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Abstract

We here propose a multiscale numerical method for the solution of stochas-
tic partial differential equations with localized uncertainties. It is based on
a multiscale domain decomposition method that exploits the localized side of
uncertainties and incidentally improves the conditioning of the problem by op-
erating a separation of scales. An efficient iterative algorithm is proposed that
requires the solution of a sequence of simple global problems at a macro scale,
involving a deterministic operator, and local problems at a micro scale for which
we have the possibility to use fine approximation spaces. Global and local prob-
lems are solved using tensor approximation methods allowing the representation
of high dimensional stochastic parametric solutions. Convergence properties of
these tensor based methods, which are closely related to spectral decomposi-
tions, benefit from the separation of scales. Different types of uncertainties are
considered at the micro level. They may be associated with some variability
in the operator or source terms, or even with some geometrical variability. In
the latter case, specific reformulations of local problems using fictitious domain
methods are introduced.

Key words: Uncertainty quantification; Multiscale stochastic PDE; Numerical
zoom; Domain Decomposition; Tensor approximation; High dimensional
problems.

1. Introduction

Uncertainty quantification methods using functional approaches have emerged
for the last two decades in computational engineering. Numerous developments
have been realized for the propagation using functional approaches (see reviews
[1, 2, 3, 4]). Recent works have been devoted to the propagation of uncertain-
ties through stochastic multiscale models using these functional approaches. In
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the case of random heterogeneous media allowing a separation of scales, up-
scaling or homogenenization methods have been introduced, see for instance
[5, 6, 7, 8, 9]. However the propagation of uncertainties through multiscale
stochastic models remains today a challenging issue for they give rise to high
dimensional stochastic problems and this high dimensionality is thus to be han-
dled genuinely. Moreover, monoscale numerical approaches clearly suffer from
the complexity of multiscale solutions that present very high spectral content.

In the present work, we focus on multiscale problems with localized uncer-
tainties (in medium property, source terms or geometry). In the presence of
numerous localized sources of uncertainties, dedicated approaches have to be
developed in order to handle the high dimensionality and complexity of asso-
ciated multiscale models. At the deterministic level, dedicated methods have
met the demand of coupling numerical models at different scales and some have
been extended to stochastic models. Among these deterministic methods, one
can distinguish the mono-model methods based on adaptive mesh or enrichment
techniques [10, 11, 12, 13] from the multi-model methods based on patches as
the global-local iterative methods proposed in [14, 15, 16, 17, 18] or the bridging
methods proposed in [19, 20, 21] or in [22] with the Arlequin method. The lat-
ter has been exploited in the stochastic framework for deterministic-stochastic
coupling in [23, 24] for a homogenization purpose.

We here propose a dedicated method based on a multiscale domain decom-
position method that exploits the localized side of uncertainties. It belongs to
the class of the global-local iterative methods mentionned above. In its exten-
sion to the stochastic framework, an efficient iterative algorithm is proposed
that requires the solution of a sequence of simple global problems at a macro
scale, involving a deterministic operator, and local problems at a micro scale for
which we have the possibility to use fine approximation spaces. In the mean-
while the separation of scales has the advantage of improving the conditioning
of the problem. In order to address the high dimensionality that arises from
these multiscale problems with numerous sources of uncertainties, the global
and local problems are solved using tensor based approximation methods al-
lowing the representation of high dimensional stochastic parametric solutions.
Convergence properties of these tensor based methods, which are closely related
to spectral decompositions, benefit from the separation of scales. Different for-
mats of tensor representations can be expoited [25]. Here the classical canonical
decompositions and the hierarchical canonical decompositions as in [26, 27] are
introduced, the latter ones giving very low ranks representations.

Different types of uncertainties are considered at the micro level. They may
be associated with some variability in the operator or source terms, or even with
some geometrical uncertainty. In the latter case, specific reformulations of local
problems using fictitious domain methods are introduced in order to formulate
the problem on a tensor product space [28, 29, 30].

The paper is structured as follows. In section 2, the model problem with
localized variabilities is first presented. Then the global-local iterative algorithm
is introduced in section 3. Section 4 is dedicated to the approximate solutions of
the global and local problems involved in the iterative algorithm: definition of
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approximation spaces and fictitious domain methods for the reformulation of the
local problems when these present geometrical variabilities. Section 5 extends
the method to the case of multiple patches with independent variabilities. The
behavior of the global-local iterative algorithm is analysed in section 6 on a
first numerical example with four patches and with no geometrical details. The
convergence and robustness results of the global-local iterative algorithm proven
in section 3 are notably illustrated on this example. The influence of the sizes
of the patches on the convergence of the algorithm is also analysed. Tensor
approximation methods are finally introduced in section 7 for the solution of
local and global problems in order to handle the high dimensionality. They are
applied in section 8 to a high dimensional problem which contains geometrical
variabilities. This last illustration shows the relevance of the use of tensor
approximation methods and in particular of hierarchical decompositions.

2. Problem with localized variabilities

We consider a diffusion problem defined on a domain Ω ⊂ R
d:

−∇ · (K∇u) = f on Ω,

K∇u · n = 0 on ΓN ,

u = 0 on ΓD,

(1)

with K a diffusion parameter, and ΓD and ΓN the Dirichlet and Neumann
boundaries respectively. We denote by ξ a set of random parameters, with
values in Ξ, modeling the uncertainties on the geometry, the source term and
the diffusion coefficient. We denote by (Ξ,B, Pξ) the associated probability
space, where Pξ is the probability law of ξ.

2.1. Function spaces

For a Hilbert space H equipped with an inner product norm | · |, we denote
by HΞ the Bochner space of square integrable functions defined on the measure
space (Ξ,B, Pξ) and with values in H:

HΞ = L2
Pξ

(Ξ;H) =
{
v : y ∈ Ξ 7→ v(y) ∈ H ; E(|v(ξ)|2) < +∞

}
,

where E(·) is the mathematical expectation defined by

E(v) =

∫

Ξ

v(y) dPξ(y).

Bochner space HΞ is a Hilbert space when equipped with the following inner
product norm

‖v‖ = E(|v(ξ)|2)1/2

For H = R, we use the notations S := R
Ξ = L2

Pξ
(Ξ; R) := L2

Pξ
(Ξ). Note that

H can be a random function space, i.e. dependent on ξ (e.g. when considering
a space of functions defined on an uncertain domain). In the case where H is
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deterministic, the Bochner space can be identified with the tensor Hilbert space
H⊗ S:

HΞ = L2
Pξ

(Ξ;H) ≃ H⊗ S.

2.2. Initial weak formulation of the problem

Let introduce the Hilbert space V = {v ∈ H1(Ω); v = 0 on ΓD} equipped

with the inner product norm |u|Ω =
(∫

Ω
∇u · ∇u

)1/2
. Let VΞ = L2

Pξ
(Ξ;V) be

the Hilbert space equipped with the norm ‖ · ‖Ω = E(| · |2Ω)1/2. We introduce
the classical weak formulation of problem (1):

u ∈ VΞ, aΩ(u, δu) = ℓΩ(δu) ∀δu ∈ VΞ, (2)

with

aΩ(u, δu) = E

(∫

Ω

K∇u · ∇δu

)
=

∫

Ξ

∫

Ω

K∇u · ∇δu dPξ,

ℓΩ(δu) = E

(∫

Ω

fδu

)
=

∫

Ξ

∫

Ω

fδu dPξ.

