
HAL Id: hal-00733754
https://hal.science/hal-00733754

Submitted on 19 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Scheduling Problem of Self-Suspending Periodic
Real-Time Tasks

Yasmina Abdeddaïm, Damien Masson

To cite this version:
Yasmina Abdeddaïm, Damien Masson. The Scheduling Problem of Self-Suspending Periodic Real-
Time Tasks. RTNS 2012, Nov 2012, Pont-à-Mousson, France. pp.211–220. �hal-00733754�

https://hal.science/hal-00733754
https://hal.archives-ouvertes.fr

The Scheduling Problem of Self-Suspending

Periodic Real-Time Tasks∗

Yasmina Abdeddaïm and Damien Masson
Université Paris-Est

LIGM UMR CNRS 8049, ESIEE Paris
2 bld Blaise Pascal, BP 99, 93162 Noisy-le-Grand CEDEX, France

y.abdeddaim/d.masson@esiee.fr

September 19, 2012

Abstract

In this paper, we address the problem of scheduling periodic, possi-
bly self-suspending, real-time tasks. We show how to use model checking
to obtain both a necessary and sufficient feasibility test, and a schedula-
bility test for classical scheduling policies (RM, DM, EDF). When these
algorithms fail to schedule a feasible system, we show how to generate an
appropriate scheduler. We provide also a method to test the sustainability
of a schedule w.r.t execution and suspension durations. Finally, using a
model checking tool we validate our approach.

1 Introduction

A real-time task can suspend itself when it has to communicate, to synchro-
nize or to perform external input/output operations. Classical models neglect
self-suspensions, considering them as a part of the task computation time [24].
Models that explicitly consider suspension durations exist but their analysis is
proved difficult. In [29], the authors present three negative results on systems
composed by hard real-time self-suspending periodic tasks scheduled on-line.
We propose in this paper the use of model checking on timed automata to ad-
dress these three negative results: 1) the scheduling problem for self-suspending
tasks is NP-hard in the strong sense, 2) classical algorithms do not maximize
tasks completed by their deadlines and 3) scheduling anomalies can occur at
run-time. Result 1) means that there cannot exist a non-clairvoyant on-line
algorithm that takes its decisions in a polynomial time and always success-
fully schedules a feasible self-suspending task set. We so propose to use model
checking to generate off-line a feasible scheduler for each specific instances of
the problem, i.e. for each task sets. Result 2) implies that traditional on-line
schedulers are not optimal, whereas using our method to produce a schedule

∗ACM, (2012). This is the authors version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
the proceedings of RTNS 2012.

1

is an optimal approach. Result 3) points out that changing the properties of
a feasible task set in a positive way (e.g. reducing an execution or a suspen-
sion duration, extending a period) can affect its feasibility. To overcome this
problem, we consider the cases where both the execution and the suspension
times of each task are constrained within an interval of possible values. The
generated schedulers then have an important property: the feasibility of a task
set is sustainable w.r.t the execution and suspension durations.

We review some related work in Section 2. Section 3 presents the task
model, Section 4 introduces the timed automaton modeling a self-suspending
task, Section 5 exposes how to check the feasibility and the schedulability with
PFP (Preemptive Fixed Priority) and EDF (Earliest Deadline First), Section
6 shows how to prove the sustainability of a schedule and how to generate a
sustainable scheduler, Section 7 presents experiments and finally we conclude
in Section 8.

2 Related work

Recent works have shown the relevance of considering possible self-suspensions
for the scheduling problem of real-time tasks. For example, when an application
is executed on a multi-core or on a multi threaded architecture, significant sus-
pension intervals can occur due to tasks migrations [20] or to resource sharing
amongst several threads [18].

The problem can be partly addressed by the use of specific configurable
synchronization protocols [7], or by model transformations. For example, a
real-time task that suspends itself just once can be considered as two different
subtasks, the first one having a shorter deadline and the second one having a
release jitter. Analysis methods of such tasks with release jitter are proposed
in [31]. Additional mechanisms to enforce period and release have also been
proposed in [27,30].

However, considering the problem this way introduces a high degree of
pessimism. Pessimistic schedulability analysis of periodic tasks are detailed
in [16, 24, 26]. Their pessimism level has been assessed in [28]. Unfortunately,
the exact-case feasibility problem for self-suspending periodic tasks was shown
to be NP-hard in [29].

In [19], the authors prove that the critical scheduling instant characterization
is easier in the context of sporadic real-time tasks. They provide, for systems
scheduled under a rate-monotonic priority assignment rule (RM), a pseudo-
polynomial response-time test and propose slack enforcement policies to improve
the schedulability of tasks with self-suspensions. Our approach addresses the
problem for periodic tasks, and is not restricted to RM. Some other recent works
on self-suspending tasks focus on the multiprocessor context [22,23].

In this paper, we propose a timed-automata-based model to solve this schedul-
ing problem. The timed automata approach has been already used to solve job
shop scheduling problems [1, 10]. In [11], the authors present a model based
on timed automata to solve real-time scheduling problems, our model can be
seen as an extension of this model to take into account the possible suspensions
of a task. The principal benefits of the timed automata approach is first that
it proposes a model for both the scheduling and the formal verification of the
system, and second that it manages to handle open problems, where no results

2

. . .

C1

i E1

i C2

i C
mi

iri

Di

Ti

τi

Figure 1: A self-suspending task τi

are currently known.

3 Self-Suspending Task Model

We consider the problem of scheduling a set Σ = {τ1 . . . τn} of n synchronous
independent possibly self-suspending periodic tasks on one processor.

A self-suspending task is characterized by the tuple τi = (Pi, Ti, Di) where,
Ti the period of task τi, Di ≤ Ti its relative deadline and Pi its execution
pattern. An execution pattern is a tuple Pi = (C1

i , E1
i , C2

i , E2
i , ..., Cmi

i) defining
the durations of the computation and suspension steps where:

• mi is the number of computation steps separated by mi − 1 suspension
steps for task τi,

• Ck
i ∈ IN is the worst-case computation time of the kth computation step

of task τi,

• Ek
i ∈ IN is the worst-case duration time of the kth self-suspension step of

task τi.

If a task τi has no suspension at step k, then the computation steps k and
k + 1 are merged as a single step with computation time Ck

i = Ck
i + Ck+1

i .
This model and notations are inspired by existing literature on self suspending
tasks [19,22,24,29]. Figure 1 represents the self-suspending task model.

