
noise corruption process. An efficient strategy to address this
problem is to define x̂ as a minimizer of an appropriate cost
function. More specifically, we will focus on the following
formulation:

minimize
x∈H

(f(x) = h(x) + g(x)) , (1)

where H is the image space, h is the so-called data fidelity
term, and g is a regularization function incorporating a pri-
ori information so as to guarantee the stability of the solution
w.r.t. the observation noise. In this paper, H is assumed to
be a real separable Hilbert space, h is a convex and differen-
tiable function fromH to R, and g belongs to the class Γ0(H)
of lower semicontinuous, proper, convex functions fromH to
(−∞,+∞].

Iterative optimization methods must generally be em-
ployed to solve (1). Starting from an initial guess x0, these
algorithms generate a sequence of updated estimates (xk)k>0

until a sufficient accuracy is reached. In the case of large scale
optimization problems such as those encountered in image
restoration, one major concern is to find an optimization
algorithm able to deliver reliable numerical solutions in a
reasonable time.

The primal-dual proximal splitting algorithm which was
recently proposed in [1] allows us to solve (1) for any Lips-
chitz differentiable function h and for arbitrary linear opera-
tors arising in the expression of g. This algorithm can deal
with a non-smooth function g, while not requiring any inver-
sion of the involved linear operators. It is thus characterized
by a low computational cost per iteration. However, this ad-
vantage is sometimes counterbalanced by a slow convergence.
In the context of descent methods for smooth convex opti-
mization, an efficient way to accelerate the convergence is to
transform the space of original variables into a space in which
the Hessian of the cost function has more clustered eigenval-
ues. This transformation is performed by multiplying, at each
iteration, the search direction by a so-called preconditioning
matrix that approximates the inverse of the Hessian [2, 3].
Recently, similar preconditioning techniques for non-smooth
convex optimization have been considered in the case of the
algorithm in [4], leading to significant acceleration of its con-
vergence [5].

In this paper, we introduce a new preconditioned primal-
dual splitting algorithm, which generalizes the algorithm in
[1], and we give conditions under which its convergence
is guaranteed. The proposed algorithm has the ability to
solve (1) under weaker assumptions on h and g than those
in [5]. Moreover, we show that this results in an efficient
minimization method for a penalized weighted least squares
problem arising in the context of image restoration when
the data are corrupted with an additive Gaussian noise with
signal-dependent variance. The target application is of par-
ticular interest since this kind of noise is encountered in
real-world digital imaging devices having CMOS or CCD
sensors [6, 7, 8].



The rest of this paper is as follows: In Section 2, we de-
scribe the proposed preconditioned primal-dual splitting al-
gorithm and investigate its convergence properties. Section 3
addresses the application of this algorithm to the restoration
of images degraded by a blur and an additive white Gaussian
noise, the variance of which is an affine function of the sig-
nal. Numerical results illustrating the superiority of the pro-
posed preconditioned algorithm with respect to its non pre-
conditioned version, are provided in Section 4. Finally, some
conclusions are drawn in Section 5.

2. PROPOSED OPTIMIZATION METHOD

2.1. Convex optimization tools

Let us introduce some notations which will be useful in the
sequel. First, we define the weighted norm

(∀x ∈ H) ‖x‖R = 〈x|Rx〉1/2 , (2)

where R is some positive definite self-adjoint linear operator
fromH toH. The associated scalar product reads:(

∀(x,x′) ∈ H2
)

〈x|x′〉R = 〈x|Rx′〉 . (3)

The proposed proximal splitting method makes use of the
concepts of conjugate function and proximity operator which
are recalled below.

Definition 1. Let ψ be a function in Γ0(H).

(i) The conjugate of ψ in the Hilbert space (H, ‖.‖R) is
defined as

ψ∗R : H → [−∞,+∞] : υ 7→ sup
ξ∈H

(〈ξ|υ〉R − ψ(ξ)) .

(ii) For every ξ ∈ H, the minimization problem

minimize
π∈H

ψ(π) +
1

2
‖ξ − π‖2R,

admits a unique solution, which is denoted by proxR,ψ(ξ).
The so-defined function proxR,ψ : H → H is the prox-
imity operator of ψ in the Hilbert space (H, ‖.‖R).