We introduce the notation Ω ∗ Ξ = {(x, y) ∈ R
d × Ξ ; x ∈ Ω(y)}. Note that in

the case of a deterministic domain Ω, we simply have Ω ∗ Ξ = Ω × Ξ. Problem
(2) is well-posed if f ∈ L2(Ω)Ξ and if K is uniformly bounded and elliptic on
Ω ∗ Ξ, i.e. there exist constants Kinf > 0 and Ksup > 0 such that we have
almost everywhere on Ω ∗ Ξ

Kinf |ζ|
2 ≤ ζ ·K(x, y)ζ ≤ Ksup|ζ|2 ∀ζ ∈ R

d. (3)

2.3. Patch containing localized variabilities

We consider that the diffusion coefficient K, the source term f or the domain
Ω are uncertain only on a part Λ ⊂ Ω. Λ is called a patch. The boundary ∂Λ
of this patch contains the eventual uncertain part of the boundary ∂Ω. That
means that Λ eventually depends on ξ and is such that

Ω(ξ) = (Ω\Λ) ∪ Λ(ξ),

with Ω\Λ deterministic. We denote by Γ = ∂(Ω\Λ) ∩ ∂Λ the deterministic
interface between Ω\Λ and the patch Λ (see figure 1). We then consider that

K(x, ξ) =

{
K0(x) for x ∈ Ω\Λ

K(x, ξ) for x ∈ Λ(ξ)
and f(x, ξ) =

{
f0(x) for x ∈ Ω\Λ

f(x, ξ) for x ∈ Λ(ξ)
.
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Figure 1: Patch Λ ⊂ Ω containing localized uncertainties and interface Γ = ∂(Ω\Λ) ∩ ∂Λ.

2.4. Domain decomposition

We introduce the following splitting of the solution u ∈ VΞ:

u =

{
U on Ω\Λ

w on Λ
,

with the following continuity conditions on Γ interpreted in a weak sense:

w = U and ∇U · n = ∇w · n on Γ,

where n denotes the unit outward normal to ∂Λ. We consider that Γ ∩ ΓD = ∅
and we split the Dirichlet boundary ΓD into the Dirichlet boundary of the patch
ΓΛ

D = ΓD∩∂Λ (eventual internal boundary of the patch) and the complementary

part Γ
Ω\Λ
D = ΓD\ΓΛ

D. We then introduce the following spaces

U = {U ∈ H1(Ω\Λ) ; U = 0 on Γ
Ω\Λ
D }

W = {w ∈ H1(Λ) ; w = 0 on ΓΛ
D}

M = H−1/2(Γ)

and the associated Bochner spaces UΞ, WΞ and MΞ.
Problem (2) is then equivalent to finding (U,w, λ) ∈ UΞ ×WΞ ×MΞ such

that for all (δU, δw, δλ) ∈ UΞ ×WΞ ×MΞ,




aΩ\Λ(U, δU) + bΓ(λ, δU) = ℓΩ\Λ(δU)

aΛ(w, δw) − bΓ(λ, δw) = ℓΛ(δw)

bΓ(δλ, U − w) = 0

(4)

where for some subdomain O ⊂ Ω,

aO(v, δv) = E

(∫

O

K∇v · ∇δv

)
, ℓO(v) = E

(∫

O

fv

)
,

and where

bΓ(λ, v) = E

(∫

Γ

λv

)
. (5)

λ represents a Lagrange multiplier ensuring the weak continuity of u on the
interface Γ.
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3. A global-local iterative algorithm

3.1. Domain decomposition with overlapping domains

In the case where Λ contains geometrical details, i.e. if ∂Λ\Γ 6= ∅, we

introduce a fictitious patch Λ̃ ⊃ Λ such that ∂Λ̃ = Γ, which means that Λ̃ is
deterministic and does not contain any internal boundaries, i.e. no geometrical
details (see figure 2). We then denote by

Ω̃ = (Ω\Λ) ∪ Λ̃,

which is a deterministic fictitious domain containing Ω and such that Ω̃\Λ̃ =
Ω\Λ.

�

�

���

Figure 2: Fictitious patch eΛ such that ∂eΛ = Γ.

We now consider a prolongation of function U from Ω\Λ to Ω̃. We introduce

on Ω̃ a fictitious diffusion field K̃ such that

K̃ = K on Ω\Λ, (6)

and such that it verifies almost everywhere on Ω̃ × Ξ

K̃inf |ζ|
2 ≤ ζ · K̃(x, y)ζ ≤ K̃sup|ζ|2 ∀ζ ∈ R

d, (7)

for some constants K̃sup ≥ K̃inf > 0. We then introduce the new function

space ŨΞ with

Ũ = {U ∈ H1(Ω̃) ; U = 0 on Γ
Ω\Λ
D }.

For a subset O ⊂ Ω̃, we define a bilinear form cO : ŨΞ × ŨΞ → R associated
with the fictitious diffusion coefficient:

cO(U, δU) = E

(∫

O

K̃∇U · ∇δU

)
.

We notice that by condition (6) on K̃, we have

aΩ\Λ(U, δU) = cΩ\Λ(U, δU) = ceΩ(U, δU) − ceΛ(U, δU). (8)
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Problem (4) can now be reformulated as follows: find (U,w, λ) ∈ ŨΞ×WΞ×MΞ

such that for all (δU, δw, δλ) ∈ ŨΞ ×WΞ ×MΞ,




ceΩ(U, δU) − ceΛ(U, δU) + bΓ(λ, δU) = ℓΩ\Λ(δU)

aΛ(w, δw) − bΓ(λ, δw) = ℓΛ(δw)

bΓ(δλ, U − w) = 0

(9)

Note that problem (9) does not define the prolongation U inside the fictitious

patch Λ̃. In other words, formulated on ŨΞ×WΞ×MΞ, this problem admits an
infinite number of solutions. As we will see, a particular prolongation will arise
from the definition of the following algorithm, which corresponds to considering
the formulation (9) in a suitable subspace of ŨΞ ×WΞ ×MΞ.

3.2. A global-local algorithm

We now introduce the following iterative algorithm that defines a sequence
{(Un, wn, λn)}n≥0. We start with w0 = 0, λ0 = 0 and U0 = 0 and for n ≥ 1, we
define (Un, wn, λn) as follows.

Global step. We compute Ûn ∈ ŨΞ such that for all δU ∈ ŨΞ,

ceΩ(Ûn, δU) = ceΛ(Un−1, δU) − bΓ(λn−1, δU) + ℓΩ\Λ(δU). (10)

We then introduce a relaxation

Un = ρÛn + (1 − ρ)Un−1,

with ρ > 0. Global step (10) is a problem defined on the domain Ω̃, with an

arbitrary diffusion parameter K̃ in Λ̃ and which does not contain any geometrical
details in Λ̃. The term λn−1 appears as an imposed source term on an internal

surface in Ω̃.

Local step. We then compute (wn, λn) ∈ WΞ ×MΞ such that for all (δw, δλ) ∈
WΞ ×MΞ, {

aΛ(wn, δw) − bΓ(λn, δw) = ℓΛ(δw)

bΓ(δλ, wn) = bΓ(δλ, Un)
. (11)

Local step (11) is a problem defined on the patch Λ, with the true material
parameter K and the true geometrical details. λn can be interpreted as a
Lagrange multiplier that ensures in a weak sense wn = Un on Γ.

Remark 1. Note that the local problem (11) can be reformulated by introducing

a change of variable wn = U⋄
n +zn, with U⋄

n ∈ W̃Ξ satisfying b(δλ, U⋄
n −Un) = 0

for all δλ ∈ MΞ (i.e. U⋄
n = Un on Γ in a weak sense), and with

zn ∈ WΞ
0 = {z ∈ WΞ ; z = 0 on Γ}.

