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Abstract

This paper addresses the problem of blind separation of convolutive mix-

tures of BPSK and circular linearly modulated signals with unknown (and

possibly different) baud rates and carrier frequencies. In previous works, we

established that the Constant Modulus Algorithm (CMA) is able to extract

a source from a convolutive mixture of circular linearly modulated signals.

We extend the analysis of the extraction capabilities of the CMA when the

mixing also contains BPSK signals. We prove that if the various source

signals do not share any non zero cyclic frequency nor any non conjugate

cyclic frequencies, the local minima of the constant modulus cost function

are separating filters. Unfortunately, the minimization of the Godard cost

function generally fails when considering BPSK signals that have the same

rates and the same carrier frequencies. This failure is due to the existence

of non-separating local minima of the Godard cost function. In order to

achieve the separation, we propose a simple modification of the Godard cost

function which only requires knowledge of the BPSK sources frequency off-

sets at the receiver side. We provide various simulations of realistic digital

Preprint submitted to Elsevier February 3, 2011



communications scenarios that support our theoretical statements.

Keywords: Blind source separation, Convolutive mixture, Constant

Modulus Algorithm, Cyclostationarity

1. Introduction

The blind source separation of convolutive mixtures of linearly modu-

lated signals has mainly been studied in the case where the signals share the

same known baud rate, and when the sampling frequency of the multivariate

received signal coincides with this baud-rate. In this context, to be referred

to in the sequel as the stationary case, the discrete-time received signal co-

incides with the output of an unknown MIMO filter driven by the sequences

of symbols sent by the various transmitters. In most cases, these sequences

are independent and identically distributed, and several methods have been

proposed in order to extract each of them from the observation (see e.g. [3],

[6], [7], [12], [13]) . The source separation problems that are encountered in

the context of passive listening are however more complicated because the

transmitters are usually completely unknown to the receiver, and have no

reason to transmit linearly modulated signals sharing the same baud-rates.

It is therefore quite relevant to address the problem of blind separation of

linearly modulated signals with unknown, and possibly different, baud rates.

In this context, the received signal is sampled at any frequency satisfying the

Shannon sampling theorem, so that the corresponding discrete-time signal

is cyclostationary with unknown cyclic frequencies. If the cyclic frequencies

were known at the receiver side, it would be easy to generalize the usual

blind source separation approaches based on the optimization of contrast

functions depending on higher order cumulants. However, when the cyclic
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frequencies are unknown, it is impossible to consistently estimate the cumu-

lants, a conceptual problem first remarked by Ferreol and Chevalier ([5]) in

the context of blind separation of instantaneous mixtures. An obvious ap-

proach would consist in estimating the unknown cyclic frequencies. However,

this is a difficult task if the excess bandwidths of the transmitted signals are

low and if the duration of observation is not large enough.

In contrast with the cumulants, the constant modulus cost function can

be consistently estimated in the cyclostationary context. In [10], we con-

sidered only source signals that transmit second-order circular symbol se-

quences, and we have shown that in this case, to be referred to as the cir-

cular case, the minimization of the Godard cost function allows to extract

the sources using a deflation approach if their baud-rates are different one

from another. If certain baud rates coincide, sufficient conditions for the

separation have been established in [10]. Although we have not been able

to prove that separation is achieved in the most general case, all the sim-

ulations we have performed strongly suggest that the minimization of the

Godard cost function is successful in the circular case. The purpose of this

paper is to address this issue when in the non circular source signals, which

will be referred to as the non circular case, and to show how the separation

method based on the minimization of the CMA contrast function coupled

with a deflation approach can be adapted to this context. As in [10] we only

focus in this paper on the separation of the first source.

In order to simplify the presentation of our results, we only consider the

case where the non circular signals are BPSK signals. We begin by defining

in section 2 the context of our study and giving a brief description of the

considered signals and criteria. In section 3 we prove that the Godard cost

function is still successful if the sources do not share the same baud rates
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and the same carrier frequencies. We also prove, in section 4, that contrary

to the circular case, the minimization of the Godard cost function fails to

separate 2 BPSK signals sharing the same baud rate and the same carrier

frequency. We show that this is due to the existence of non separating local

minima of the Godard cost function, toward which the minimization algo-

rithms seem to converge quite often. We also show that it is possible to

modify the Godard cost function in order to achieve source separation of

K non circular BPSK modulated signals sharing the same known (or well

estimated) carrier frequency. Section 5 briefly generalizes this result to more

general mixtures. The new modified CMA algorithm needs the estimation

of the carrier frequencies offsets of the non circular source signals, or equiv-

alently the estimation of the ”significant” non conjugate cyclic frequencies of

the received signal. Fortunately, this is a much easier task than the estima-

tion of baud rates, because the non conjugate cyclic correlation coefficients

of the received signal at twice the frequency offsets are not affected by pos-

sible low excess bandwidths of the source signals (see [1]). Numerical results

are finally presented in section 6.

Notations: If (un)n∈Z is a discrete-time sequence, we denote by < un >

the time average operator defined as

< un >= lim
N→+∞

1

2N + 1

N
∑

n=−N

un

If x is a complex valued random variable, we denote by c4(x) its fourth order

cumulant defined by cum{x, x∗, x, x∗}. If (x(n))n∈Z is a discrete-time cyclo-

stationary sequence, we define, when it makes sense, the cyclo-correlation

at cyclic-frequency α and time lag m:

∀α ∈

(

−
1

2
,
1

2

]

, ∀m ∈ Z, R(α)
x (m) =< E(x(n + m)x(n)∗e−2iπnα) >
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and the non conjugate cyclo-correlation at cyclic-frequency αc and time lag

m:

∀αc ∈

(

−
1

2
,
1

2

]

, ∀m ∈ Z, R(αc)
c,x (m) =< E(x(n + m)x(n)e−2iπnα) >

For a wide-sense cyclostationary continuous-time random process (xa(t))t∈R

we denote by R
(αa)
a,x (τ) and by R

(αa,c)
a,c,x (τ) the cyclic correlation coefficient and

respectively non conjugate cyclic correlation coefficient at cyclic-frequency

αa(respectively non conjugate cyclic frequency αa,c) and time lag τ .

For an interval B, we denote by F(B) the set of all functions fa(t) ∈

L
2(R) such that

fa(t) =

∫

B
s2iπνtf̂a(ν)dν

In other words, a square integrable function fa is an element of F(B) if and

only if its Fourier transform f̂a(ν) is zero outside B.

2. Problem statement

2.1. Assumptions

We assume that K unknown transmitters send linearly modulated signals

sharing the same frequency bandwidth. The receiver is equipped with a

sensor of N–arrays, and the corresponding N–dimensional received signal

is sampled at rate Te supposed to satisfy the Shannon sampling theorem.