In the particular case when R reduces to the identity op-
erator, the usual notation ψ∗ (resp. proxψ) will be used for
the conjugate (resp. the proximity operator) of ψ.

2.2. Minimization problem

Let (Gj)1≤j≤J be some real Hilbert spaces. We consider con-
vex optimization problems of the form (1) where h is convex
and differentiable with a µ-Lipschitzian gradient∇h for some
µ ∈ (0,+∞) and g takes the form

g(x) = g0(x) +

J∑
j=1

gj(Ljx), (4)

with g0 ∈ Γ0(H), and, for all j ∈ {1, . . . , J}, gj ∈ Γ0(Gj)
and Lj : H → Gj is a non-zero bounded linear operator.
Moreover, we make the following assumption:

Assumption 1. Problem (1) has at least one solution and one
of the following statements holds.

1. For every j ∈ {1, . . . , J}, gj is real-valued.

2. H and (Gj)16j6J are finite-dimensional, and there ex-
ists x ∈ ri dom g0 such that, for every j ∈ {1, . . . , J},

Ljx ∈ ri dom gj , (5)

where ri dom gj denotes the relative interior of the do-
main of function gj .

2.3. Preconditioned primal-dual splitting algorithm

We propose the following preconditioned primal-dual prox-
imal splitting method to solve the considered optimization
problem.

Algorithm 1 Preconditioned M+L FBF algorithm.
Let (γk)k∈N be a sequence of (0,+∞).
Initialization:
Let x0 ∈ H, and, for every j ∈ {1, . . . , J}, let vj,0 ∈ Gj
Iterations:
For k = 0, . . .

y1,k = xk − γkQ
(
∇h(xk) +

∑J
j=1L

∗
jvj,k

)
p1,k = proxQ−1,γkg0

(y1,k)
For j = 1, . . . , J
y2,j,k = vj,k + γkRjLjxk
p2,j,k = proxR−1

j ,γkg∗j
(y2,j,k)

q2,j,k = p2,j,k + γkRjLjp1,k
vj,k+1 = vj,k − y2,j,k + q2,j,k.

q1,k = p1,k − γkQ
(
∇h(p1,k) +

∑J
j=1L

∗
jp2,j,k

)
xk+1 = xk − y1,k + q1,k.

Hereabove, Q is a positive definite self-adjoint linear op-
erator from H to H, and, for every j ∈ {1, . . . , J}, Rj is
a positive definite self-adjoint linear operator from Gj to Gj .
WhenQ andRj are identity operators, we recover the Mono-
tone+Lipschitz Forward Backward Forward (M+L FBF) al-
gorithm, the convergence properties of which are analysed in
[1]. The convergence of Algorithm 1 for an arbitrary choice
of preconditioning operators is guaranteed by the following
result:

Theorem 1. For every k ∈ N, let the step-size γk be chosen
in [ε, (1− ε)/τ ] where ε ∈ (0, 1/(τ + 1)),

τ = µ(Q) +

√√√√ J∑
j=1

‖R1/2
j LjQ1/2‖2, (6)



and µ(Q) is a Lipschitz constant of ∇
(
h ◦Q1/2

)
. Let

(xk)k∈N be a sequence generated by Algorithm 1. Under As-
sumption 1, there exists a solution x̂ to (1) such that (xk)k∈N
and (p1,k)k∈N converge weakly to x̂. Moreover, if g0 or h is
uniformly convex at x̂, then (xk)k∈N and (p1,k)k∈N converge
strongly to x̂.

3. APPLICATION TO DATA RECOVERY IN THE
PRESENCE OF SIGNAL-DEPENDENT NOISE

In this section, we consider an observed image y ∈ RN re-
lated to an original signal x ∈ [0,+∞)N through the generic
signal-dependent noise observation model:

(∀n ∈ {1, . . . , N}) yn = zn + σn(zn)wn, (7)

where, (zn)1≤n≤N = Hx, H ∈ RN×N is a matrix with
non-negative elements, (wn)1≤n≤N is a realization of a ran-
dom vector W ∼ N (0, IN ) (IN denotes the identity matrix
of RN×N ), and

(∀n ∈ {1, . . . , N}) σn : [0,+∞)→ (0,+∞)

zn 7→
√
αnzn + βn (8)

with αn > 0, βn > 0. The observation model (7)-(8) arises
in a number of real digital imaging devices [6, 7, 8] where the
acquired images are contaminated by signal-dependent Pho-
ton shot noise and by independent electrical or thermal noise.
Gaussian-dependent noise can also be viewed as a second or-
der approximation of Gaussian-Poissonian noise which is fre-
quently encountered in astronomy, medicine and biology [9].