Local problem (11) can then be formulated as follows:

aΛ(zn, δw) = ℓΛ(δw) − aΛ(U⋄
n, δw) ∀δw ∈ WΞ

0 . (12)

The Lagrange multiplier λn is then obtained from the first equation of (11).
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3.3. Prolongation in the fictitious patch is uniquely defined

The prolongation of Un in the fictitious patch is uniquely defined by the
initialization U0. Indeed, from (10), we have that for all δU ∈ H1

0 (Λ̃)⊗L2
Pξ

(Ξ),

ceΛ(Ûn, δU) = ceΛ(Un−1, δU),

and therefore

ceΛ(Un, δU) = ceΛ(ρÛn + (1 − ρ)Un−1, δU) = ceΛ(Un−1, δU).

We then have that for all δU ∈ H1
0 (Λ̃) ⊗ L2

Pξ
(Ξ),

ceΛ(Un, δU) = ceΛ(U0, δU)

for all n ≥ 1. With U0 = 0, we obtain that all iterates Un ∈ ŨΞ belongs to a
subspace ŨΞ

∗ ⊂ ŨΞ defined by

ŨΞ
∗ =

{
U ∈ ŨΞ ; ceΛ(U, δU) = 0 for all δU ∈ H1

0 (Λ̃) ⊗ L2
Pξ

(Ξ)
}
.

Un can be interpreted as the unique analytical prolongation into ŨΞ of Un ∈ UΞ.
The restriction of Un on Λ̃ is then uniquely defined by the trace of Un on
Γ. Problem (9) appears to be well-posed in the subspace ŨΞ

∗ × WΞ × MΞ ⊂

ŨΞ ×WΞ ×MΞ, which gives a sense to the prolongation of the solution U . In
the following, we use the following definition for U .

Definition 1. We denote by U ∈ ŨΞ
∗ ⊂ ŨΞ the prolongation of the solution

U ∈ UΞ of (4). This prolongation is such that (U, λ,w) ∈ ŨΞ
∗ ×WΞ ×MΞ is

the unique solution of equation (9) for all (δU, δw, δλ) ∈ ŨΞ
∗ ×WΞ ×MΞ.

The convergence of the sequence Un to this solution U ∈ ŨΞ
∗ is now analyzed.

3.4. Convergence analysis

Let introduce the mapping Φ : MΞ × ŨΞ → ŨΞ such that Φ(β, V ) ∈ ŨΞ is
solution of:

ceΩ(Φ(β, V ), δU) = ceΛ(V, δU) − bΓ(β, δU). (13)

Let us also introduce the mappings Ψ : ŨΞ → MΞ and ψ : ŨΞ → WΞ such that
the couple (Ψ(V ), ψ(V )) ∈ MΞ ×WΞ is solution of:

{
aΛ(ψ(V ), δw) − bΓ(Ψ(V ), δw) = 0

bΓ(δλ, ψ(V )) = bΓ(δλ, V )
∀(δw, δλ) ∈ WΞ ×MΞ. (14)

Let (U, λ,w) ∈ ŨΞ
∗ × MΞ × WΞ be the exact solution of (9). With the above

definitions, the proposed algorithm is equivalent to:

Ûn − U = Φ(λn−1 − λ,Un−1 − U),

Un − U = ρ(Ûn − U) + (1 − ρ)(Un−1 − U),

(λn − λ,wn − w) = (Ψ(Un − U), ψ(Un − U)).

(15)
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Letting En = Un − U the error at iteration n, we have

En = ρΦ(Ψ(En−1), En−1) + (1 − ρ)En−1 := Bρ(En−1), (16)

with the iteration operator Bρ defined by

Bρ(V ) = ρΦ(Ψ(V ), V ) + (1 − ρ)V. (17)

Lemma 2. The iteration operator Bρ : ŨΞ → ŨΞ defined in (17) is such that

Bρ = I − ρA,

with A : ŨΞ → ŨΞ such that A(V ) ∈ ŨΞ is solution of

ceΩ(A(V ), δV ) = bΓ(Ψ(V ), δV ) + aΩ\Λ(V, δV ) ∀δV ∈ ŨΞ. (18)

Proof. From definition (17) of Bρ, it follows immediately

A(V ) = V − Φ(Ψ(V ), V )

From (13), we have that Φ(Ψ(V ), V ) ∈ ŨΞ is defined by the following equation:

ceΩ(Φ(Ψ(V ), V ), δV ) = −bΓ(Ψ(V ), δV ) + ceΛ(V, δV ) ∀δV ∈ ŨΞ. (19)

Using (8), it yields the desired expression (18). �

Note that U and the iterates Un belong to the subspace ŨΞ
∗ ⊂ ŨΞ, so that only

the restriction to UΞ
∗ of operator A defined in (18) has to be analyzed.

Lemma 3. The operator A : ŨΞ
∗ → ŨΞ

∗ is symmetric, bounded and coercive.

Proof. Since K̃ is uniformly bounded and elliptic, we can equip the Hilbert
space ŨΞ

∗ ⊂ ŨΞ with the inner product

〈U, V 〉eΩ, eK = ceΩ(U, V ) = E

(∫

eΩ

K̃∇U · ∇V

)

and the associated norm ‖V ‖eΩ, eK =
√
ceΩ(V, V ). From properties of K̃, ‖ · ‖eΩ, eK

is equivalent to ‖ · ‖eΩ. From (18), operator A is such that

〈A(U), V 〉eΩ, eK = ceΩ(A(U), V ) = bΓ(Ψ(U), V ) + aΩ\Λ(U, V ).

Using for test functions (δλ, δw) = (Ψ(U), ψ(U)) in equation (14), we obtain

{
aΛ(ψ(V ), ψ(U)) = bΓ(Ψ(V ), ψ(U))

bΓ(Ψ(U), ψ(V )) = bΓ(Ψ(U), V )
(20)

Equations (20) are also verified if we permute U and V . We then obtain

bΓ(Ψ(U), V ) = bΓ(Ψ(U), ψ(V )) = aΛ(ψ(U), ψ(V )) = bΓ(Ψ(V ), U), (21)

9



where we have used the symmetry of aΛ. That proves that operator A is sym-
metric. The continuity of A follows directly from its definition as the solution
of the variational problem (18) involving a symmetric continuous and coercive
bilinear form. Moreover,

bΓ(Ψ(U), U) = aΛ(ψ(U), ψ(U)) ≥ 0,

and therefore
〈A(U), U〉eΩ, eK ≥ aΩ\Λ(U,U) & ‖U‖2

Ω\Λ,

where the last inequality is obtained from the property of coercivity of aΩ\Λ

on UΞ. Finally, it remains to see that on ŨΞ
∗ , ‖ · ‖Ω\Λ defines a norm which is

equivalent to the norm ‖ · ‖eΩ, and therefore:

〈A(U), U〉eΩ, eK & ‖U‖2
eΩ

& ‖U‖2
eΩ, eK

,

which proves that A is coercive on the subspace ŨΞ
∗ of ŨΞ. �

We finally state the following convergence result.

Theorem 4. The sequence Un converges towards U for a sufficiently small re-
laxation parameter ρ > 0.

Proof. Since A is symmetric, bounded and coercive, we have

‖Bρ(U) −Bρ(V )‖2 = ‖U − V − ρ(A(U) −A(V ))‖2 (22)

≤ (1 − 2ραA + ρ2C2
A)‖U − V ‖2 (23)

with αA and CA the coercivity and continuity constants of A respectively.
Choosing 0 < ρ < 2αA

C2

A

, we have ρB = (1 − 2ραA + ρ2C2
A)1/2 < 1 and there-

fore, Bρ is a contractive mapping with contractivity constant ρB . The error
εn = ‖Un − U‖ then verifies

εn = ‖Bρ(Un−1) −Bρ(U)‖ ≤ ρBεn−1 ≤ ρn
Bε0,

which yields εn → 0 as n→ ∞. �

Remark 2. Note that if K̃ = K on Λ̃ and if Λ = Λ̃, we have A = I, so that
Bρ = (1 − ρ)I, yielding to convergence for 0 < ρ < 2. This is also true in the
discretized framework when using Galerkin projections and when the approxi-
mation space in WΞ is the restriction to Λ̃ of functions of the approximation
space in ŨΞ.