For any k, k = 1, . . . , K, the signal transmitted by source k is obtained by

linearly modulating a unit variance zero mean i.i.d. sequence of symbols

{ak,n}n∈Z with a shaping filter ga,k

sa,k(t) =
∑

n∈Z

ak,nga,k(t − nTk)

5



We denote by Tk the symbol period of the source number k and we con-

sider a shaping filter of limited bandwidth [−1+γk

2Tk
, 1+γk

2Tk
], where γk is the

excess bandwidth factor, belonging to [0, 1). The bandwidth of the complex

envelope of transmitted signal k is then [−1+γk

2Tk
, 1+γk

2Tk
].

In order to simplify the presentation of the results we make the following

assumption:

• the symbol sequence {ak,n}n∈Z is either second order circular or cor-

responding to a BPSK constellation (i.e. equal to ±1) for each k.

The propagation channels between each transmitter and the receiver

are assumed to be frequency selective. Moreover, the carrier frequencies

of the various transmitted signals of course do not coincide with the center

frequency of the receive filter of the receiver. Hence, the contribution of each

transmitted signal at the receiver side is corrupted by a frequency offset. The

frequency offset associated to source k is denoted by ∆fk.

We denote by ya,k(t) the N dimensional continuous-time signal repre-

senting the contribution of the transmitted signal k to the received signal

ya(t) which is to say, the signal that would be received if only transmitter

k were active. We can then write ya,k(t) as

ya,k(t) = e2iπ∆fkt (ha,k ∗ sa,k) (t) (1)

where ∗ represents the convolution operator and where ha,k is the N dimen-

sional channel impulse response between source k and the multiple-sensors

receiver. The presence of the frequency offset shifts the bandwidth of the

ya,k(t) signal with a factor equal to ∆fk, thus making it coincide with the

interval [−1+γk

2Tk
+ ∆fk,

1+γk

2Tk
+ ∆fk].

The continuous-time received signal (in the absence of noise) ya(t) =
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∑K
k=1 ya,k(t) is sampled at rate Te which is supposed to verify

1

2Te
> max

k

(

1 + γk

2
+ |∆fk|

)

(2)

Under these assumptions, the N -dimensional discrete-time received signal

y(n) can be written as

y(n) =
K

∑

k=1

e2iπnδfk

(

∑

l

hk,lsk(n − l)

)

=
K

∑

k=1

e2iπnδfk [hk(z)]sk(n) (3)

where for each k, sk(n) represents the sampled version of transmitted signal

k, and where hk(z) =
∑

l∈Z
kk,lz

−l is the transfer function of the 1-input /

N outputs discrete time equivalent channel between transmitter k and the

receiver. Finally, δfk is defined as δfk = ∆fkTe.

2.2. Expansion of the Godard cost function

Due to the previously described context, each of the transmitted signals

is cyclostationary and thus has a set of cyclic frequencies which are easily

identified from the second order statistics of each signal. For all k, and for

all τ ∈ R, the cyclic correlation function t → E(sa,k(t + τ)sa,k(t)
∗) and, for

a BPSK signal, the non conjugate cyclic correlation function t → E(sa,k(t +

τ)sa,k(t)) are periodic of period Tk. Because of the limited bandwidth of

sa,k, the expansion in Fourier series of these two functions only involves

frequencies 0, 1
Tk

and − 1
Tk

of sa,k.

E(sa,k(t + τ)sa,k(t)
∗) = R(0)

sa,k
(τ) + R

( 1

Tk
)

sa,k
(τ)e

2iπ t
Tk + R

(− 1

Tk
)

sa,k
(τ)e

−2iπ t
Tk

E(sa,k(t + τ)sa,k(t)) = R(0)
c,sa,k

(τ) + R
( 1

Tk
)

c,sa,k
(τ)e

2iπ t
Tk + R

(− 1

Tk
)

c,sa,k
(τ)e

−2iπ t
Tk

Note that when the excess bandwidth γk is small, the cyclic correlation

coefficients at non-zero frequencies are clearly inferior to those corresponding

to the zero cyclic frequency.
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We denote αk = Te

Tk
for k = 1, . . . , K. Then, it is clear that the non

zero cyclic frequencies of the discrete time signal are ±αk; if moreover sk is

a BPSK signal, its non conjugate cyclic frequencies are 0,±αk. From now

on, we denote by I and Ic the set of all cyclic and non conjugate cyclic

frequencies of y(n). We obtain immediately that

• I = {0, (±αk)k=1,...,K}

• Ic = {(2δfk, 2δfk ± αk)k=1,...,K , sk BPSK}

In the following, we also denote I∗ the set of non zero cyclic frequencies of

y(n).

In order to extract one of the source signals, (y(n))n∈Z is filtered by a

N–inputs / 1–output filter g(z) to produce the 1–dimensional signal r(n) =

[g(z)]y(n). It is straightforward that this scalar signal r(n) has the same

cyclic and non-conjugate cyclic frequencies as the received signal y(n). Our

goal is to find filter g(z) producing a signal r(n) that coincides with a filtered

version of one of the source signals (sk)k=1,...,K . This can be achieved by

minimizing a cost function. In the following we investigate whether or not

the Godard cost function is a good contrast function for mixtures containing

BPSK signals. In a cyclostationary context and for a discrete time signal r,

the Godard cost function is defined as

J(r) =< E
(

|r(n)|2 − 1
)2

> (4)

In order to express J(r) in a more convenient way, we remark that r(n) can

be written as

r(n) =
K

∑

k=1

e2iπnδfk [fk(z)]sk(n) (5)
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where fk(z) is the transfer function fk(z) = g(ze−2iπδfk)hk(z). We denote

by ‖fk‖ the norm of filter fk(z) defined by

||fk||
2 =

∫ 1/2

−1/2
|fk(e

2iπν)|2S(0)
sk

(e2iπν) dν

where S
(0)
sk

(e2iπν) represents the spectral density of signal (sk(n))n∈Z. We

finally define filter f̃k(z) and signal s̃k(n) by

f̃k(z) =
fk(z)

‖fk‖
, s̃k(n) = [f̃k(z)]sk(n) (6)