We call a task an uncertain task if the duration of its computation and
suspension steps takes values within an interval. The execution pattern of an
uncertain task becomes Pi = ([C1

i,l, C1
i,u], [E1

i,l, E1
i,u], [C2

i,l, C2
i,u], . . . [Cmi

i,l , Cmi

i,u])
s.t. for a task τi:

• Ck
i,l ∈ IN and Ck

i,u ∈ IN are respectively the lower and upper bounds of

the computation time of the kth computation step and

• Ek
i,l ∈ IN and Ek

i,u∈IN are respectively the lower and upper bounds of the

suspension duration of the kth suspension step.

Note that if C1
i,l = C1

i,u and E1
i,l = E1

i,u the task τi is a regular task.
A scheduling problem Σ = {τ1, ..., τn} is feasible, if there exits a schedule for

Σ where no task missed its deadline.

3

4 The Modeling step

In this section we present a timed automata based model for self-suspending
tasks. This model is an improvement of the one we proposed in [3]. We first
introduce the definition and the semantic for the basic timed automaton model.

4.1 Timed Automata

A Timed Automaton [4] is a model extending the classical automaton model
with a set of variables, called clocks. Clocks are real variables evolving syn-
chronously and continuously with time. Thanks to these variables, it is possible
to express constraints over delays between transitions. Indeed, each transition
of a timed automaton can be labeled by a clock constraint called guard which
controls the firing of a transition. Clocks can be reset to zero in a transition
and each location is constrained by a staying condition called invariant.

Formally, let X be a set of real variables called clocks and C(X) the set
of clock constraints φ over X generated by φ ::= x♯c | x − y♯c | φ ∧ φ where
c ∈ IN , x, y ∈ X , and ♯ ∈ {<,≤,≥, >}. A clock valuation is a function
v : X → IR+ ∪ {0} which associates to every clock x its value v(x). Given a
value d ∈ IR we write v + d for the clock valuation associating with clock x the
value v(x) + d. If r is a subset of X , [r = 0]x is the valuation v′ such that
v′(x) = 0 if x ∈ r, and v′(x) = v(x) otherwise.

Definition 1 (Timed Automaton). A timed automaton (TA) is a tuple A =
(Q, q0,X , I, ∆, Σ) where Q is a finite set of states, q0 is the initial state, X is
a finite set of clocks, I : Q→ C(X) is the invariant function, ∆ ⊆ Q× C(X)×
Σ× 2X ×Q is a finite set of transitions and Σ is an alphabet of actions.

A configuration of a timed automaton is a pair (q, v) where q is a state and
v a vector of clock valuations. The semantic of a timed automaton is given as
a timed transition system with two kinds of transitions between configurations
defined by the following rules:

• a discrete transition (q, v)
a
−→ (q′, v′) where there exists δ = (q, φ, a, r, q′) ∈

∆ such that v satisfies φ and v′ = [r = 0]x,

• a timed transition (q, v)
d
−→ (q, v + d1) with d ∈ IR+, where v and v + d1

satisfying I(q) the invariant of state q. We note 1 the unit dim(X) vector
(1 . . . 1).

Timed transitions represent the elapse of time in a state, and discrete tran-
sitions represent the ones between states. A timed transition is enabled if clocks
valuations satisfy the invariant of the state and a discrete one is enabled if clocks
valuations respect the guard on the transition. Then, we define a run in a timed
automaton as a sequence of timed and discrete transitions.

A network of timed automata is the parallel composition of a set of timed
automata. The parallel composition use an interleaving semantic where syn-
chronous communication can be done using input actions denoted a? and output
actions denoted a!.

Note that this basic model can be extended to allow integer bounded vari-
ables whose values can be tested and assigned. However, a timed automa-
ton augmented with a set V = {Vi . . . Vn} of bounded variables can be trans-

4

releasei?

di ≤ Di

pi := 0

proc = 0

proc = 0

exec?

exec?

releasei!

pi ≤ Ti

di = Di

pi = Ti

releasei!
pi := 0

prsi := new, prtprsi := i
exec?

di = Di

acti

inii

prei

di ≤ Di

stopi

prsi := 0, proc := 1
wi := wi + wprsi

ci ≤ wi

di ≤ Di

exei

di = Di

suspi
di ≤ Di

wi := C
j
i , ci := 0, j := j + 1

ci = E
j
i

ci ≤ E
j
i

wi := C
j
i ,di := 0

j := 1

di = Di

ci := 0

new := i

startprti !
proc := 0
ci := 0

ci := 0

ci = wi, j < mi

exec!, proc = 0

proc := 1

ci = wi, j = mi

startprti !
proc := 0

starti?, proc = 0

pi ≤ 0

pi = 0

Figure 2: Periodic Self-Suspending Task Automaton

formed into a time automaton as defined in Definition 1 where the set of states
Q = Q× [l1, u2]× . . .× [ln, un] where [li, ui] is the domain of variable Vi.

4.2 Self-suspending Timed Automaton

We model a self-suspending task τi = (Pi, Ti, Di) using a timed automaton Ai

as shown in Figure 2. The automaton Ai has two clocks {ci, di} and a set
Q = {inii, acti, exei, prei, suspi, stopi} of states. A second timed automaton Ti

is used to model the periodicity of the task. This automaton sends an action
releasei every period Ti. When a task is released, the automaton Ai captures
the action releasei and moves from state inii to state acti. State acti is the
waiting state where the task is active but not yet executed. When a task starts
its execution, the automaton moves to state exei and the clock ci is reset to
zero. Note that using a guard proc = 1, a task can be executed only if the
processor is idle. The clock ci is used to measure the response time of the task

5

noted wi. Using an invariant ci ≤ wi on state exei, a task cannot stay more than
its response time in an execution state. When the task terminates (ci = wi),
the automaton moves either to state inii if the task was executing its last step
(j = mi), or otherwise (j < mi) to state suspi. State suspi is the state modeling
the suspension of a task. At step j, the task τi is suspended exactly Ej

i time

units, this is modeled using an invariant ci ≤ Ej
i and a guard ci = Ej

i on the
transition from state suspi to state acti.

In our model, a task can be preempted only if an other task is assigned to
the processor. This preempting task noted new can be a new instance of a
task or a task terminating its suspension step. Thus, the preemption of a task
synchronizes with the execution of an other task using the action exec!. When
the task τi is preempted, the automaton moves to state prei and the variable
prsi records the identifier of the preempting task. A task cannot resume if its
preempting task has not terminate yet, indeed, we are restricting ourselves to
fixed-job priority schedules. In a fixed-job priority schedule, when the relative
priority assignment between two jobs has been decided, it cannot change. EDF
is an example of fixed-job priority scheduling algorithm. Least Laxity First
(LLF) is a well known counter example.