Remark 3. Note that the final solution does not depend on the choice of K̃.
However, this choice influences the behavior of the iterative algorithm (it affects
the spectrum of operator A), as it will be illustrated in numerical examples. A

convenient choice consists in taking for K̃ a deterministic field, yielding to a
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global problem with deterministic operator. A natural choice yielding rather good
convergence properties consists in taking for K̃ the mean diffusion field:

K̃(x) = E(K(x, ξ)).

However, we will see in numerical examples that a large range of values for the
fictitious field K̃ yield good convergence properties, thus providing flexibility in
the definition of the global problem.

3.5. Robustness of the algorithm with respect to approximations

We suppose that approximations are introduced in the different solution
steps, thus defining an approximate sequence U ǫ

n ∈ ŨΞ
∗ such that

U ǫ
n − U = Bǫ

ρ(U
ǫ
n−1 − U), (24)

where Bǫ
ρ is a reasonable approximation of the iteration operator Bρ. We assume

that
Bǫ

ρ(U
ǫ
n−1 − U) = Bρ(U

ǫ
n−1 − U) + δU ǫ

n,

where the perturbation δU ǫ
n verifies

‖δU ǫ
n‖ ≤ ǫ‖U‖ + ǫ∗‖U ǫ

n−1 − U‖.

ǫ is associated with a tolerance relatively to the solution norm, and ǫ∗ is as-
sociated with a tolerance relatively to the current error. ǫ∗ typically appears
when formulating local and global problems on increments (U ǫ

n − U ǫ
n−1) and

(λǫ
n − λǫ

n−1) and when using solvers with a prescribed tolerance of the order of
ǫ∗. ǫ typically appears when local and global problems are not formulated on
increments and when we use solvers with a prescribed tolerance of the order of ǫ.
This error ǫ can also appear when we introduce some additional approximation
of the iterates, typically when introducing spectral decompositions in order to
“compress” the representations of the iterates (see section 7). We now provide
a result that gives the behavior of the algorithm with respect to these two types
of errors.

Theorem 5. We suppose that

‖Bǫ
ρ(V ) −Bρ(V )‖ ≤ ǫ‖U‖ + ǫ∗‖V ‖

for all V ∈ ŨΞ
∗ such that ‖V ‖ ≤ η‖U‖, (25)

with η > 0, ǫ∗ < 1−ρB and ǫ ≤ η(1−ρB−ǫ∗). We assume that ‖U ǫ
0−U‖ ≤ η‖U‖.

Then, the sequence U ǫ
n is such that

lim sup
n→∞

‖U ǫ
n − U‖ ≤ γ(ǫ)‖U‖,

with γ(ǫ) → 0 as ǫ → 0. That means that the sequence U ǫ
n tends to a γ(ǫ)-

neighborhood of the solution U .
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Proof. We denote Eǫ
n = U ǫ

n − U . We have ‖Eǫ
0‖ ≤ η‖U‖. Let us suppose that

‖Eǫ
m‖ ≤ η‖U‖ for all m < n. Then,

‖Eǫ
n‖ = ‖Bǫ

ρ(E
ǫ
n−1)‖

≤ ‖Bǫ
ρ(E

ǫ
n−1) −Bρ(E

ǫ
n−1)‖ + ‖Bρ(E

ǫ
n−1)‖

≤ ǫ‖U‖ + (ρB + ǫ∗)‖Eǫ
n−1‖.

Since ǫ ≤ η(1 − ρB − ǫ∗), we then obtain ‖Eǫ
n‖ ≤ η‖U‖ for all n. Finally, we

obtain

‖Eǫ
n‖ ≤

ǫ(1 − (ρB + ǫ∗)n)

1 − (ρB + ǫ∗)
‖U‖ + (ρB + ǫ∗)n‖Eǫ

0‖

≤
ǫ

1 − ρB − ǫ∗
‖U‖ + (ρB + ǫ∗)n‖Eǫ

0‖,

and therefore

lim sup
n→∞

‖Eǫ
n‖ ≤

ǫ

1 − ρB − ǫ∗
‖U‖ := γ(ǫ)‖U‖,

with γ(ǫ) = ǫ
1−ρB−ǫ∗ → 0 as ǫ→ 0. �

Remark 4. Note that when ǫ is of the order of the machine precision, then the
sequence U ǫ

n converges to the solution U down to the machine precision times a
factor (1 − ρB − ǫ∗)−1. It is the case when we solve local and global problems
formulated on increments with a tolerance ǫ∗, and when additional errors are
of the order of the machine precision. The sequence U ǫ

n also converges to the
solution U down to the machine precision when solving local problems formulated
on increments with prescribed tolerance ǫ∗, and when solving global problems at
the machine precision, which is feasible if the global problem only involves a
deterministic operator.

4. Approximate solutions of local and global problems

4.1. Approximation spaces

We introduce finite element meshes T
eΩ

H and T Λ
h of Ω̃ and Λ respectively. We

suppose that T
eΩ

H = T
Ω\Λ

H ∪T
eΛ

H , with T
Ω\Λ

H a mesh of Ω\Λ and T
eΛ

H a mesh of Λ̃,
such that the interface Γ coincides with the intersection between the boundaries
of meshes T

Ω\Λ
H and T

eΛ
H . We also suppose that the interface Γ is contained

in the boundary of the mesh T Λ
h . We introduce finite element approximation

spaces ŨH ⊂ Ũ , Wh ⊂ W and Mh ⊂ M. In this paper, we consider meshes

T
eΩ

H and T Λ
h that are eventually not conforming on Γ. The approximation space

Mh for the Lagrange multiplier will be simply chosen as the trace on Γ of the
approximation space Wh. For the construction of suitable approximation spaces
Mh in the case of non conforming meshes, see [31] and the references therein.
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A finite element approximation space H with dimension N and basis {ϕi}
N
i=1

being given, an element v ∈ H will be associated with a vector v = (vi)
N
i=1 ∈ R

N

such that v =
∑N

i=1 viϕi. An element v ∈ HΞ will be associated with a random

vector v = (vi)
N
i=1 ∈ (RN )Ξ, such that v(ξ) =

∑N
i=1 vi(ξ)ϕi. We then introduce

finite element matrices and vectors such that

cO(U, V ) = E(VT COU), aO(U, V ) = E(VT AOU),

ℓO(V ) = E(VT LO).

For the interface coupling bilinear form bΓ(·, ·), we distinguish the bilinear form

when defined on MΞ
h × ŨΞ

H or on MΞ
h ×WΞ

h :

bΓ(λ, V ) = E(VT B̃Γλ) for V ∈ ŨΞ
H ,

bΓ(λ,w) = E(wT BΓλ) for w ∈ WΞ
h .

We also introduce an approximation space (e.g. polynomial space, finite element
space)

SP =

{
v(ξ) =

P∑

k=1

vkΨk(ξ)

}
⊂ S.

An element v ∈ H ⊗ SP can then be written v =
∑N

i=1

∑P
k=1 vk,iϕi ⊗ Ψk, and

identified with an element v ∈ R
N ⊗ SP such that v =

∑P
k=1 vk ⊗ Ψk, with

vk = (vk,i)
N
i=1 ∈ R

N .

4.2. Global problem

The approximate global problem consists in finding Ûn ∈ ŨH ⊗SP such that

ceΩ(Ûn, δU) = ceΛ(Un−1, δU) − bΓ(λn−1, δU) + ℓΩ\Λ(δU) ∀δU ∈ ŨH ⊗ SP .

It reduces to the system of algebraic equations

E(δUT CeΩÛn) = E(δUT d) ∀δU ∈ R
NU ⊗ SP ,

with
d = CeΛUn−1 − B̃Γλn−1 + LΩ\Λ.