If ‖fk‖ = 0, we put f̃k(z) = 0 and s̃k(n) = 0. It is clear that ‖f̃k‖ = 1, and

that < E|s̃k(n)|2 >= 1. r(n) can be written as

r(n) =
K

∑

k=1

‖fk‖e
2iπnδfk s̃k(n) (7)

and coincides with a filtered version of one of the source signal (up to the

term e2iπnδfk) if and only if the coefficients (‖fk‖)k=1,...,K satisfy ‖fk‖ =

δ(k − k0)‖fk0
‖. We state the following result

Proposition 1. The Godard cost function given by (4) can be expanded as

J(r) =
K

∑

k=1

β(s̃k)‖fk‖
4 +

∑

k1 6=k2

l(s̃k1
, s̃k2

)‖fk1
‖2‖fk2

‖2 − 2
K

∑

k=1

‖fk‖
2 + 1 (8)

where l(s̃k1
, s̃k2

) and β(s̃k) are defined respectively by

2 + Re

[

2
∑

α∈I∗

R
(α)
s̃k1

(0)
(

R
(α)
s̃k2

(0)
)∗

+
∑

αc∈Ic

R
(αc−2δfk1

)

c,s̃k1

(0)
(

R
(αc−2δfk2

)

c,s̃k2

(0)
)∗

]

(9)

and by

< c4(s̃k) > +2 + 2
∑

l=−1,1

∣

∣

∣
Rlαk

s̃k
(0)

∣

∣

∣

2
+

∑

l=−1,0,1

∣

∣

∣
Rlαk

c,s̃k
(0)

∣

∣

∣

2
(10)
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Proof. The proof is similar to the proof of Proposition 1 in [10], and

is thus omitted. The interested reader may however find the proof in the

extended version [? ] of the present paper.

Notice that it is easy to establish that β(s̃k) is also given by

β(s̃k) =< E|s̃k(n)|4 > (11)

Note that, as shown in [10], β(s̃k) =< E|s̃k(n)|4 >≥ 1.

Expression (8) shows that J(r) is a function of both the norms (‖fk‖
2)k=1,...,K ,

and the unit norm filters (f̃k(z))k=1,...K defined by s̃k(n) = [f̃k(z)]sk(n), and

that these 2 sets of parameters are independent. Minimizing J(r) with re-

spect to g(z) is thus equivalent to minimizing (8) independently with respect

to the norms (‖fk‖
2)k=1,...,K and the unit norm filters (f̃k(z))k=1,...K .

In the following we study the minimization of J(r) firstly when the dif-

ferent source signals do not have any non zero cyclic frequency in common

nor any non-conjugate cyclic frequency in common and then we consider an

opposite scenario where K BPSK signals share the same baud rate and the

same carrier frequency.

3. The source signals do not share the same cyclic and non con-

jugate cyclic frequencies

We first study the behavior of J(r) when the source signals do not share

the same cyclic and non conjugate cyclic frequencies. This situation is likely

to occur when the different transmitters do not belong to the same network

and it practically implies that ∀k 6= l ∈ {1 . . .K} αk 6= αl (i.e. Tk 6= Tl) and

δfk 6= δfl (∆fk 6= ∆fl). In this context, the term l(s̃k1
, s̃k2

) reduces to the

10



constant term 2, and J(r) is given by

J(r) =
K

∑

k=1

β(s̃k)‖fk‖
4 + 2

∑

k1 6=k2

‖fk1
‖2‖fk2

‖2 − 2
K

∑

k=1

‖fk‖
2 + 1 (12)

We now study the conditions under which the minimum of J(r) is reached

for a filter such that ‖fk‖ = δ(k − k0)‖fk0
‖. For this, we follow [10] and we

first fix the unit norm filters (f̃k)k=1,...,K or equivalently the (β(s̃k))k=1,...,K

coefficients. Then, we consider the problem of minimizing J with respect

only to the (‖fk‖
2)k=1,...,K . This is an easy task because, as a function of

the (‖fk‖
2)k=1,...,K norms, J(r) has a simple expression which allows the

following result to be derived

Theorem 1. The minimum of J(r) w.r.t. (‖fk‖
2)k=1,...,K is reached for

sequences such that ‖fk‖
2 = δ(k − k0)‖fk0

‖2 for a certain k0 index if and

only if

min
k=1,...,K

β(s̃k) < 2

and if this minimum is reached for the index k0. Moreover, the minimum

value of J is equal to 1 − 1
βmin,k0

.

Corollary 1. If the sources do not share the same cyclic and non conjugate

cyclic frequencies, the global minimization of the Godard cost function allows

to extract all the source signals using a deflation approach if

βmin,k = min
f̃k,‖f̃k‖=1

β(s̃k) < 2, for each k = 1, . . . , K (13)

The proof of this theorem can be found in [10]. It remains to check if

condition (13) holds. For circular linearly modulated signals, (13) has been

analytically proved in [10]. In the case of BPSK signals, the following result

can be proved using a similar approach.
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Proposition 2. Consider a BPSK signal with symbol period T and excess

bandwidth 0 < γ < 1, and assume that the sampling period Te does not belong

to {T, T
2 , T

3 , 2T
3 }. Denote by κ the kurtosis of the corresponding binary symbol

sequence, κ = −2. Then, βmin = minf̃ ,‖f̃‖=1 β([f̃(z)]s(n)) is given by

βmin = inf
fa∈F([− 1+γ

2T
, 1+γ

2T
])

Φ(fa) (14)

where Φ(fa) is defined by

Φ(fa) = κT
R

R
|fa(t)|4dt

(
R

R
|fa(t)|2dt)2

+ 2 + 4

∣

∣

∣

∣

R

R
|fa(t)|2e−2iπ t

T dt
R

R
|fa(t)|2dt

∣

∣

∣

∣

2

+
|
R

R
fa(t)2dt|

2

(
R

R
|fa(t)|2dt)

2 +

˛

˛

˛

R

R
fa(t)2e−2iπ t

T dt
˛

˛

˛

2

(
R

R
|fa(t)|2dt)

2 +

˛

˛

˛

R

R
fa(t)2e2iπ t

T dt
˛

˛

˛

2

(
R

R
|fa(t)|2dt)

2

Moreover, if we define ηmin by ηmin = min‖f̃‖=1 < c4(s̃) >, then

ηmin = inf
fa∈F([− 1+γ

2T
, 1+γ

2T
])

κT

∫

R
|fa(t)|

4dt

(
∫

R
|fa(t)|2dt)2

(15)

This result can be proved by adapting the proof of Proposition 2 in [10].

It is therefore omitted, but can be found in [? ].

As F([−1+γ1

2T , 1+γ1

2T ]) ⊂ F([−1+γ2

2T , 1+γ2

2T ]) if γ1 < γ2, (14) implies that

considered as a function of γ, βmin(γ) is decreasing. This observation allows

us to make the following statement :

Proposition 3. Function γ → βmin(γ) is decreasing when γ varies from 0

to 1. Consequently, βmin(γ) is strictly inferior to 2 for all γ if and only if

βmin(0) < 2.