Every termination of a task is synchronized using an action starti with the
resuming of the task it preempts (if this task exits). Then, when the preempted
task τi resumes, the response time of the preempting task prei is added to the
response time of τi.

When a task τi is activated, the clock di is reset to zero. If this clock reaches
the deadline of the task before its completion, the automaton moves to state
stopi.

Note that the proposed model is a basic timed automaton extended with a
finite set of integer bounded variables {new, prsi, prti, proc, j, wi}. These vari-
ables can be read, written, and are subject to common arithmetic operations.
As shown in the presentation of the model, the variables {new, prsi, prti} are
never incremented or decremented and represents instances of a task, thus they
are lower bounded by 1 and upper bounded by n. The variable proc is a boolean
variable indicating if the processor is idle or not. The variable j indicates the
step number of a task, this variable is settled to 1 in the transition from inii

to acti and never decreases, thus it is lower bounded by 1 and when the vari-
able reaches mi, the automaton moves to state inii, thus the variable is upper
bounded by mi. Finaly, wi measures the response time of a task τi. The variable
wi is initialized to Cj

i and never decreases, so it is lower bounded by Cj
i , this

case is reached if the task is not preempted. Variable wi is upper bounded by
Cj

i + Di. Indeed, in our model, if a task is preempted when the tasks resumes,
its responses time is augmented by the response time of its preempting task,
nowever, the duration of the responses times of all the preempting tasks cannot
exceed the deadline of the task τi, otherwise the clock di will reach the deadline
and the automaton moves and stays in state stopi.

6

5 Feasibility and Schedulability using Model Check-
ing

Model checking is a method for automatic verification where the system is mod-
eled using a formal model M and the correctness property is stated with a formal
specification language φ. Given a model M and a property φ, model checkers
are used to automatically decide whether M satisfied φ or not.

In this section, we present how we use CTL [17] model checking to test the
feasibility of a task set and its schedulability with PFP and EDF.

CTL properties are generated using the following grammar:

φ ::= p|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|AXφ|EXφ|AGφ|EGφ|A[φUφ]|E[φUφ]

where p is a set of atomic formulas. CTL formulas are interpreted on a transition
system s.t. the initial state s0 satisfies: AGφ iff in all the paths starting at s0

all the states satisfy φ, EGφ iff there exists a path starting at s0 where all the
states satisfy φ, AXφ iff in all the paths starting at s0 in the next state φ is
satisfied, EXφ iff there exits a path starting at s0 where in the next state φ
is satisfied, E[φ1Uφ2] iff there exists a path starting at s0 where φ1 is satisfied
until φ2 is satisfied and A[φ1Uφ2] iff for all the paths starting at s0 φ1 is satisfied
until φ2 is satisfied.

5.1 Feasibility

Let Σ = {τ1 . . . τn} be a finite set of self-suspending tasks. We associate to every
task τi a self-suspending automaton Ai. We note AP the parallel composition
of the automata A1,A2, . . . ,An. We add to our model a global clock t which is
never reset.

We consider a configuration ofAP as a tuple (q, v, v(t)) where q = (s1, . . . sn)
and v = (v(c1), v(d1), . . . v(cn), v(dn)) s.t. v(t) is the valuation of clock t and
∀i ∈ [1, n]:

1. si is a state of the automaton Ai,

2. v(ci), v(di) are the clocks valuations of ci and di respectively.

The configurations of the timed transition system of AP represent the possible
configurations of a task: active, executing, preempted, suspended, stopped.
Note that for the sake of clarity we omit to mention in a configuration the
values of the integer variables and the valuation of the period automaton clock.

The following proposition provides a feasibility test for the scheduling prob-
lem Σ = {τ1 . . . τn}.

Proposition 1 (feasibility). Let Σ = {τ1 . . . τn} be a set of self-suspending
tasks. Σ is feasible iff the network AP modeling Σ satisfies the CTL Formula 1

φ1 : EG¬(
∨

i∈[1,n]

stopi) (1)

Proposition 1 states that the self-suspending problem is feasible iff there
exists an infinite run ξ in AP where all the configurations satisfy the property

7

EG¬(
∨

i∈[1,n] stopi). We call ξ a feasible run. In other words, ξ is a run where
no configuration contains a state stopi.

The proposition is justified by the fact that in each timed automaton Ai,
the state stopi is reached iff the clock di reached the deadline Di. Suppose
that the scheduling problem Σ is feasible and Formula 1 is not satisfied. If the
problem is feasible, then there exists a schedule where all the instances of all
tasks never miss their deadline. This schedule corresponds in the self-suspending
automaton to a feasible run. This contradicts the hypothesis that Proposition
1 is not satisfied. Suppose now that Formula 1 is satisfied and the scheduling
problem is not feasible. If the formula is not satisfied, then all the infinite runs
are not feasible i.e all the infinite runs lead to a stopi state. This contradicts
the fact that the problem is feasible, the contradiction comes from the fact that
the automaton capture all possible behaviors of task instances.

An on-line scheduling algorithm can be obtained using a feasible run satisfy-
ing Formula 1 if one exists. To compute this algorithm, we first check Formula
1 to generate a feasible infinite run if one exists. Model checking for timed
automata is decidable but PSPACE-complete [5], however, in our approach,
the feasible run is computed off line. Then, given a feasible run of the net-
work AP , a schedule can be derived. This schedule defines the rules control-
ling when and how transitions between different configurations of a task occur.
This on-line scheduling algorithm can be computed as a scheduling function
FSched : {0 . . . t∗} → {1 . . . n} ∪ {ǫ} s.t. if:

1. FSched(t) = i ∈ {0 . . . n} then task τi is executing at time t,

2. FSched(t) = ǫ then the processor is idle at time t.

The time point t∗ is the valuation v(t) of the first configuration of ξ where
the task set is again in its initial configuration. This configuration is reached at
least at the hyper-period, the least common multiple of the periods of all tasks.
We then just have to repeat this algorithm to obtain an infinite schedule.

Note that using our model, a computed schedule can be a non work-conserving
one. Work-conserving schedules are ones where the processor can be idle only
if there is no ready task. Indeed, in the network AP , the processor can be idle
(FSched(t) = ǫ) if no task is active, but also if there exits an active but not
suspended task and no other task is in its preemption state. Scheduling the-
ory often implicitly addresses problems for work-conserving schedulers because
leaving the processor idle when tasks are ready seems to result in a resource
wasting. To produce work-conserving schedules, we use Formula 2 rather than
Formula 1 to compute the scheduling function FSched.