If the fictitious diffusion parameter K̃ does not depend on the uncertain pa-
rameters ξ, finite element matrix CeΩ ∈ R

NU×NU also does not depend on the
uncertain parameters. If d ∈ R

NU ⊗ SP is given under the form

d =

m∑

i=1

di ⊗ γi,

with di ∈ R
NU and γi ∈ SP , then we directly obtain an exact decomposition of

the solution Ûn under the form

Ûn =

m∑

i=1

(C−1
eΩ

di) ⊗ γi.
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4.3. Local problems with uncertain operator and right-hand side

The approximate local problem consists in finding (wn, λn) ∈ (Wh ⊗ SP ) ×
(Mh ⊗ SP ) such that

{
aΛ(wn, δw) − bΓ(λn, δw) = ℓΛ(δw) ∀δw ∈ Wh ⊗ SP

bΓ(δλ, wn) = bΓ(δλ, Un) ∀δλ ∈ Mh ⊗ SP

(26)

It reduces to the following system of algebraic equations

{
E(δwT AΛwn) − E(δwT BΓλn) = E(δwT LΛ) ∀δw ∈ R

Nw ⊗ SP

E(δλT BT
Γwn) = E(δλT B̃ΓUn) ∀δλ ∈ R

Nλ ⊗ SP

Following Remark 1, we note that problem (26) can be reformulated by intro-
ducing a change of variable wn = U⋄

n + zn, with U⋄
n ∈ Wh ⊗ SP a prolongation

of Un from Γ to Λ such that

bΓ(δλ, U⋄
n − Un) = 0 ∀δλ ∈ Mh ⊗ SP ,

and zn ∈ Wh,0 ⊗ SP , with Wh,0 = {z ∈ Wh ; z = 0 on Γ}. zn is then solution
of

aΛ(zn, δz) = ℓΛ(δz) − aΛ(U⋄
n, δz) ∀δz ∈ Wh,0 ⊗ SP . (27)

λn is then obtained in a post-processing step using the first equation of (26).

4.4. Local problems with geometrical variabilities

The solution method presented in section 4.3 is valid when the patch con-
tains geometrical details with a fixed internal boundary ΓΛ := ∂Λ\Γ. It suffices
to introduce a conforming approximation space Wh in W. However, if the
patch Λ contains uncertain geometrical details, that means an uncertain inter-
nal boundary ΓΛ(ξ), the previous construction of approximation spaces is not
possible since the space WΞ has no more a tensor product structure. Different
strategies have been proposed in the literature for solving such problems. They
are based on reformulation of the problem on a deterministic domain, by intro-
ducing a suitable random mapping to a fixed deterministic domain [32], or by
introducing reformulations on a deterministic fictitious domain [28, 29, 30]. We
here present two types of reformulations based on the introduction of a ficti-
tious domain, the different reformulations depending on the type of boundary
conditions (Dirichlet or Neumann) that are imposed on the internal boundary
ΓΛ.

4.4.1. Fictitious domain and approximation spaces

In the present context, a natural choice consists in prolongating function
w on the fictitious patch Λ̃. We then consider functions w in W̃Ξ, with W̃ =
H1(Λ̃). Function space W̃Ξ can now be identified with the tensor product space

W̃ ⊗ S and approximation spaces can be introduced such as in section 4.1, i.e.
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by introducing a finite element approximation space W̃h ⊂ W̃ (associated with a

mesh T
eΛ

h ) and the approximation space SP ⊂ S. We also introduce the function

space W̃0 = {v ∈ W̃ ; v = 0 on Γ} and the corresponding finite element space

W̃h,0 ⊂ W̃0.

4.4.2. Neumann internal boundary conditions

We consider that ΓΛ is a Neumann boundary with homogeneous data. The
local problem can then be reformulated on the fictitious domain as follows: find
(wn, λn) ∈ (W̃h ⊗ SP ) × (Mh ⊗ SP ) such that

{
deΛ(wn, δw) − bΓ(λn, δw) = heΛ(δw) ∀δw ∈ W̃h ⊗ SP

bΓ(δλ, wn) = bΓ(δλ, Un) ∀δλ ∈ Mh ⊗ SP

, (28)

where bilinear form deΛ and linear form heΛ are defined by

deΛ(w, δw) = E

(∫

eΛ

KIΛ∇w · ∇δw

)
,

heΛ(δw) = E

(∫

eΛ

IΛfδw

)
.

with IΛ : Λ̃ × Ξ → R the indicator function of the domain Λ ∗ Ξ = {(x, y) ∈

Λ̃ × Ξ ; x ∈ Λ(y)}, such that IΛ(x, y) = 1 if x ∈ Λ(y) and IΛ(x, y) = 0 if
x /∈ Λ(y).
Again, with a suitable change of variable wn = U⋄

n + zn (see remark 1), we can

reformulate the local problem on zn ∈ W̃h,0 ⊗ SP such that

deΛ(zn, δw) = heΛ(δw) − deΛ(U⋄
n, δw) ∀δw ∈ W̃h,0 ⊗ SP . (29)

For further details on the numerical solution of such problems, see [29, 30].

4.4.3. Dirichlet internal boundary conditions

We now consider the case where ΓΛ is a Dirichlet boundary (with homoge-
neous data). We here propose a reformulation based on the use of a characteris-

tic function method [33]. We introduce a characteristic function ψ : Λ̃×Ξ → R

such that

(i) ψ(x, ξ) > 0 for x ∈ Λ(ξ),

(ii) ψ(x, ξ) = 0 for x ∈ ΓΛ(ξ),

(iii) |∇ψ(x, ξ)| 6= 0 for x ∈ ΓΛ(ξ).

A function (ψz) with z ∈ W̃h ⊗ SP satisfies the Dirichlet boundary conditions
on ΓΛ. We then introduce a change of variable wn = U⋄

n + ψzn, with U⋄
n = Un

in a weak sense on Γ, and with zn = 0 on Γ. We then look for an approximation
of the local problem under the form

wn = U⋄
n + ψzn,
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with zn ∈ W̃h,0 ⊗ SP such that

deΛ(ψzn, ψδz) = heΛ(ψδz) − deΛ(U⋄
n, ψδz) ∀δz ∈ W̃h,0 ⊗ SP , (30)

with deΛ and heΛ prolongations of aΛ and ℓΛ on the fictitious patch:

deΛ(w, δw) = E

(∫

eΛ

K⋄∇w · ∇δw

)
, heΛ(δw) = E

(∫

eΛ

f⋄δw

)
,

with K⋄ and f⋄ prolongations on Λ̃ of K and f respectively.

5. Multiple patches with independent variabilities

We now consider the introduction of several patches containing uncertainties
that are (statistically) independent between patches.

5.1. Introduction of multiple patches

The patch Λ can be considered as the disjoint union of NΛ patches {Λs}
NΛ

s=1.
We suppose that the set of parameters can be split into disjoint subsets of
parameters ξs with values in Ξs ⊂ R

ds (s = 1, . . . , NΛ), such that Λs only
depends on ξs, i.e.

Λ(ξ) = Λ1(ξ1) ∪ . . . ∪ ΛNΛ
(ξNΛ

),

and the random field K and source term f also only depend on ξs on the
subdomain Λs, i.e.

K(x, ξ) = Ks(x, ξs) for x ∈ Λs(ξs),

f(x, ξ) = fs(x, ξs) for x ∈ Λs(ξs),

for all s ∈ {1, . . . , NΛ}.