The main interest of proposition 3 is that if a function fa(t) ∈ F([− 1
2T , 1

2T ])

(corresponding to γ = 0), then the integrals

∫

R

|fa(t)|
2e−2iπ t

T dt,

∫

R

fa(t)
2e−2iπ t

T dt,

∫

R

fa(t)
2e2iπ t

T dt

12



vanish. This result is a direct application of the inequality of Parseval. The

expression of βmin(0) is therefore

βmin(0) = min
fa∈F([− 1

2T
, 1

2T
])

κT

∫

R
|fa(t)|

4dt

(
∫

R
|fa(t)|2dt)2

+ 2 +

∣

∣

∫

R
fa(t)

2dt
∣

∣

2

(∫

R
|fa(t)|2dt

)2 (16)

It is easy to notice that βmin does not depend of T and that the theoretical

expressions (14) and (15) of βmin and ηmin can be used in order to compute

the numerical values of these functions for all the values of γ ∈ [0, 1] via

the approach proposed in [10].Figure 1(a) gives a numerical representation

of βmin as a function of γ in the case of BPSK signals. Moreover, we have

found that ηmin ≃ 0.68κ(1 + γ) and is equal to −1.36(1 + γ) in the case of

BPSK signals, since κ = −2. Figure 1(a) also confirms the decreasing nature

of βmin with respect to γ, and the fact that for a BPSK modulated signal

βmin < 2 for all γ provided that Te does not belong to {T, T/2, T/3, 2T/3}.

If Te = T , as we have already mentioned, βmin = 1; if Te equals one of

the other possible values, we can directly verify that βmin remains strictly

inferior to 2. We can therefore enunciate the following result:

Proposition 4. In the case of circular or BPSK transmitted signals, not

sharing any non zero cyclic frequency nor any non conjugate cyclic fre-

quency, the minimization of the constant modulus criterion, along with a

deflation approach allows the extraction of all sources.

Remark 1. Notice that the values of βmin for a BPSK modulated signal

are smaller than the ones we observe for linearly modulated circular signals

which we represent in figure 1(b). This means that if a BPSK modulated

signal is mixed with circular modulated signals, the BPSK source will very

often be the first one extracted when using a deflation approach.
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Despite its undeniable importance, proposition 1 is not completely con-

vincing as to the pertinence of the proposed approach. In practice, the

search for filter g(z) =
∑L

l=−L g(l)z−l which extracts a source from the

mixture is done by minimizing an estimator Ĵ(r) of J(r). Furthermore, the

minimization of Ĵ(r) is carried out by means of iterative algorithms such as

the steepest descent or Newton algorithms who are not guaranteed to con-

verge toward the global minimum of Ĵ and may very well converge toward

a local minimum instead. It is therefore necessary to verify that J does

not have any non separating local minima. Under a technical assumption,

the following result can be established

Proposition 5. Assume that at least one of the functions f̃k → β([f̃k(z)]sk(n))

defined on the set of all unit norm filters has no local minimum f̃∗
k such that

β([f̃∗
k (z)]sk(n)) ≥ 2. Then, the argument of each local minimum of the

Godard cost function is a separating filter.

Proof. We define the following quantities u = (
∑K

k=1 ‖fk‖
2)1/2 and

vk = ‖fk‖
u . Expression (12) of J(r) then becomes

J(r) = u4





K
∑

k=1

β(s̃k)v
4
k + 2

∑

k1 6=k2

v2
k,1v

2
k,2



 − 2u2

(

K
∑

k=1

v2
k

)

+ 1

In the following we pose β = (β(s̃1), . . . , β(s̃K))T and we denote by T (v, β)

the expression multiplying the term u4. It is clear that
∑K

k=1 v2
k = 1. Since

∑

k1 6=k2
v2
k,1v

2
k,2 = (

∑K
k=1 v2

k)
2 −

∑K
k=1 v4

k we obtain a simpler expression for

T (v, β)

T (v, β) = 2 +

K
∑

k=1

v4
k(β(s̃k) − 2)

J(r) is thus given by:

J(r) = u4T (v, β) − 2u2 + 1
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We consider a local minimum (f∗
1 (z), . . . , f∗

K(z))T of J(r), and denote by

u∗, v∗, f̃∗
k , s̃∗k, β∗ the corresponding values of u,v, f̃k, s̃k, β. It is easy to

check that the point v∗ is a local minimum of the function v → T (v, β∗).

As at least one the coefficients (β(s̃∗k) − 2) is strictly negative, v∗k = δ(k −

k0)v
∗
k0

where k0 is one of the index for which βk0,∗ − 2 < 0 (see e.g. [4]).

This implies that ‖fk,∗‖ = δ(k − k0)‖f
∗
k0
‖, and that the local minimum

f1,∗(z), . . . , fK,∗(z) is a separating filter. It is difficult to check analytically

whether or not it exists k for which f̃k → β([f̃k(z)]sk(n)) has no local min-

imum f̃∗
k such that β([f̃∗

k (z)]sk(n)) ≥ 2. However, this condition probably

holds because the steepest descent minimization algorithms of the functions

f̃k → β([f̃k(z)]sk(n)) we have run always converge toward a point for which

β([f̃k(z)]sk(n)) < 2.

In sum, the above results indicate that if the source signals do not share

the same cyclic and non conjugate cyclic frequencies, then, the minimization

of the Godard cost function allows to extract circular and BPSK source

signals. In this context, it is therefore possible to separate the source signals

without any knowledge of their cyclic and non conjugate cyclic frequencies.

4. K BPSK sources sharing the same baud-rate and the same

carrier frequency

In this section, we consider the opposite situation, when all the source

signals are BPSK signals with the same baud rate T , the same carrier fre-

quency offset ∆f , and the same excess bandwidth γ. We also denote by α

and δf the terms α = Te/T and δf = ∆fTe. Recall that the sampling rate

Te is assumed not to belong to {T, T/2, T/3, 2T/3}.
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4.1. Existence of spurious local minima for K = 2 and γ = 0

Our purpose is to support the conjecture that the Godard cost function

has non separating local minima, and that the minimization algorithms often

converge toward these spurious points. In order to justify this, we assume

that the common excess bandwidth γ of the 2 source signals is equal to 0.