φ2 : EG¬
(

∨

i∈[1,n]

stopi

∨

i∈[1,n]

(

(acti ∧ di > 0 ∧ ci > 0)

∧

j 6=i∈[1,n]

((actj ∧ dj > 0 ∧ cj > 0) ∨ (suspj ∧ cj > 0)

∨(inij ∧ cj > 0))
)

)

(2)

Formula 2 forbids executions where an active task is not scheduled and the
processor is idle. Indeed, this formula is not satisfied if there exists a run

8

where a task τi is active since a time t > 0 (acti ∧ di > 0 ∧ ci > 0) and all
the other different tasks τj with j 6= i are not executed since a time t > 0
((actj ∧ dj > 0 ∧ cj > 0) ∨ (suspj ∧ cj > 0) ∨ (inij ∧ cj > 0)), in other words
Formula 2 is not satisfied if there is no work-conserving schedule.

5.2 Schedulability

To test schedulability according to a given a fixed-job priority scheduling policy,
one can model the scheduling policy in the CTL checked formula.

To test fixed priority (PFP) schedulability, we have to test if there exists a
feasible infinite run where some configurations are forbidden: the ones where a
task is executing while a greater priority task is not.

Proposition 2 (PFP Schedulability). Let Σ = {τ1 . . . τn} be a set of self-
suspending tasks sorted according to the priorities of the tasks. Σ is schedulable
according to PFP iff the network AP modeling Σ satisfies the CTL Formula 3.

φ3 : EG¬
(

∨

i∈[1,n−1]

∨

j∈[i+1,n]

(acti ∧ ci > 0 ∧ di > 0 ∧ exej)

∨

i∈[1,n−1]

∨

j∈[i+1,n]

(prei ∧ exej)
)

∧ φ2

(3)

Formula 3 states that the problem is schedulable according to PFP iff there
exists a feasible run where, in all the configurations, a task τj cannot be in its
execution state exej if a highest priority task τi (i < j) is active since a time
t > 0 (acti ∧ ci > 0 ∧ di > 0) or preempted (prei).

Using this approach, we can also test the EDF schedulability.

Proposition 3 (EDF Schedulability). Let be Σ = {τ1 . . . τn} a set of self-
suspending tasks. Σ is schedulable according to EDF iff the network AP modeling
Σ satisfies the CTL Formula 4.

φ4 : EG¬
(

∨

i∈[1,n]

∨

j 6=i∈[1,n]

(acti ∧ ci > 0 ∧ di > 0 ∧ exej ∧ pij)

∨

i∈[1,n]

∨

j 6=i∈[1,n]

(prei ∧ exej ∧ pij)
)

∧ φ2

(4)

pij is a state of an observer automaton reachable when di − dj > Di − Dj

with di and dj the deadline clocks of tasks τi and τj respectively.

Under the EDF scheduling policy, the processor is assigned to a task if it
is the closest to its deadline. Formula 4 states that the problem is schedulable
according to EDF iff there exists a feasible run where, in all the configurations,
a task cannot be in its execution state (exei) if a task τj with a closer deadline
(di − dj > Dj − Dj) is active since a time t > 0 (acti ∧ ci ∧ di) or preempted
(prei).

6 Sustainabability

The schedulability of a task set with a given algorithm is said sustainable w.r.t. a
parameter when a schedulable task set remains schedulable when this parameter

9

τ1

τ2

τ3

(a) EDF Feasible Schedule

τ1

τ2

τ3

(b) EDF Unfeasible if C3

1
= C3

1
− 1

τ1

τ2

τ3

(c) EDF Unfeasible if E2

1
= E2

1
− 2

Figure 3: Unsustainable EDF Schedule

10

is changed in a positive way. The sustainability is an important property since
it permits to study the worst case scenario. As mentioned in the introduction,
schedulability is not sustainable w.r.t execution and suspensions durations for
the self-suspending scheduling problem. As an example, let Σ = {τ1, τ2, τ3} be
a set of self-suspending tasks where τ1 = ((2, 2, 2), 6, 12), τ2 = ((2, 2, 2), 8, 9)
and τ3 = ((0, 2, 0), 10, 19). Figure 3(a) represents the work conserving EDF
schedule of interval [0, 20] for this problem. In Figures 3(b) and 3(c), one can
see that the diminution of either execution or suspension times leads to new
deadline misses for τ1.

In this section, we show how to prove that a task set is sustainable using
timed game automata.

A Timed game automaton (TGA) [25] is an extension of the time automa-
ton model where the set of transitions is split into controllable (∆c) and un-
controllable (∆u) transitions. This model defines the rules of a game between
a controller (mastering the controllable transitions) and the environment (mas-
tering the uncontrollable transitions). Given a timed game automaton and a
logic formula, solving a timed game consists in finding a strategy f s.t. a TGA
supervised by f always satisfies the given formula whatever are the actions cho-
sen by the environment. A strategy is formally a partial mapping from the set
of runs of the TGA to the set ∆c ∪ {λ} s.t. for a finite run ξ:

• if f(ξ) = e ∈ ∆c then the controller has to execute the transition e from
the last configuration of ξ,

• if f(ξ) = λ then the controller has to wait in the last configuration of ξ.

It has been shown that solving a timed game is a decidable problem [25].
In our task model, if a task is an uncertain task its execution and suspension

durations can be bounded within intervals. In the remaining of the paper, we
say that the schedulability is sustainable when the task set is feasible with all
the possible values in the intervals. By extension we say that an algorithm is
sustainable when the schedulability of a task set with this algorithm is sustain-
able.

To check sustainability, we introduce first a timed game automaton modeling
a game between the environment and a scheduler. The environment fixes the
execution and the suspension times of a task, and the scheduler decides to
execute or preempt a task.

6.1 Sustainable Schedulability w.r.t Duration of Suspen-
sion

Let us first consider the uncertain scheduling problem where the execution times
of a task are given as constants Cj

i representing the worst case execution times,
but the suspensions of a task are restricted to be bounded within an interval
[Ej

i,l, Ej
i,u].

A self-suspending task τi is modeled using a timed game automaton as rep-
resented in Figure 4, this model is almost similar to the timed automaton model
presented in Section 3.

Considering that the suspension durations are controlled by the environment,
the transition from state suspi to state acti is an uncontrollable transition, while
the start and preemption transitions are controllable ones fixed by the scheduler.