5.2. Local problems

We denote Γs = Γ ∩ ∂Λs and ΓΛs

D = ΓD ∩ ∂Λs. We then introduce

Ws = {w ∈ H1(Λs) ; w = 0 on ΓΛs

D },

Ms = H−1/2(Γs),

and the corresponding Bochner spaces WΞ
s and MΞ

s . We have

MΞ = ×NΛ

s=1M
Ξ
s , WΞ = ×NΛ

s=1W
Ξ
s ,

such that a function λ ∈ MΞ (resp. w ∈ WΞ) is considered as a collection of
local solutions λs ∈ MΞ

s (resp. ws ∈ WΞ
s ). The local step is composed of NΛ

independent problems on the Λs, that can be solved in parallel. At iteration n,
denoting wn = {ws

n}
NΛ

s=1 and λn = {λs
n}

NΛ

s=1, we have for all s ∈ {1 . . . NΛ},
{
aΛs

(ws
n, δw) − bΓs

(λs
n, δw) = ℓΛs

(δw)

bΓs
(δλ, ws

n) = bΓs
(δλ, Un)

∀(δλ, δw) ∈ MΞ
s ×WΞ

s . (31)

For patches that contain geometrical details, the approximation methods pre-
sented in section 4.4 can be applied.
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6. A first numerical example

6.1. Description of the example and approximation spaces

We consider diffusion problem (1) on Ω = (0, 5)×(0, 5) with f = 1, ΓD = ∂Ω
and ΓN = ∅. We define Λ = ∪4

s=1Λs, where the four patches Λs are square
domains with side length L = 1 and with respective centers c1 = (3.5, 3.5),
c2 = (1.5, 1), c3 = (1.5, 2.5), and c4 = (3.5, 1) (see Figure 3). We consider the
diffusion field

K(x, ξ) =

{
K0 = 1 for x ∈ Ω\Λ

Ks(x, ξs) = 1 + ξs ks(x) for x ∈ Λs, s ∈ {1, . . . , 4}

with ks(x) = α exp
(
−2 |x−cs|

2

0.252

)
if max(x − cs) < 0.25 and 0 if max(x − cs) ≥

0.25, and where ξ = (ξ1, . . . , ξ4) is a set of 4 independent uniform random
variables with values in Ξ = ×4

s=1Ξs = (0, 1)4. Constant α ∈ R controls the

level of heterogeneity. Here we have Ω̃ = Ω and Λ̃ = Λ.

(a) (b)

Figure 3: Example with localized heterogeneities. (a) Domain Ω and patches Λ1 = (3, 4) ×
(3, 4), Λ2 = (1, 2) × (0.5, 1.5), Λ3 = (1, 2) × (2, 3), Λ4 = (3, 4) × (0.5, 1.5). (b) Nested finite
element meshes (the symbols � indicate the common nodes of T Ω

H and T Λ
h

on the interface
Γ1).

At the spatial level, we introduce nested finite element approximation spaces
ŨH and Ws

h for s = 1, ..., 4. As illustrated in Figure 3, we use regular meshes

T
eΩ

H and T Λs

h composed of triangular elements of respective sizes H = 0.25 and

h = 0.025 in Ω̃ and Λs, leading to approximation spaces ŨH and Ws
h (s = 1, ..., 4)

with dimensions 441 and 1681 respectively.
At the stochastic level, we introduce for the approximation space SP a poly-

nomial space with total degree p = 3 in 4 dimensions (using Legendre polynomial
chaos basis). It yields a dimension dim(SP ) = 35.
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6.2. Convergence analysis

We denote by U ∈ ŨH ⊗SP the reference global solution obtained by a direct
resolution of the problem, and by Un ∈ ŨH ⊗ SP the global iterates obtained
with the global-local iterative algorithm. We introduce the error indicator

εΩ(Un;U) =
‖U − Un‖0,Ω

‖U‖0,Ω
(32)

with ‖ · ‖0,Ω the natural norm on L2
Pξ

(Ξ;L2(Ω)) defined by

‖u‖2
0,Ω =

∫

Ξ

∫

Ω(y)

u(x, y)2 dx dPξ(y).

We first analyze the influence of relaxation parameter ρ on the convergence
of the iterative algorithm. The optimal relaxation parameter of the global-local
iterative algorithm can be shown to be (see [34])

ρopt =
2

λmin(A) + λmax(A)

where λmin(A) and λmax(A) are the lowest and largest eigenvalues of operator
A(V ) = V − Φ(Ψ(V ), V ), defined in (18). In practice, λmax(A) is estimated
using some power iterations (typically 2 or 3), each power iteration requiring
the solution of one local problem (for computing Ψ(V )) and one global problem
(for computing Φ(Ψ(V ), V )). Since it is hard task to determine λmin(A), in the
following the optimal relaxation parameter is approximated as follows:

ρopt ≈ ρ∗ =
1

λmax(A)

This approximation is rather pertinent if the operator A is well conditioned,
that means λmin(A) and λmax(A) are of the same order.

The iterative global-local algorithm is carried out using fictitious coefficient
K̃ = 1 on Λ̃ which corresponds to a global problem that does not see any het-
erogeneity. Figure 4 shows the error indicator εΩ(Un;U) with respect to the
number of iterations for α ∈ {−0.9, 10, 30, 100} and for different values of re-
laxation parameter ρ. We observe in all cases that the approximate optimal
relaxation parameter ρ∗ gives almost optimal convergence, the optimal conver-
gence being actually obtained for the true optimal relaxation parameter ρopt.
We observe that the algorithm converges quite fast (relative error less than 10−5

for n ≤ 10) for the different levels of heterogeneities.
Figure 5 gathers the previous convergence curves obtained with the respec-

tive approximate optimal relaxation parameters ρ∗ for α ∈ {−0.9, 10, 30, 100}
in order to show the effect of the amplitude of the diffusion coefficients in the
patches on the convergence of the algorithm. We see that convergence deteri-
orates as α increases, that is to say as the ratio between the maximum value
of the diffusion field Ks and the fictitious field K̃ increases. The question thus
raises of the need to tune the fictitious field K̃ to improve convergence.
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Figure 4: Evolution of the error indicator εΩ(Un;U) with the number of iterations n for
α ∈ {−0.9, 10, 30, 100} and for different values of relaxation parameter ρ.
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Figure 5: Evolution of the error indicator εΩ(Un;U) with the number of iterations n for several
values of parameter α.

Noting that K̃ acts as preconditioner of the iterative algorithm, we can study
its influence on the convergence of the algorithm. We thus introduce a fictitious
diffusion field of the form

K̃s(x, ξs) = 1 + β ks(x) for x ∈ Λ̃s, s ∈ {1, . . . , 4},

with β ∈ R. β = 0 corresponds to the case K̃ = 1 studied earlier where the
global problem does not see any heterogeneity, and β = 0.5 corresponds to
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choosing the expectation of the diffusion field as the fictitious field in the global
problem.

Figure 6 illustrates the convergence of iterates Un towards the reference
solution U , for α ∈ {−0.9, 10, 30, 100} and for different values of β. For each of
these values, u is computed using either the corresponding approximate optimal
relaxation parameters ρ∗ (solid lines) or ρ = 1 (dashed lines). On the one hand,
as can be observed for α = 100, the global-local iterative algorithm using ρ = 1
suffers from high heterogeneities when β is set to 0. Good convergence can be
recovered by simply increasing β up to 0.3, or at least no more than 0.5. On
the other hand, it comes out that using the approximate optimal relaxation
parameter ensures a good convergence rate whatever the value of β in [0, 0.5]
and whatever the level of heterogeneity. Finally, performing the local-global
iteration algorithm with β = 0 and ρ = ρ∗ is retained as the convenient choice
for it gives good convergence properties and leads to a simple global problem
with no heterogeneities.
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Figure 6: Evolution of the error indicator εΩ(Un;U) with the number of iterations n of
the local-global iterative algorithm for several values of β and with ρ = 1 (dashed lines) or
ρ∗ = 1

λmax(A)
(solid lines).