In this context, the cyclic and non conjugate cyclic correlations coefficients

at frequencies ±α are zero. Expression (8) of J(r) thus reduces to

J(r) = β(s̃1)‖f1‖
4 + β(s̃2)‖f2‖

4+ (17)

2‖f1‖
2‖f2‖

2
(

2 + Re(R
(0)
c,s̃1

(0)R
(0)
c,s̃2

(0)∗)
)

− 2
(

‖f1‖
2 + ‖f2‖

2
)

+ 1

where β(s̃i) is given by

β(s̃i) =< c4(s̃i) > +2 + |R
(0)
c,s̃i

(0)|2

for i = 1, 2. This expression is formally similar to the one of J in the

case where the 2 sources are circular with a non zero excess bandwidth

(see [10]), except that the cyclic correlation coefficients R
(0)
c,s̃i

(0) are replaced

by 2R
(α)
s̃i

(0). An analog of the condition |2R
(α)
s̃i

(0)| ≤ 1, which plays an

important role in [10], can also be proved true for the cyclic correlation

coefficients R
(0)
c,s̃i

(0), i.e. |R
(0)
c,s̃i

(0)| ≤ 1. Considering the definition of s̃i in

(6), we can write

R
(0)
c,s̃k

(0) =

∫

R

ˆ̃
f(e2iπν)

ˆ̃
f(e−2iπν)S(0)

c,sk
(e2iπν) dν

As signal sk is real valued, S
(0)
c,sk

coincides with the spectrum S
(0)
sk

of sk, and

is an even function. Using the Schwartz inequality, we get immediately that

|R
(0)
c,s̃i

(0)| ≤ 1. It is therefore possible to use Theorem 2 of [10] established

in the circular case to prove that if βmin and ηmin defined in Proposition 2
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verify











−3βmin + 5 + ηmin > 0

2(βmin − 1)βmin − 4
(

1 − 1
2

√

2(βmin − 1) − 1 − ηmin

)2
< 0

(18)

then, the argument of the global minimum of J(r) is a separating filter,

and the minimum value of J(r) coincides with 1 − 1/βmin. For γ = 0,

βmin ≃ 1.19, ηmin ≃ −1.36, and it is easily checked that the 2 conditions

above are satisfied. The global minimization of J(r) therefore allows to

separate the 2 BPSK signals. Moreover, 1 − 1/βmin ≃ 0.16. However, J(r)

may have non separating local minima, toward which a steepest descent

minimization algorithm of J(r) often converges. In order to define these local

minima, we denote by f̃∗
1 (z) one of the arguments of the global minimum of

β([f̃1(z)]s1(n)) over the set of unit norm filters with real coefficients. We

denote by β1,min the corresponding minimum. It is easy to show that β1,min

can be evaluated using Proposition 2, by minimizing the function Φa over

the real elements of F([−1/2T, 1/2T ]) when γ = 0. In these conditions, it

can be shown that β1,min coincides with ηmin+3, i.e. that β1,min ≃ 1.64. We

now consider the unit norm filter with imaginary coefficients f̃∗
2 (z) = if̃∗

1 (z).

It is clear that β([f̃∗
2 (z)]s2(n)) coincides with β1,min. We finally define filters

f∗
i (z) for i = 1, 2 by

f∗
i (z) =

1

(1 + β1,min)1/2
f̃∗

i (z) (19)

If r∗(n) = [f∗
1 (z)]s1(n) + [f∗

2 (z)]s2(n), one can check that J(r∗) = 1 −

2/(1 + β1,min) ≃ 0.25. Although we have not been able to analytically

prove these non separating points to be a local minimum of J , we have

observed that the steepest descent minimization algorithm of J(r) very often

converges to one of these points rather than toward the argument of the

17



separating global minimum of J . To verify this, we present in Figure 2(a)

an histogram of the values of J(r) at convergence of the steepest descent

minimization algorithm. We used 1000 experiments, each corresponding

to different randomly selected propagation channels, and we assumed the

thermal noise to be negligible. The figure clearly shows that in more than

half of the experiments the final value of Ĵ(r) corresponds to 1− 1
1.32 ≃ 0.25

which is associated to a local minima rather than to the value of the global

minimum of J which is 1 − 1
βmin

= 1 − 1
1.19 ≃ 0.16.

In order to verify that the value 1 − 1
1.32 does not correspond to a sepa-

rating filter, we present in figure 2 an histogram of the signal to interference

and noise ratio (SINR) associated to the filters determined by minimizing

Ĵ(r). We define the SINR as the ratio between the power of signal r1, rep-

resenting the contribution of the extracted signal filtered by the extracting

filter and the power of signal r2 which represents the contribution of the

other transmitted signal filtered by the same filter. It is clear that if the

filter is perfectly adjusted then the SINR must equal +∞ in the absence of

thermal noise. The experiments we presented thus tend to confirm the fact

that J(r) has non separating local minima and that the steepest descent

algorithm converges very often toward one of them.

4.2. A new cost function

A simple modification of the Godard cost function allows to overcome the

aforementioned problems, provided that the most significant non-conjugate

cyclic frequencies of the received signal are known or can be correctly es-

timated by the receiver. We recall that for a mixture of BPSK modulated

signals sharing the same carrier frequency, the most significant cyclic fre-

quency is 2δf .
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In the following, we assume that the carrier frequency offset δf is known

or correctly estimated at the receiver side, and consider the cost function

J
′

(r) defined by

J
′

(r) = J(r) − |R(2δf)
c,r (0)|2 (20)

=< E
(

|r(n)|2 − 1
)2

> −
∣

∣

∣< E(r2(n))e−2iπn2δf >
∣

∣

∣

2

J
′

(r) is obtained by subtracting from J(r) the modulus square of the non

conjugate cyclic correlation coefficient at time lag 0 and at non conjugate

cyclic frequency 2δf . Using the expression of J(r), we immediately obtain

that

J
′

(r) =
K

∑

k=1

β
′

(s̃k)‖fk‖
4+

∑

k1 6=k2

l
′

(s̃k1
, s̃k2

)‖fk1
‖2‖fk2

‖2−2
K

∑

k=1

‖fk‖
2+1 (21)

where the term l
′

(s̃k1
, s̃k2

) is given by

2 + Re



2
∑

l=−1,1

R
(lα)
s̃k1

(0)
(

R
(lα)
s̃k2

(0)
)∗

+
∑

l=−1,1

R
(lα)
c,s̃k1

(0)R
(lα)
c,s̃k2

(0)∗



 (22)

and where β
′

(s̃k) is defined by

< c4(s̃k) > +2 + 2
∑

l=−1,1

∣

∣

∣Rlα
s̃k

(0)
∣

∣

∣

2
+

∑

l=−1,1

∣

∣

∣R
(lα)
c,s̃k

(0)
∣

∣

∣

2
(23)

β
′

(s̃k) also equals

β
′

(s̃k) = β(s̃k) −
∣

∣

∣R
(0)
c,s̃k

(0)
∣

∣

∣

2
(24)

In order to give some insight on J
′

, we first consider the case γ = 0. Ex-

pression (21) of J
′

(r) therefore becomes

J
′

(r) =
K

∑

k=1

β
′

(s̃k)‖fk‖
4 + 2

∑

k1 6=k2

‖fk1
‖2‖fk2

‖2 − 2
K

∑

k=1

‖fk‖
2 + 1
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Furthermore, β
′

(s̃i) now equals β
′

(s̃i) =< c4(s̃i) > +2. The expression of

J
′

(r) is thus similar to (12), except that β(s̃i) is now replaced by β
′

(s̃i). It

is easy to check that < c4(s̃i) >< 0, so that β
′

(s̃i) < 2 for each i. Theorem 1

and Proposition 5 thus imply that the global minimum and the local minima

of J
′

are separating filters. This shows that the minimization of J
′

(r) allows

to separate the K BPSK signals if γ = 0.