11

releasei?

di ≤ Di

proc = 0

proc = 0

exec?

exec? di = Di

prsi := new, prtprsi := i
exec?

di = Di

acti

prei

di ≤ Di

stopi

prsi := 0, proc := 1
wi := wi + wprsi

ci ≤ wi

di ≤ Di

exei

di = Di

suspi
di ≤ Di

wi := C
j
i , ci := 0, j := j + 1

j := 1

di = Di

ci := 0

new := i

proc := 1

exec!

startprti !
proc := 0
ci := 0

ci ≥ E
j

i,l

ci ≤ E
j
i,u

ci = wi, j < mi

proc := 0

proc = 0

ci = wi, j = mi

startprti !

wi := C
j
i ,di := 0, ci := 0

inii

starti?, proc = 0

ci := 0,di := 0

Figure 4: Self-Suspending Task TGA with Uncertain Suspensions. Uncontrol-
lable transitions are represented using dashed lines.

12

Using a guard ci ≥ Ej
i,l from state suspi to state acti and an invariant ci ≤ Ej

i,u

on state suspi, the duration of each suspension step j is no more fixed but can
have any possible value in the interval [Ej

i,l, Ej
i,u].

Proposition 4 (Sustainability). Let Σ = {τ1 . . . τn} be a finite set of uncer-
tain self-suspending tasks. A sustainable scheduling algorithm exists for Σ iff
there exists a strategy f s.t the timed game automata network AP modeling Σ
supervised by f satisfies the CTL Formula 5.

φ5 : AG¬(
∨

i∈[1,n]

stopi) (5)

The strategy f is called a scheduling strategy of Σ.

Proof. Let Σ be a finite set of uncertain self-suspending tasks and AP the timed
game automata network modeling Σ. Formula 5 states that there exists a strat-
egy function f s.t. for every configuration of AP and every possible suspension
duration, there is a way to avoid stopi states.
(⇒) Suppose that: (1) A sustainable scheduling algorithm exists for Σ and (2)
for every possible strategy f the network AP controlled by f does not satisfy For-
mula 5. If there exists a sustainable scheduling algorithm for Σ, then there exits
a feasible schedule S s.t. whatever are the suspension durations of each step j of
each task τi within the interval [Ej

i,l, Ej
i,u], the schedule remains feasible. This

feasible schedule defines a policy deciding at each possible configuration of the
task set to: execute a task, preempt a task, let the processor idle or stay in the
same configuration. Note that this schedule is a set of possible feasible schedules
corresponding to each possible duration of each suspension. According to the
fact that all the durations (execution and suspension) of tasks are integer and
considering synchronous activation of tasks, the set of possible configurations
of the task set is finite and corresponds to all the possible configurations in the
hyper period of the scheduling problem.

To formalize this policy, let us define the tuple (r, time) as the state of the
schedule S where:

1. r = (r1 . . . rn) is a vector with ∀i ∈ [1, n] ri is a possible configuration of
task τi: ri ∈ {{inactive∪j∈[1,mi]{activej , executionj , preemptedj , suspendedj}}
and,

2. time = (time1 . . . timen) is a vector with ∀i ∈ [1, n] timei = (time1i, time2i)
is a tuple where

(a) (i) time1i is the time delay since the task τi has terminate its last
execution step if ri = inactive (ii) time1i is the time delay since
the step j of task τi has been activated if ri = activej (iii) time1i

is the time delay since the task τi has been executing its step j if
ri = executionj or preemptedj (iiii) time1i is the time delay since
the step j of task τi has been suspended if ri = suspendedj .

(b) (i) time2i is the time delay since the step j of task τi has been
activated if ri = executionj or suspendedj or preemptedj and (ii) if
time2i is not defined time2i = time1i.

13

We formalized the scheduling policy as a partial mapping FS from the set of
state tuples {(r1, time1) . . . (rm, timem)} to {(r1, time1) . . . (rm, timem)} where
m is the number of tuple states and n is the number of tasks s.t if: FS((r, time))
= (r′, time′) then move from the configuration (r, time) of the schedule to the
configuration (r′, time′). This mapping is a partial mapping, because in some
configurations the schedule S do not have a policy but the configuration has to
move to a new one where a suspension has terminated.

Let us construct now a set of configurations QS = {(qi, vi)} of AP s.t. for
every possible state tuple (ri, timei) of the schedule S we associate a configura-
tion (qi, vi) of AP with qi = (qi

1 . . . qi
n, nbi

1 . . . nbi
n) where qi

j is the state of the

automaton of the task τj in the configuration qi, nbi
j is the step of the task τj in

the configuration qi and vi is the vector of clock valuations in the configuration
qi of the network AP s.t. ∀i, k if :

• ri
k = inactive then qi

k = inik, nbi
k = mk and vi(ck) = vi(dk) = time1i

k,

• ri
k = activej then qi

k = actk and nbi
k = j and vi(ck) = vi(dk) = time1i

k,

• ri
k = executionj then qi

k = exek and nbi
k = j, vi(ck) = time1i

k and
vi(dk) = time2i

k,

• ri
k = preemptedj then qi

k = prek and nbi
k = j, vi(ck) = time1i

k and
vi(dk) = time2i

k,

• ri
k = suspendedj then qi

k = suspk and nbi
k = j, vi(ck) = time1i

k and
vi(dk) = time2i

k.

The scheduling policy FS can be used to compute a scheduling strategy fS

that mimics the decisions of the sustainable schedule S.
The scheduling strategy fS is a partial mapping form the set of runs of AP to

the set {∆c, λ} where ∆c is the set of controllable transitions of AP . Let us note
qe the last configuration of a run ξ and (re, timee) the state tuple corresponding
to the configuration qe. The strategy fS is defined as follows:

• if FS((re, timee)) = (r′
e, time′

e) and r′
e = re then fS(ξ) = λ and

• if FS((re, timee)) = (r′
e, time′

e) and r′
e 6= re then fS(ξ) = tr ∈ ∆c where

tr is a controllable transition leading to the configuration corresponding
to the tuple state (r′

e, time′
e).

The strategy fS starts at the initial configuration of AP and then mimics the
decisions of the scheduler S, thus it cannot reach a configuration with no equiv-
alence in the set of tuples state of S knowing that the set of tuples represents
all the possible configurations of the task set.

According to the fact that S remains feasible whatever are the choices of
the environment no task will miss its deadline and knowing that a state stopi

is reached if a task mises its deadline, we conclude that if fS is used to execute
the network AP , none of the automata of AP will reach a state stopi, this
contradicts the hypothesis (2).
(⇐) Suppose now that: (3) No sustainable scheduling algorithm exists for Σ and
(4) there exists f a scheduling strategy of Σ. According to hypothesis (4), f is
a scheduling strategy of Σ, thus the network AP controlled by f never reaches a

14

configuration with a stop state. The strategy f is then a partial mapping from
the set of finite runs of AP to the set {∆c, λ} where ∆c is the set of controllable
transitions of AP i.e. the transitions representing an execution, a preemption,
an activation, a suspension or a termination of a task. For a finite run ξ:

• if f(ξ) = tr ∈ ∆c then the controller has to: execute, preempt, suspend
or terminate a task from the last configuration of ξ,

• if f(ξ) = λ then the controller has to wait in the last configuration of ξ i.e
continue the execution of a task or let the processor idle.