In the context of inverse problems, the original signal can
be retrieved by solving (1) where H corresponds to the Eu-
clidean space RN and the data fidelity term is the following
weighted least squares criterion [10, 11]:

(∀x ∈ [0,+∞)N ) h(x) =
1

2

N∑
n=1

(yn − [Hx]n)
2

αn[Hx]n + βn
(9)

(for every n ∈ {1, . . . , N}, [Hx]n denotes the n-th compo-
nent of vectorHx). In addition, g is a regularization function
taking the form (4) which aims at enforcing some desirable
properties of the target image. Here, we will set, for every
j ∈ {1, . . . , J}, Gj = RNj . For instance, a sparsity prior
in an analysis frame with frame operator Lj is introduced by
taking gj equal to λj‖ · ‖1 with λj > 0. Block sparsity mea-
sures [12] can also be easily addressed in the proposed frame-
work. Another popular choice in image restoration is the total
variation penalization [13]. The above penalties can be con-
sidered individually (J = 1) or combined in a hybrid manner
(J > 1) [14]. Finally, to take into account the expected dy-
namic range of the output image, a possible choice is to take
g0 equal to ιAN : (xn)1≤n≤N 7→

∑N
n=1 ιA(xn), where ιA

designates the indicator function of a closed convex subset A
of [0,+∞), i.e. ιA(xn) = 0 if xn ∈ A, +∞ otherwise.

3.1. Properties of the weighted least squares criterion

We now mention some properties of the considered data fi-
delity term.

Proposition 1. For every symmetric positive matrix Q in
RN×N , the gradient of h ◦Q1/2 is µ(Q)-Lipschitz with

µ(Q) = ‖M1/2HQ1/2‖2, (10)

whereM = Diag(µ1, . . . , µN ) and, for every n ∈ {1, . . . , N},

µn =
(αnyn + βn)2

β3
n

. (11)

Note that h is only defined for non-negative values of its
arguments. It can be extended to the whole space RN by set-
ting

(∀x ∈ RN ) h(x) =
N∑
n=1

h(n)([Hx]n), (12)

where, for every n ∈ {1, . . . , N}, h(n) is a convex, twice-
differentiable function, whose expression is readily derived
from (9) for non-negative values of its arguments, and which
takes a quadratic form on (−∞, 0]. By appropriately choos-
ing the quadratic form, h is a convex differentiable function
with a Lipschitzian gradient on the whole space RN . Finally,
let us emphasize that the proximity operator of h does not
have a simple expression, so that the algorithm proposed in
[4] does not appear appropriate in this context.

3.2. Implementation of the proximity operators

Here, we provide some additional results concerning the com-
putation of the proximity operators in Algorithm 1.

Proposition 2. Assume that the preconditioning matrices are
such that

(∀j ∈ {1, . . . , J}) Rj = ρjINj , (13)
Q = Diag(κ1, . . . , κN ), (14)

with, for every j ∈ {1, . . . , J}, ρj ∈ (0,+∞), and, for
every n ∈ {1, . . . , N}, κn ∈ (0,+∞). Then, for every
j ∈ {1, . . . , J} and for every y2,j ∈ RNj ,

proxR−1
j ,γkg∗j

(y2,j) =

y2,j − γkρj proxγ−1
k ρ−1

j gj
(γ−1k ρ−1j y2,j). (15)

Moreover, if g0 is separable, i.e.