In order to extend this result to the more general case where γ > 0, we

now show that the argument of the minimum value of J ′(r) corresponds to a

separating filter. Contrary to the case where the transmitted signals all had

different cyclic frequencies and different non conjugate cyclic frequencies, it

is no longer possible to directly characterize the global minimum of J
′

(r)

since its analytical form is too complex. We overcome this difficulty by using

the following result stated and proved in [10]:

Proposition 6. Let m(r) be a positive function such that for any filtered

version r(n) = [f(z)]s(n) we have

J
′

(r) ≥ m(r)

Assume that the infimum of m(r) is reached if and only if signal r(n) co-

incides with a filtered version of one of the source signals. Let r∗(n) =

[fk0,∗(z)]sk0
(n) be one of the signals for which inff(z) m(r) = m(r∗). If

m(r∗) = J
′

(r∗), then

inf
f(z)

J
′

(r) = J
′

(r∗)

and the infimum is reached if and only if r(n) coincides with one of the r∗

specified above.

In order to derive a function m(r) satisfying the conditions of Proposition

6, we prove the following result.
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Proposition 7. The following inequality holds:

Re



2
∑

l=−1,1

R
(lα)
s̃k1

(0)
(

R
(lα)
s̃k2

(0)
)∗

+
∑

l=−1,1

R
(lα)
c,s̃k1

(0)R
(lα)
c,s̃k2

(0)∗



 ≥ −3/2 (25)

Due to the lack of space, we omit the proof which can be found in [? ].

Consider the function m(r) defined by

m(r) = β
′

min

(

K
∑

k=1

‖fk‖
4

)

+
1

2





∑

k1 6=k2

‖fk1
‖2‖fk2

‖2



− 2

K
∑

k=1

‖fk‖
2 +1 (26)

where we denote by β
′

min the quantity

β
′

min = β
′

min,k

with β
′

min,k = min‖f̃k‖=1 β
′

(s̃k). Recall that the signals present in the anal-

ysed bandwidth are of the same nature and therefore all (β
′

min,k)k=1,...,K are

equal. Since relation (25) is verified, it is clear that l
′

(s̃k1
, s̃k2

) ≥ 1/2. More-

over, the (β
′

(s̃k))k=1,...,K are all greater than β
′

min. This implies that for all

r, J
′

(r) ≥ m(r). We show that if β
′

min < 1/2, then, the global minimum of

m(r) is reached if all (‖fk‖)k=1,...,K are null except for 1, i.e. if r(n) coincides

with a filtered version of one of the sources. In order to establish this result,

we pose u2 =
∑K

k=1 ‖fk‖
2, vk = ‖fk‖

u , v = (v1, . . . , vK)T , and we define t(v)

as

t(v) = (β
′

min −
1

2
)

K
∑

k=1

v4
k +

1

2

It is easy to verify that

m(r) = u4t(v) − 2u2 + 1

and that the global minimum of m(r) is reached in a point (u∗,v∗) for which

t(v∗) is minimum and u2
∗ = 1

t(v∗) . The value of this minimum is then 1− 1
t(v∗) .
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To conclude it suffices to remark that if β
′

min − 1/2 < 0, then the minimum

of t(v) is reached if and only if all the components of v are null except for

one who is equal to 1, which corresponds to all ‖fk‖ being null except for

one of them ([4]). Furthermore t(v∗) is equal to β
′

min, u2
∗ = 1

β
′

min

and the

minimum value of m(r) is 1 − 1

β
′

min

. In the following we denote by k0 one

of the index for which β
′

min = β
′

min,k0
, and by f̃k0,∗ a unit norm filter for

which β
′

min,k0
= β

′

([f̃k0,∗(z)]sk0
(n)), and we pose fk0,∗(z) = u∗f̃k0,∗(z). The

minimum of m(r) is reached if r∗(n) = [fk0,∗(z)]sk0
(n), and J

′

(r∗) coincides

with m(r∗) = 1 − 1

β
′

min

. Proposition 6 then states that the global minimum

of J
′

is reached only if r(n) is a filtered version of sk0
(n). We have thus

established the following result

Proposition 8. If β
′

min < 1/2, then the minimization of J
′

(r) allows the

extraction of one of the sources from the mixture.

We must now verify whether the condition β
′

min < 1/2 is satisfied or not.

Following the same reasoning as in the case of βmin, we can easily adapt

proposition 2 by simply replacing the expression (14) with

β
′

min = inf
fa∈F([− 1+γ

2T
, 1+γ

2T
])

Φ
′

(fa) (27)

where Φ
′

(fa) is defined as

Φ
′

(fa) =κT

∫

R
|fa(t)|

4dt

(
∫

R
|fa(t)|2dt)2

+ 2 + 4

(

∫

R
|fa(t)|

2e−2iπ t
T dt

∫

R
|fa(t)|2dt

)2

+

∣

∣

∣

∫

R
fa(t)

2e−2iπ t
T dt

∣

∣

∣

2

(∫

R
|fa(t)|2dt

)2 +

∣

∣

∣

∫

R
fa(t)

2e2iπ t
T dt

∣

∣

∣

2

(∫

R
|fa(t)|2dt

)2 (28)

The expression of Φ
′

(fa) is obtained directly by subtracting from the

expression of Φ(fa) (15) the term due to the square modulus of the non
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conjugate cyclic coefficient of s(n) at the non conjugate cyclic frequency 0.

As in the case of βmin, this result implies that β
′

min is a decreasing function

of the excess bandwidth factor γ. We can thus formulate the following

statement:

Proposition 9. The function γ → β
′

min(γ) is decreasing when γ varies from

0 to 1. Consequently, β
′

min(γ) is strictly inferior to 1/2 for all values of γ if

and only if βmin(0) < 1
2 .

The expression of β
′

min(0) can be deduced directly from the one of βmin(0)

(16) :

β
′

min(0) = min
fa∈F([− 1

2T
, 1

2T
])

κT

∫

R
|fa(t)|

4dt

(
∫

R
|fa(t)|2dt)2

+ 2 = ηmin + 2 (29)

with ηmin given by equation (15).

Recall that we can numerically evaluate the values of β
′

min and ηmin for

all excess bandwidth factor γ ∈ [0, 1]. Particularly for an excess bandwidth

factor of 0, ηmin ≃ −1.36 and β
′

min = 0.64 ≥ 1/2. In order to verify the

existence of some β
′

min values smaller than 1/2 we present in figure 4 the

graph of β
′

min(γ) for all excess bandwidth factor γ ∈ [0, 1]. The figure

confirms the decreasing nature of β
′

min with respect to γ and shows that

β
′

min < 1/2 as soon as γ > 0.1. Consequently, we are sure to separate

the BPSK sources using the minimization of J
′

(r) if their common excess

bandwidth factor is superior to 0.1.