Using this stategy, one can compute a schedule as presented in Subsection
6.4. This schedule is feasible (it never reaches a state stop) whatever are the du-
rations of the suspensions, so this schedule is sustainable and thus it contradicts
the hypothesis (3).

Using Formula 6 rather than Formula 5 one can prove that there exits a
work-conserving sustainable scheduling algorithm. This Formula is similar to
Formula 2.

φ6 : AG¬
(

∨

i∈[1,n]

stopi

∨

i∈[1,n]

(

(acti ∧ di > 0 ∧ ci > 0)

∧

j 6=i∈[1,n]

((actj ∧ dj > 0 ∧ cj > 0) ∨ (suspj ∧ cj > 0)

∨(inij ∧ cj > 0))
)

)

(6)

6.2 Sustainable PFP Scheduler

Definition 2 (PFP Strategy). Let Σ = {τ1 . . . τn} be a set of self-suspending
tasks sorted according to the task priorities. A scheduling strategy f of Σ is
called a PFP strategy iff: if f(ξ) = e ∈ ∆c and e is a transition from state acti

to state exei, then the task τi is the highest priority active task.

Proposition 5 (PFP Sustainability). Let Σ = {τ1 . . . τn} be a set of self-
suspending tasks sorted according to the priorities of the tasks. A PFP work-
conserving algorithm is sustainable for Σ iff there exists a PFP strategy f s.t
the timed game automata network AP modeling Σ supervised by f satisfies the
safety CTL Formula 7.

φ7 : AG¬
(

∨

i∈[1,n−1]

∨

j∈[i+1,n]

(acti ∧ ci > 0 ∧ di > 0 ∧ exej)

∨

i∈[1,n−1]

∨

j∈[i+1,n]

(prei ∧ exej)
)

∧ φ6

(7)

As for Formula 3, in Formula 7, the configurations where a task τj is in
its execution state exej and a highest priority task τi (i < j) is active since a
time t > 0 (acti ∧ ci > 0 ∧ di > 0) or preempted (prei) are forbidden. If a
strategy f satisfies Formula 7 then it is a PFP strategy because this strategy

15

cannot choose a transition from a state acti to a state exei if τi has not the
highest priority among the active tasks, otherwise a forbidden state is reached.
In addition to the fact that the produced strategy is a PFP one, this strategy is
a work-conserving strategy where no configuration reaches a stop state because
of the part φ6 of the Formula. So, using this work-conserving PFP strategy we
can compute a PFP work-conserving algorithm. The policy of this algorithm
is to execute the highest priority task if a new task is active and no task will
misses its deadline because the strategy using the same policy never reached
a stop state whatever are the suspension durations. Thus, this algorithm is
sustainable.

In the other sens, if a work-conserving PFP algorithm S is sustainable (w.r.t
given intervals of possible suspension durations) we can derive fP F P a PFP
work-conserving strategy satisfying Formula 7. This strategy fP F P is a partial
mapping from the set of finite runs of AP to the set {∆c, λ} where ∆c is the set
of controllable transitions of AP . Let qe be the last configuration of ξ:

• if a set of tasks is active in qe then fP F P (ξ) = tr ∈ ∆c where tr is the
controllable transition reaching the execution state of the highest priority
task among all the active or executing tasks,

• if no task is active in qe then fP F P (ξ) = λ.

Note that all the other controllable transitions are taken when they are
enabled because of the guards and invariants constraining these transitions.

This strategy satisfies Formula 7 because (1) due to the definition of the
strategy fP F P , states forbidden by Formula 7 are not reached and forbidden
states cannot be reached when the environment fixes the termination of a sus-
pension, this can only create new configurations with a new active task, (2) if a
task is active and has the highest priority, the defined strategy fP F P moves to
the execution state of this task, so the strategy is work conserving because no
idle times are inserted if a task is active and (3) no configuration with a state
stop is reached because no task will mises its deadline whatever are the duration
of suspension because the scheduling algorithm S fixing the choices of fP F P is
sustainable.

As a remark, the results of this subsection can be extended to EDF algorithm
by fixing the priorities according to an EDF policy instead of fixed priority
policy.

6.3 Sustainable Schedulability w.r.t Duration of Suspen-
sion and Execution

Let us consider now an uncertain task where both execution and suspension
durations can be uncertain. In this case, the model of Section 3 is no more
applicable. More precisely, the modeling of preemption is no more valid.

Indeed, the execution step duration is not known before the execution of
the system but fixed by the environment. Therefore, the response time wi of
a preempted task τi can not be calculated, since we do not know precisely the
duration of its preempting task. Preemption could however be modeled using
stopwatch automata, a model where clocks can be stopped. In this model, the
clock ci is used to measure the duration of a task, and if the task is preempted,

16

releasei?

di ≤ Di

proc = 0

exec?

exec? di = Di
acti

inii

prei

di ≤ Di

stopi

di = Di

suspi
di ≤ Di

j := 1

di = Di

proc := 1

exec!

ci ≥ E
j

i,l

ci ≤ E
j
i,u

di := 0

ci := 0, j := j + 1

ci := 0

exec?

di = Di

ci = 1

ci ≤ 1
di ≤ Di

xi := xi + 1

ci := 0

xi ≥ C
j

i,l − 1

proc := 0
ci := 0

xi < C
j
i,u − 1, ci = 1

xi < C
j
i,u, ci > 0

ci := 0, proc := 1

xi := 0

j = mi

proc = 0

proc = 0

xi ≥ C
j

i,l − 1, j < mi

proc := 0

ci := 0

exei

proc := 0

Figure 5: Uncertain Self-Suspending Task TGA. Uncontrollable transitions are
represented using dashed lines.

17

the clock ci is stopped. Unfortunately, model checking is known to be undecid-
able on this model in the general case [14,15].

Thus we propose a new model to deal with preemption where the duration
of a task is discretized as shown in Figure 5.

In this timed game automaton, to compute the execution time of a task
we use the clock ci plus an integer variable xi as follows. The automaton can
stay in the execution state exei exactly one time unit and the variable xi keeps
track of how many time units have been performed. This is done using an
invariant ci ≤ 1 on state exei and a loop transition that increments xi. The
guard xi < Cj

i,u−1 on the loop transition restricts the duration of an execution

step j to be upper bounded by Cj
i,u. The automaton can leave state exei if the

guard xi < Cj
i,l− 1 is satisfied, thus the duration of an execution step j is lower

bounded by Cj
i,l.