20



6.3. Robustness with respect to approximations

Global problems, involving a deterministic operator, are solved at the ma-
chine precision while local problems are solved using a Conjugate Gradient
Squared (CGS) algorithm with a prescribed tolerance. Figure 7(a) shows the
convergence of solution Un, computed with the global-local iterative algorithm
for different tolerances of CGS, towards the reference solution U computed at
machine precision. The iterative algorithm converges until the error indica-
tor εΩ(Un;U) stabilizes around the tolerance imposed to the CGS solver, thus
showing the robustness of the global-local iterative algorithm with respect to
approximations.
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Figure 7: Evolution of error indicator εΩ(Un;U) with the number of iterations n for α =
10, K̃ = 1, ρ = 1. (a) Local problems computed with a CGS algorithm with different
tolerances and (b) local problems formulated on increments computed with a CGS algorithm
with prescribed tolerance 0.1

The local problem is now formulated on the increment δzn = zn − zn−1. A
CGS algorithm with a coarse prescribed tolerance 0.1 is used to compute δzn.
In figure 7(b), we see that Un converges to the reference solution down to the
machine precision, as expected (see section 3.5).

6.4. Illustration of probabilistic outputs

This section aims at illustrating the statistics of the solution for further
comprehension of the properties of the global-local iterative algorithm. Figure
8 shows the mean and the variance of the global solution U and of the recon-
structed solution u. E(Y ) and V(Y ) respectively denote the mean and variance
of a random variable Y . The variance, which is here of rather small magnitude,
is captured by the local solutions in the patches.

In order to quantify the impact of a random variable on the variance of the
solution, we introduce the following sensitivity indices:

Ss(u)(x) =
V(E(u(x, ξ)|ξs))

V(u(x, ξ))
, S̃s(u)(x) =

V(E(u(x, ξ)|ξs))

supy∈Ω V(u(y, ξ))
.

21



(a) E(U) (b) V(U)

(c) E(u) (d) V(u)

Figure 8: Mean and variance of the global solution U (a and b) and of the reconstructed
solution u (c and d). Interface Γ is displayed with black lines.

Note that Ss(u)(x) are the classical first order Sobol indices such that
∑

s Ss(u)(x) =

1 for all x, as it can be seen in figure 9. The S̃s(u)(x) are introduced to illustrate
the zone of influence of a set of random variables ξs (associated with a patch

Λs) on the solution u. They are such that
∑

s S̃s(u)(x) = V(u(x,ξ))
supy∈Ω

V(u(y,ξ)) . The

latter are plotted in figure 10 for the four patches. We can see that the solution
is sensitive to a random variable ξs essentially inside the respective patch Λs, for
s = 1, . . . , 4. In this example, the impact of the input uncertainties on solution
u is localized and the sizes of the patches Λs can be chosen to hold the main
effects of the input random variables on the solution.
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(a) S1(u) (b) S2(u)

(c) S3(u) (d) S4(u)

Figure 9: Sobol sensitivity indices Ss(u) for s = 1, 2, 3, 4.
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(a) eS1(u) (b) eS2(u)

(c) eS3(u) (d) eS4(u)

Figure 10: Sensitivity indices eSs(u) for s = 1, 2, 3, 4. In white lines, interface Γ for 3 different
sizes of patches: L = 1 in solid line and L = 0.5 and L = 1.5 in dashed line.
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6.5. Motivations for the separation of scales

Influence of the size of the patches on the convergence. In this section we study
the influence of the size of the patches on the convergence of the global-local
iterative algorithm. The algorithm is carried out for different side lengths L ∈
{0.5, 1, 1.5} of square patches Λs. For each size of the patch, the iterative
algorithm is carried out using the approximate optimal relaxation parameter
ρ∗. Figure 11 shows the convergence of Un towards U . The convergence rate
appears to be independent of L for L ≥ 1, while it slightly deteriorates for
L = 0.5. Looking at figure 10, we observe that for L ≥ 1, the patches contain
almost the entire zone of influence of random variables ξs, whereas for L = 0.5,
high values of the sensitivity index are observed outside the patches.
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Figure 11: Convergence of the solution of the global-local iterative algorithm: evolution of
the error indicator εΩ(Un;U) with the number of iterations n for different side lengths L of
the patches.

Spectral content of solutions. In the following section, tensor approximation
methods will be introduced in order to drastically reduce the costs for comput-
ing local and global problems. The performance of these tensor decomposition
methods are strongly related to the spectral contents of the functions to be
approximated. To that purpose, we now study the influence of the size of the
patches on the rank of the Karhunen-Loève decompositions of the solutions. Let
um, Un,m and ws

n,m be the rank-m Karhunen-Loève decompositions of u, Un

and ws
n respectively. Figure 12 shows the evolutions with respect to rank m of

εΩ(um;u), εΩ(U60,m;U60) and εΛs
(ws

60,m;ws
60) for s = 1, . . . , 4. For a given pre-

cision, the separation of scales operated by the global-local iterative algorithm
allows to obtain iterates Un and ws

n that can be decomposed with a rank lower
than the rank of the overall solution u. The convergence with m of the error
indicator εΩ(U60,m;U60), which reflects the convergence of the Karhunen-Loève
decomposition, is plotted in figure 12(d) for different patch sizes L = 0.5, 1, 1.5.
We observe that increasing the size of the patches decreases the rank of the
decompositions of the global solutions (for a fixed precision). This observation
is in good agreement with that made earlier: choosing a sufficiently large patch
that contains almost the entire zone of influence of the heterogeneities benefits
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both the convergence of the global-local iterative method and the spectral de-
composition of the solutions of the iterative algorithm. By this splitting of the
solution u into a global solution U and local solutions ws, we obtain a fast decay
in the spectrum of the functions to be approximated. That will be exploited by
the following tensor approximation methods.
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(c) L = 1.5
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(d) εΩ(Um;U)

Figure 12: Karhunen-Loève decompositions of u and of the iterates Un and ws
n at iteration

n = 60. Evolutions with rank m of εΩ(um;u), εΩ(U60,m;U60) and εΛs
(ws

60,m;ws
60) for

s = 1, . . . , 4 and different dimensions of the patches: (a) L = 0.5, (b) L = 1 and (c) L = 1.5.
(d) Evolution with rank m of εΩ(U60,m;U60) for the three dimensions of the patches.

7. Solution of local and global problems using tensor approximation

methods

7.1. Tensor product structure of stochastic function spaces

If H is a deterministic function space, then

HΞ = H⊗ S

with S = L2
Pξ

(Ξ). An element in HΞ can then be interpreted as a two-order
tensor. When the set of random variables ξ is a collection of NΛ independent
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sets ξs of random variables, then probability measure Pξ = Pξ1
⊗ . . . ⊗ PξNΛ

,
and the space S has the following tensor product structure:

S = S1 ⊗ . . .⊗ SNΛ

with Ss = L2
Pξs

(Ξs). This tensor product structure of stochastic function spaces
will be here exploited.

7.2. Tensor spaces and tensor approximations

For a tensor Hilbert space V = V1 ⊗ . . . ⊗ Vd, we denote by R1(V ) the
set of rank-one elements: R1(V ) =

{
⊗d

k=1v
k ∈ V ; vk ∈ Vk, 1 ≤ k ≤ d

}
, and by

Rm(V ) the set of rank-m elements: Rm(V ) = {
∑m

i=1 vi; vi ∈ R1(V ), 1 ≤ i ≤ m}.
For the case of function space HΞ, with H a Hilbert space, different types of
approximations of an element u ∈ HΞ can be obtained by using different struc-
tures of this tensor space. The reader can refer to [35, 36, 25] for an overview
of tensor based numerical methods.