When the excess bandwidth factor is inferior to 0.1, the inequality J
′

(r) ≥

m(r) does not allow any conclusion to be drawn as to the global minimum

of J
′

(r). However, in such cases, we can consider the approach used in [10]

in the case of circular signals and inequality (25). After some algebra, we

can prove that if β
′

min > 1/2, then the global minimum of J
′

(r) is reached
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for filters which allow the extraction of one of the sources, if the following 2

sufficient conditions are met.



























ηmin + 3 − (K + 1)(β
′

min − 1
2) > 0

β
′

min

(

Kβ
′

min − 1
2

)

−

(K − 1)
(

2 −
√

3
2

√

(K(β
′

min − 1
2) − (ηmin + 3

2)
)2

< 0

(30)

Due to the lack of space, we omit to give the proof which can be found

in [? ]. We can easily verify that these conditions hold for γ ∈ [0, 0.1] if

the number of sources K is inferior to 10, which is very satisfying in the

considered context.

5. The case of general mixtures

5.1. Generalisation of J
′

(r)

The results obtained in the case of a mixture of BPSK signals sharing the

same characteristics can be extended to more general mixtures of circular

linearly modulated signals and BPSK signals. The logic behind the definition

of J
′

(r) is to subtract from J(r) the square modulus of the non conjugate

cyclic correlation coefficients at time lag 0 and at the non conjugate cyclic

frequencies {2δfk, sk BPSK}. These frequencies are called in the following

the significant non conjugate cyclic frequencies of the received signal, and

we denote by Ic,s this set. The definition of J
′

(r) thus becomes

J
′

(r) = J(r) −
∑

αc∈Ic,s

|R(αc)(0)|2 (31)

=< E
(

|r(n)|2 − 1
)2

> −
∑

αc∈Ic,s

∣

∣< E(r2(n))e−2iπnαc >
∣

∣

2
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We assume that the mixture contains L groups of (Kl)l=1,...,L BPSK signals

sharing the same characteristics (symbol period, carrier frequency, excess

bandwith) and linearly modulated circular source signals whose symbol pe-

riod differ from those of the BPSK signals. If source k is circular, then it

holds that β
′

min,k = βmin,k ≥ 1 > β
′

min. Therefore, it is easy to check that

J
′

(r) ≥ m(r) where m(r) is still defined by (26). Proposition 8 thus implies

that if the excess bandwith of the BPSK signals are greater than 0.1, then

the minimization of J
′

allows to extract all the BPSK signals. The case

where some of these excess bandwiths are less than 0.1 is more difficult, but

could be addressed using the previous approach. We just mention that if

the cyclic and non conjugate cyclic frequencies of the sources are pairwise

different, then the minimization of J
′

still allows to extract the K sources

whatever their excess bandwiths. In effect, J
′

(r) can be expressed as

J
′

(r) =
K

∑

k=1

β
′

(s̃k)‖fk‖
4 + 2

∑

k1 6=k2

‖fk1
‖2‖fk2

‖2 − 2
K

∑

k=1

‖fk‖
2 + 1 (32)

If the source k is circular β
′

(s̃k) coincides with β(s̃k) (10) while for a

BPSK source β
′

(s̃k) is defined by (23). The expression of J
′

(r) is therefore

similar to that of J(r), and thus all results obtained in section 3 remain

valid since for all k, β
′

k,min ≤ βk,min < 2. The modification of J proposed

in order to solve the problems generated by mixtures of non circular sources

of the same nature thus does not modify the results obtained in the context

of circular or non circular sources having different cyclic and non conjugate

cyclic frequencies.
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5.2. Frequency offset estimation

The use of J
′

requires of course the correct estimation of the signifi-

cant non conjugate cyclic frequencies of the received signal prior the source

separation. Fortunately, this is a much easier task than the estimation of

the baud rates, because the non conjugate cyclic correlation coefficients

of the received signal at twice the frequency offsets are not affected by

possible low excess bandwidths of the source signals. A simple detection

technique based on the examination of the modulus of the periodogram

of the signal (ym(n + τ)ym(n))n∈Z (see for example [2]) may be success-

fully used. We also notice that if the estimation algorithm detects not

only the significative non-conjugate cyclic frequencies {2δfk, sk BPSK}, but

some non significative conjugate cyclic frequencies such as 2δfk0
+ αk0

or

2δfk0
−αk0

, then the behaviour of function J
′

is even better because β
′

(s̃k0
)

defined in principle by (24) is replaced by β(s̃k0
) − |R

(0)
c,s̃k0

|2 − |R
(αk0

)

c,s̃k0

|2 or

β(s̃k0
)− |R

(0)
c,s̃k0

|2 − |R
(−αk0

)

c,s̃k0

|2. β
′

min,k0
is thus lower than what is predicated

by Figure 4. The sufficient condition β
′

min,k0
≥ 1

2 is thus less restrictive than

in the case where 2δfk0
+ αk0

and 2δfk0
− αk0

are not detected.

6. Simulations

6.1. Simulations parameters

The experimental results we present in the following were obtained in the

context of blind separation of a convolutive mixture of K = 3 equal power

BPSK modulated signals, observed by a receiver equipped with a circular

array of N = 5 sensors distanced from one another by half a wavelength.

All sources have the same excess bandwidth factor γ = 0.5.
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The propagation channels are multi path and affected by a Rayleigh

fading. An arbitrary path (k) is characterized by its delay τk, elevation

φk, azimuth θk and attenuation λk. We consider the ETSI channels BUx,

TUx, HTx, RAx. For each experiment, the arrival angles on the differ-

ent paths (φ and θ) of the signals are randomly chosen inside [−π/2, π/2]

and [−π, π] respectively. The different complex amplitudes on each path

are also randomly chosen for each experiment. Generating different channel

characteristics from one experiment to another enables us to have statisti-

cally significant results. We suppose that the central frequency of the receive

filter of the receiver is f0 = 1GHz and that the received signal is corrupted

by a white, additive complex gaussian noise with power spectral density N0.

The signal to noise ratio per source signal Es

N0
is equal to 20 dB. We have

considered two opposite scenarios :

• all BPSK signal have the same symbol period T = 3.6µs and same

frequency offsets (δf)

• the BPSK signal have different symbol periods (T1 = 3.4µs, T2 =

3.6µs, T3 = 3.9µs ) and different frequency offsets (δf1 6= δf2 6= δf3)

In both cases, the sampling period Te is equal to T
1.6 , and the carrier fre-

quency offsets are randomly chosen on each trial such that the generated

signals satisfy the sampling theorem. We also considered different observa-

tion durations Tobs = 2000T , Tobs = 1000T and Tobs = 500T for the initial

received signal used to compute the separating filters and a longer obser-

vation duration of Tperf = 20000T for the performance analysis. For each

possible type of mixture we considered 1000 independent experiments.