The termination of execution steps is controlled by the environment, hence
the transitions from exei to suspi and from exei to inii.

6.4 Sustainable Scheduler

If a task set Σ has been proven to be not PFP nor EDF sustainable, we can
nevertheless define a sustainable scheduling algorithm if one exits.

Given a network of timed game automata modeling Σ, finding a sustainable
scheduling algorithm consists in the construction of a feasible strategy if one
exists. Such strategy is finite [12], but can be very huge since the upper bound
complexity of reachability games on timed game automata has been proved to
be EXPTIME [12].

The strategy can be stored as a table of possible reachable configurations,
where possible transitions are mentioned for every configuration. The set of
configurations is infinite but a finite representation of the state space of the
transition system can be obtained using clock zones [9, 13].

Then an on-line sustainable scheduler is an algorithm that executes the pre-
computed strategy.

This is formalized by Algorithm 1 where:

• q0 = (ini1, . . . inin) is the initial configuration,

• qj
i a state of the automaton of task τj in the configuration (qi, vi, ti),

• ti is the the valuation of a global clock t in the configuration (qi, vi, ti),

• ∆j
c is a controllable transition in the automaton of task τj .

According to the actual configuration, the scheduling algorithm can decide 1)
to stay in this configuration, i.e to continue the execution of a task or let the
processor idle (lines 3-5) ; or 2) to execute, preempt or suspend a task (lines
6-17). Finally when an execution or a suspension terminates, the algorithm
computes the new configuration (lines 18-24).

7 Experiments

We used Uppaal [21] and Uppaal-Tiga [6] to implement our model [2]. We
present in this section two examples. The first is composed by two regular self-

18

Algorithm 1 Scheduling Strategy Algorithm

1: (q, v, v(t))← (q0, v0, t0), t0 ← 0
2: while q 6= q0 or v(t) = 0 do

3: while f((q, v, v(t))) = λ or no task finished or no end of suspension do

4: Wait: increase v and v(t)
5: end while

6: if f((q, v, v(t))) = tr ∈ ∆j
c then

7: (qk, vk, tk) is the successor of (q, v, v(t)) while taking the transition tr
8: if ∃qj

k 6= qj and qj
k = exej then

9: execute task τj at time tk

10: end if

11: if ∃qj
k 6= qj and qj

k = prej then

12: preempt task τj at time tk

13: end if

14: if ∃qj
k 6= qj and qj

k = suspj then

15: suspend task τj at time tk

16: end if

17: end if

18: if a task τj has terminate an execution step then

19: (qk, vk, tk) is the configuration (q, v, v(t)) where qj
k ← inij , vk(cj)← 0

20: end if

21: if a task τj has terminate a suspension step then

22: (qk, vk, tk) is the configuration (q, v, v(t)) where qj
k ← actj , vk(cj)← 0

23: end if

24: (q, v, v(t))← (qk, vk, tk)
25: end while

19

���� ����

��
��
��
��

�
�
�

�
�
�
�
�
�
�

��
��
��
��

05 10 15 200 35 4025 30

τ2

τ1

DLM!

(a) RM−1: unfeasible

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ���
�
�
�

�
�
�

�
�
�

05 10 15 200 35 4025 30

τ1

τ2

DLM!

(b) RM : unfeasible

���� ���� �� ������ ���� �� ������ ���� �� ��

���� ���� �� ���� �� �� ������ ������ ���� �� ��

�
�
�
�

�
�
�

�
�
�

05 10 15 200 35 4025 30

τ1

τ2

DLM!

(c) EDF : unfeasible

���� ���� �� ������ ���� �� �� ��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��

��
��
��
��

����

��
��
��
��

����

�
�
�
�

�
�
�
�

05 10 15 200 35 4025 30

τ1

τ2

(d) T AAS: feasible

Figure 6: Feasible schedule exists but neither pfp or EDF is able to find it

suspending tasks. The second is composed by three uncertain self-suspending
tasks. Fig. 6 and Fig. 7 present the obtained results. White squares represent
suspension durations and hatched ones execution durations.

7.1 Experiment 1 (Regular tasks)

In this experiment, we have modeled the system Σ = {τ1, τ2} with τ1 = (0,
(1, 4, 1), 7, 7) and τ2 = (0, (1, 3, 1), 6, 6). We have first used Formula 3 with
RM priority assignments. The property is not verified, this result permits us
to conclude that the task set is not schedulable according to RM. The same
result is obtained with the inversed priority assignment. Sub-Fig. 6(a) and 6(b)
validate these results: we see that τ2 effectively misses a deadline at time 6 with
inverse RM, and that τ1 misses a deadline at time 7 with RM. We have then
used Formula 4 to test the feasibility with EDF. The property is not verified,
this can be confirmed by Sub-Fig. 6(c) that shows that τ2 misses a deadline at
time 42 under EDF. Finally we have used Formula 1 to test the unconstrained

20

feasibility. The property is verified, thus a feasible schedule exists for this task
problem. Using the produced feasible scheduling run, we are effectively able
to produce the schedule presented by Sub-Fig. 6(c) (TAAS stands for Timed-
Automata-Assisted Scheduler).

7.2 Experiment 2 (uncertain tasks)

In this experiment, we have modeled the system Σ = {τ1, τ2, τ3} with τ1 =
(0, (2, 2, 4), 10, 10), τ2 = (0, (2, 8, 2), 20,
20) and τ3 = (0, (2), 12, 12), where τ1 has the highest priority and τ3 the low-
est. We first have verified Formula 3: the property is verified, the system is
then feasible with a fixed priority scheduler. We then have modeled the system
Σ∗ = {τ∗

1 , τ2, τ3}, with τ∗
1 = (0, ([1, 2], [1, 2], 4), 10, 10). We have verified For-

mula 7 for fixed priority schedulers on our model, the property is not verified.
We conclude that feasibility with a fixed priority scheduler is not sustainable for
this system. Sub-figure 7(a) presents the schedule obtained with Σ. Sub-figure
7(b) presents the schedule with Σ∗ where the third instance of τ1 executes with
the pattern P1 = (C1

1 /2, E1
1/2, C2

1). It results in a deadline missed for τ3 at time
49. However, we have tested Formula 5 and Formula 6. The outcome is positive
in both cases: valid schedules restricted and non restricted to work-conserving
ones. The feasibility of the system is then sustainable (within the intervals
[Cj

i,l, Cj
i,u] and [Ej

i,l, Ej
i,u]) in the general case and with a work-conserving sched-

uler. Indeed, there exists a simple way to enforce the sustainability: forcing the
system to insert idle times when a task completes earlier than it was supposed
to. Fig. 7(c) shows the resulting schedule of this strategy. Fig. 7(d) presents
a work-conserving feasible schedule which can be obtained using the strategy
generated by Uppaal-Tiga.