(
∀x = (xn)1≤n≤N ∈ RN

)
g0(x) =

N∑
n=1

g
(n)
0 (xn), (16)

then, for all y1 = (y1,n)1≤n≤N ∈ RN ,

proxQ−1,γkg0
(y1) = (prox

γkκng
(n)
0

(y1,n))1≤n≤N . (17)



Therefore, provided that diagonal preconditioning matri-
ces of the form (13)-(14) are used, our algorithm still benefits
from the low computational cost of its original non precondi-
tioned version.

4. SIMULATION EXAMPLES

We now demonstrate the practical performance of our method
on three image restoration scenarios. In our experiments, we
use the standard House, Peppers and JetPlane images of size
256 × 256 from http://sipi.usc.edu/database/.
To generate the observed images y, we degraded the original
images with a blur operator H . For each image, a different
convolution kernel was considered, namely a truncated Gaus-
sian of standard deviation 1 and size 7 × 7, a uniform kernel
of size 5× 5 and a uniform motion of length 7 and angle 20◦.
The images were further corrupted with the considered signal-
dependent additive noise with α = 0.1 and β = 50 (see (8)).
The restoration is performed by solving (1) where function h
is given by (9) and g = ιAN + λ tv where A = [0, 255], tv
denotes the total variation semi-norm and λ > 0 is the regu-
larization parameter. The quality of the results is evaluated
in terms of Signal to Noise Ratio (SNR) and Mean Struc-
tural SIMilarity index (MSSIM [15]). For each experiment,
parameter λ was adjusted to maximize the SNR between the
original and reconstructed images. In Figs. 1, 2 and 3, we dis-
play the degraded and reconstructed images and indicate the
associated SNR and MSSIM values.

Our choice of regularization term matches with (4) by
defining H = RN , g0 = ιAN , J = 1, N1 = 2N and

L1 =
[
(∆h)> (∆v)>

]>
, where ∆h ∈ RN×N (resp.

∆v ∈ RN×N ) corresponds to a horizontal (resp. verti-
cal) gradient operator, and, for every x ∈ RN , g1(L1x) =

λ
∑N
n=1

(
([∆hx]n)2 + ([∆vx]n)2

)1/2
. Since g0 is the indi-

cator function of a separable closed convex set, its proximity
operator reduces to a set of projections onto real intervals.
Moreover, the proximity operator of g1 is easily deduced
from the proximity operator of the `2 norm given in [16].
There remains to set the positive constants (κn)16n6N and
ρ1 arising in the expressions (13)-(14) of the precondition-
ing matrices. A good performance was obtained with the
empirical tuning{

κn = 1
2µn

(∀n ∈ {1, . . . , N}),
ρ1 = ‖L1‖2

‖L1Q1/2‖2 .
(18)

For such a choice, (6) becomes

τ =
1

2
‖M1/2HM−1/2‖2 + ‖L1‖. (19)

Let us emphasize that the spectral norms ‖L1Q
1/2‖ and

‖M1/2HM−1/2‖ can be efficiently computed using the
iterative algorithm in [17, Alg. 4].

Fig. 4 illustrates the variations of
(
f(xk) − f(x̂)

)
k

and(
‖xk − x̂‖

)
k

using the proposed preconditioned algorithm
and its original non preconditioned version, where the optimal
solution x̂ is precomputed using a large number of iterations.
Note that, since Q and (Rj)1≤j≤J have been chosen diago-
nal, both algorithms require a similar computational time per
iteration. For the three experiments, the preconditioning strat-
egy leads to a significant acceleration in terms of decay of
both criterion and residual error norm values. Typically, when
performing tests on an Intel Xeon, E5440 @ 2.83GHz using
a Matlab 7 implementation, a stabilized value of the SNR is
obtained after 85 s by the proposed method.

5. CONCLUSION

In the present paper, we have proposed a general precondi-
tioning strategy to improve the performance of the primal-
dual proximal splitting algorithm in [1]. We have established
some conditions on the algorithm parameters under which
the convergence is ensured. Moreover, we have shown that
the computational cost of the algorithm can be maintained
low by choosing diagonal preconditioners. These theoretical
contributions have led to the proposal of an efficient penal-
ized weighted least squares method for restoring an image
degraded by a linear operator and a signal-dependent noise.
Note that similar preconditioning strategies could be applied
to the proximal algorithms in [18, 19].
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