We finally mention that the deflation procedure we have implemented

uses the re-initialization trick proposed in [14].
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6.2. Numerical results

We chose two metrics of performance for our separating method : the

signal to interference plus noise ratio (SINR) at the output of the separating

filter g and the symbol error rate (SER) computed after applying a blind

CMA fractional equalizer, supposed to know the baud rates and the carrier

frequency offsets of the sources, to the separated signal. In order to compare

the different separating algorithms we consider the number of experiments

where we obtain a SER inferior to 10−2.

Moreover, since the channels are randomly selected from one experiment

to another, we need a reference measure of the difficulty of the separation

problem. We chose to compute, for each source k the performances ob-

tained in a non blind context with the minimum mean square estimator

(MMSE). The Wiener filter ĝ
(k)
wiener(z) obtained with this method is a fi-

nite impulse response filter of the same size as ĝ. This filter is chosen non

causal, and its coefficients are estimated from the samples of the received sig-

nal (y(m))m=0,...,M−1 and those of the transmitted signal (sk(m))m=0,...,M−1

as if the receiver worked with a learning sequence of M samples. The per-

formances provided by this filter thus represent an upper bound as to what

we could achieve in a blind context.

Table 1(a) contains the results associated with the first scenario. Notice

that the number of times where the SER corresponding to the separation

method based on the CMA algorithm is inferior to 10−2 is smaller than

the one corresponding to the separation with the modified CMA criterion.

This is due to the large number of cases where the CMA algorithm does

not correctly extract the sources from the mixture. Contrariwise, the mod-

ified CMA algorithm succeeds in extracting one source from the mixture.
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This phenomenon is visible in figure 3 where we present the histograms of

the SINR obtained after the extraction of one source from the mixture us-

ing the CMA, modified CMA and MMSE methods, when considering BUx

type communication channels and a duration of observation of 2000T . It

is easy to see that in an important number of cases the SINR values corre-

sponding to the CMA method are close to 0 dB meaning that no source was

correctly extracted. The modified CMA algorithm significantly reduces the

number of unsuccessful extractions and its performance is close to that of

the Wiener filter (MMSE). This phenomenon can also be observed on the

results obtained on the other channels and when the duration of observation

is smaller.

7. Conclusion

We investigated the separation of convolutive mixtures of second order

circular linearly modulated signals and BPSK signals in the context of pas-

sive listening. We considered only deflation approaches coupled with the

minimization of the CMA cost function. We proved that if the different

source signals do not share the same cyclic and non conjugate cyclic fre-

quencies, the minimization of the CMA cost function ensures the extraction

of a filtered version of one of the source signals. We have also shown that in

this case and under a condition which is always verified in practice, all the

local minima of the CMA criterion are separating points. This result is no

longer true when mixtures of BPSK signals sharing the same baud rate and

carrier frequency are considered. In this case we have shown the existence
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of non separating local minima of the CMA cost function that prove to be

quite attractive. A modification of the CMA criterion was proposed, based

on the knowledge of the most significant non conjugate cyclic frequencies of

the received signal. Moreover, the minimization of this new criterion was

also proved to be a reliable approach in a much more general context.
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Figure 1: βmin as a function of γ in the case of (a) BPSK signals and (b) cicular signals.
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Figure 2: Histograms of (a) Ĵ(r) values and (b)SINR values, obtained after extracting a

source from a mixture of 2 identical BPSK signal with γ = 0.
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Figure 3: Histogram of SINR obtained after extracting one source from a mixture of 3

identical BPSK signals, sent over a BUx channal and observed for a duration Tobs = 2000T .
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Table 1: Percentage of TES < 10−2 for a mixture of 3 BPSK signals whose cyclic and non

conjugate cyclic frequencies are (a) identical and (b) all different.

(a)

No.symboles 2000 1000 500

BUx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 84% 83% 83.8% 82.6% 83.2% 81.8% 83.2% 81.8% 84.7%

CMAm 99.9% 100% 100% 100% 100% 99.8% 97.4% 95% 97.2%

MMSE 100% 99.8% 100% 99.9% 100% 99.9% 99.8% 100% 100%

TUx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 88.9% 87% 89.2% 89.4% 85.2% 86.1% 86.8% 86.8% 87.6%

CMAm 99.9% 100% 100% 99.8% 99.8% 99.6% 95.7% 95.3% 94.5%

MMSE 100% 99.8% 100% 100% 100% 99.9% 100% 100% 100%

HTx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 89% 87.2% 86% 87.6% 88% 88.4% 87.5% 87.7% 86.1%

CMAm 99.7% 99.8% 100% 99.2% 99.5% 99.4% 91.5% 91.5% 91.4%

MMSE 99.9% 100% 100% 100% 100% 100% 100% 100% 100%

RAx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 78% 79.7% 79% 78.9% 81.3% 79.6% 81% 81.1% 80.3%

CMAm 100% 99.9% 99.9% 99.4% 99.1% 99.2% 93.6% 94.9% 92.9%

MMSE 100% 99.9% 99.9% 100% 100% 100% 100% 100% 99.9%

(b)

No.symboles 2000 1000 500

BUx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 100% 99.9% 99.8% 99.8% 99.7% 99.8% 99.5% 99.4% 99.6%

CMAm 100% 99.9% 100% 100% 99.9% 99.9% 99.7% 99.5% 99.8%

MMSE 100% 100% 100% 100% 100% 100% 100% 100% 100%

TUx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 99.6% 99.5% 99.7% 99.3% 99.5% 99.6% 99.7% 99.4% 99.2%

CMAm 100% 99.9% 99.7% 99.7% 99.7% 99.6% 98.1% 98.9% 98.4%

MMSE 100% 99.9% 100% 100% 100% 100% 100% 100% 100%

HTx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 98.8% 98.7% 98.8% 98% 97.8% 98.1% 96.7% 96% 96%

CMAm 100% 99.8% 100% 99.5% 99.4% 99.4% 98% 98.2% 97.7%

MMSE 100% 100% 100% 100% 100% 100% 100% 100% 100%

RAx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 98.3% 98.9% 98.3% 99.2% 98.9% 98.5% 99% 98.8% 98.7%

CMAm 99.8% 99.8% 100% 98.9% 99% 99% 98.4% 98.2% 98.3%

MMSE 99.9% 100% 100% 100% 100% 100% 100% 100% 100%
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