8 Conclusion

In this paper, we presented a method to solve the scheduling problem of pe-
riodic self-suspending tasks. We provided a feasibility test and schedulability
tests with PFP and EDF. We proposed a method to test the sustainability of
schedules w.r.t the execution and suspension durations. This is done both with
the restriction of work-conserving schedules and in the general case. If the prob-
lem is unfeasible with PFP and EDF but proved to be feasible, our approach
permits to generate a scheduler. The approach has been tested using the tools
Uppaal and Uppaal-Tiga.

As future work, we first have to implement the scheduler generation and to
formalize the memory complexity of generated on-line schedulers. We also have
to extend our model to consider multiprocessor platforms and tasks sporadic
activation and compare the results with the ones presented in [19]. Moreover,
in this paper we supposed a synchronous activation of the tasks at time instant
0. If we consider task systems with offsets, it has to be proved that cyclicity
result for such systems presented in [8] still holds for self-suspending tasks. The
proof given by the authors to extend the property to interacting tasks system [8,
Section 4.3] seams cover the self suspending case, providing a redefinition of the
function Waiting(t) as the sum of remaining computation times of tasks released
before or at t and being under a self-suspension. Anyway, Algorithm 1 and proof

21

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� �� �� ��

���� ���� ���� ���� ����

τ1

τ2

τ3

10 20 30 40 50 600

(a) PFP policy: feasible

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� ��

���� ���� ����

��
��
��
��
��
��
��
��

����

����

���� ��

��

τ1

τ2

τ3

10 20 30 40 50 600

(b) But not sustainable

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� ��

���� ���� ��������

�
�
�
�

�� ��

����

�
�
�
�

��
��
��
��

��
��
��
��

τ1

τ2

τ3

10 20 30 40 50 600

(c) Sustainability can be enforced

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� ��

���� ���� ����

��
��
��
��

����

��
��
��
��

�� ����

��

τ1

τ2

τ3

10 20 30 40 50 600

(d) TAAS finds a work-conserving schedule

Figure 7: Sustainability

22

of Proposition 4 have to be adapted to extend this work to tasks with offset.

References

[1] Y. Abdeddaïm, E. Asarin, and O. Maler. On optimal scheduling under
uncertainty. In TACAS, 2003.

[2] Yasmina Abdeddaïm and Damien Masson. Uppaal implementations. http:

//igm.univ-mlv.fr/~masson/Softwares/SelfSuspending.

[3] Yasmina Abdeddaïm and Damien Masson. Scheduling Self-Suspending Pe-
riodic Real-Time Tasks Using Model Checking. In WIP RTSS, 2011.

[4] Rajeev Alur and David Dill. Automata for modeling real-time systems. In
ICALP, 1990.

[5] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[6] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime.
Uppaal-tiga: Time for playing games! In CAV, 2007.

[7] Ya-Shu Chen and Li-Pin Chang. A real-time configurable synchronization
protocol for self-suspending process sets. Real-Time Syst., 42(1-3):34–62,
2009.

[8] Annie Choquet-Geniet and Emmanuel Grolleau. Minimal schedulability
interval for real-time systems of periodic tasks with offsets. Theor. Comput.
Sci., 310(1-3):117–134, January 2004.

[9] David L. Dill. Timing assumptions and verification of finite-state concur-
rent systems. In Automatic Verification Methods for Finite State Systems,
1989.

[10] Ansgar Fehnker. Scheduling a steel plant with timed automata. In RTCSA,
pages 280–286, 1999.

[11] Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. Task au-
tomata: Schedulability, decidability and undecidability. Inf. Comput.,
205(8):1149–1172, 2007.

[12] Thomas A. Henzinger and Peter W. Kopke. Discrete-time control for rect-
angular hybrid automata. Theor. Comput. Sci., 221:369–392, June 1999.

[13] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. In LICS, 1992.

[14] K.Cerans. Algorithmic Problems in Analysis of Real Time System Specifi-
cations. PhD thesis, University of Latvia, 1992.

[15] Yonit Kesten, Amir Pnueli, Joseph Sifakis, and Sergio Yovine. Decidable
integration graphs. Inf. Comput., 150(2):209–243, 1999.

23

[16] In-Guk Kim, Kyung-Hee Choi, Seung-Kyu Park, Dong-Yoon Kim, and
Man-Pyo Hong. Real-time scheduling of tasks that contain the external
blocking intervals. In RTCSA, 1995.

[17] D. Kozen, editor. Logics of Programs, Workshop, volume 131 of Lecture
Notes in Computer Science. Springer, 1982.

[18] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar. Coor-
dinated task scheduling, allocation and synchronization on multiprocessors.
In RTSS, 2009.

[19] Karthik Lakshmanan and Ragunathan Rajkumar. Scheduling self-
suspending real-time tasks with rate-monotonic priorities. In RTAS, 2010.

[20] Karthik Lakshmanan, Ragunathan Rajkumar, and John Lehoczky. Par-
titioned fixed-priority preemptive scheduling for multi-core processors. In
ECRTS, 2009.

[21] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int.
Journal on Software Tools for Technology Transfer, 1:134–152, 1997.

[22] Cong Liu and James H. Anderson. Task scheduling with self-suspensions
in soft real-time multiprocessor systems. In RTSS, 2009.

[23] Cong Liu and James H. Anderson. Improving the schedulability of spo-
radic self-suspending soft real-time multiprocessor task systems. In RTCSA,
2010.

[24] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2000.

[25] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In STACS, 1995.

[26] J. C. Palencia and M. González Harbour. Schedulability analysis for tasks
with static and dynamic offsets. In RTSS, 1998.

[27] Ragunathan Rajkumar. Dealing with suspending periodic tasks. Technical
report, IBM Thomas J. Watson Research Center, 1991.

[28] Frederic Ridouard and Pascal Richard. Worst-case analysis of feasibility
tests for self-suspending tasks. In RTNS, 2006.

[29] Frederic Ridouard, Pascal Richard, and Francis Cottet. Negative results
for scheduling independent hard real-time tasks with self-suspensions. In
RTSS, 2004.

[30] Jun Sun and Jane Liu. Synchronization protocols in distributed real-time
systems. In ICDCS, 1996.

[31] Ken Tindell and John Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocess. Microprogram., 40(2-3):117–134,
1994.

24