2-order canonical decomposition. Considering HΞ = H⊗S, we can introduce a
rank-m decomposition um ∈ Rm(H⊗ S) which reads

um =

m∑

i=1

Zi ⊗ φi with Zi ∈ H and φi ∈ S. (33)

This decomposition does not circumvent the curse of dimensionality associated
with the approximation of functions in S.

(NΛ +1)-order canonical decomposition. Considering HΞ = H⊗S1⊗ . . .⊗SNΛ
,

we can introduce a rank-m decomposition um ∈ Rm(H⊗S1 ⊗ . . .⊗SNΛ
) which

reads

um =

m∑

i=1

Zi ⊗ φ1
i ⊗ . . .⊗ φNΛ

i with Zi ∈ H and φs
i ∈ Ss (34)

Remark 5. Note that a rank-m representation can be seen as an approximation
of an element u ∈ HΞ on a m-dimensional basis composed of stochastic functions
{φi}

m
i=1 which are such that φi(ξ) = φ1

i (ξ1) . . . φ
NΛ

i (ξNΛ
).

Hierarchical canonical decomposition. A hierarchical canonical representation
of u ∈ H ⊗ S can also be introduced as follows:

um =

m∑

i=1

Zi ⊗ φi, with Zi ∈ H and φi ∈ Rri
(S1 ⊗ . . .⊗ SNΛ

). (35)

This hierarchical canonical representation can be seen as an approximation of
the two-order canonical decomposition (33). With sufficiently accurate rank-
ri approximations φi, the best rank-m approximation (35) is close to the best
rank-m approximation (33), which is far better than the decomposition (34) in
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most practical applications. Hereafter, we introduce the following notations for
hierarchical representations:

HRr
1(H

Ξ) = {Z ⊗ φ;Z ∈ H, φ ∈ Rr(S1 ⊗ . . .⊗ SNΛ
)} ⊂ R1(H⊗ S),

and

HRr

m(HΞ) = HRr1

1 (HΞ) + . . .+ HRrm

1 (HΞ) ⊂ Rm(H⊗ S).

7.3. A greedy algorithm for tensor decomposition (Proper Generalized Decom-
position)

We now present a methodology for the progressive construction of a tensor
decomposition of the solution of a variational problem (global problem or local
problems), under the form (33), (34) or (35). Let us consider a problem which
admits the following generic variational form

u ∈ HΞ, A(u, δu) = L(δu) ∀δu ∈ HΞ,

with A symmetric continuous and coercive. The problem is equivalent to

u = arg min
v∈HΞ

J (v), J (v) =
1

2
A(v, v) − L(v).

We now present progressive constructions of decompositions of type (33), (34) or
(35). Suppose that um−1 is known and denote by X the tensor approximation
subset R1(H ⊗ S), R1(H ⊗ S1 ⊗ . . . ⊗ SNΛ

) or HRrm

1 (H ⊗ S1 ⊗ . . . ⊗ SNΛ
)

(respectively for decompositions of type (33), (34) or (35)). Then, we define a
new element vm ∈ X such that

J (um−1 + vm) ≈ min
v∈X

J (um−1 + v)

where the symbol ≈ means that we compute an approximation of an optimal
element in X , and we define um = um−1 + vm.

Alternating minimization algorithms. In practice, we compute an approxima-
tion of vm using alternating minimization algorithms. For X = R1(H ⊗ S)
(resp. X = R1(H⊗S1⊗ . . .⊗SNΛ

)), we obtain an element vm = Zm⊗φm (resp.
vm = Zm⊗φ1

m⊗ . . .⊗φNΛ

m ) by alternatively minimizing on Zm ∈ H and φm ∈ S
(resp. Zm ∈ H, φ1

m ∈ S1, ..., φNΛ

m ∈ SNΛ
). For X = HRrm

1 (H⊗S1 ⊗ . . .⊗SNΛ
),

we obtain an approximation vm = Zm ⊗ φm by an alternating minimization
algorithm which consists in solving alternatively:

• a minimization problem on H:

Zm = arg min
Z∈H

J (um−1 + Z ⊗ φm)
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• a minimization problem on S:

φm ≈ arg min
φ∈S

J (um−1 + Zm ⊗ φ)

where the symbol ≈ means that this problem is approximated using a
second tensor approximation algorithm, leading to a rank-rm approxima-
tion φm,rm

∈ Rrm

1 (S1 ⊗ . . . ⊗ SNΛ
) of φm, with a rank rm depending on

the required precision. This approximation φm,rm
is constructed progres-

sively by letting φm,0 = 0 and by defining φm,r = φm,r−1 + ϕm,r, with
ϕm,r ∈ R1(S1 ⊗ . . .⊗ SNΛ

) such that

ϕm,r ∈ arg min
ϕ∈R1(S1⊗...⊗SNΛ

)
J (um−1 + Zm ⊗ (φm,r−1 + ϕ)).

These minimization problems on R1(S1⊗ . . .⊗SNΛ
) are again solved with

an alternating minimization algorithm consisting in minimizing succes-
sively on spaces Ss, 1 ≤ s ≤ NΛ. The reader can refer to [26] for practical
implementation of these algorithms.

7.4. Strategies for the resolution of the local and global problems

The global problems (10) and local problems (11) within the global-local
iterative algorithm can be formulated either on the iterates or on the increments
between two iterates, as mentioned in section 3.5. It yields to different strategies.

First strategy: formulation on the iterates. The local and global problems are
formulated on the iterates. Local problems are solved using tensor approxima-
tion methods, with a given tolerance ǫ. Global problems are solved exactly or
using the greedy algorithm for tensor decomposition, depending on wether the
operator is deterministic or not. This corresponds to ǫ∗ = 0 and ǫ > 0 in theo-
rem 5. The error on the solution then tends to the given finite precision of the
tensor decompositions.

Second strategy: formulation on the increments between iterates. Another possi-
bility is to solve the local problems reformulated on the increments using tensor
approximation methods. The greedy algorithm is used for the construction of a
tensor decomposition of the increment, either with a fixed coarse tolerance ǫ∗ or
with a given low rank. Note that in the latter case, the effective precision ǫ∗ of
the resulting tensor decomposition depends on the iterate n and can deteriorate
with n. At each iteration, the solutions are truncated with a tolerance ǫ in or-
der to maintain low rank decompositions (using classical tensor approximation
algorithms [35, 25]).

8. Numerical example using tensor approximation methods

8.1. Description of the problem

We consider diffusion problem (1) with f = 1, ΓD = ∂Ω(ξ) and ΓN = ∅.
We define seven patches Λs(ξs), s = 1, . . . , 7, represented in figure 13 with
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side length L = 2 and respective centers cs: c1 = (2, 2), c2 = (5, 2), c3(8, 2),
c4 = (2, 6), c5 = (5, 8), c6 = (8, 6) and c7 = (1, 9).

The diffusion coefficient is uncertain on patches Λ1, Λ3 and Λ5. We consider

K =





1 for x ∈ Ω \ (Λ1∪Λ3∪Λ5)

1 +
∑5

k=1 ξ
k
s k

k
s (x) for x ∈ Λs, for s ∈ {1, 3}

1 + ξ5I(x) for x ∈ Λ5

with

ks(x) = 10 exp

(
−2

|x− ak
s |

2

0.252

)
, s ∈ {1, 3}

and

I(x) =

{
3 if x ∈ D5 = (4.5, 5.5) × (7.5, 8.5)
0 if x ∈ Λ5 \D5

where ak
s , for s ∈ {1, 3} and for k ∈ {1, . . . , 5}, is a point in patch Λs and where

the ξk
1 , ξk

3 and ξ5 are independent uniform random variables on Ξk
1 = (0, 1),

Ξk
3 = (0, 1) and Ξ5 = (0, 1) respectively. We denote Ξ1 = ×5

k=1Ξ
k
1 ⊂ R

5,
Ξ3 = ×5

k=1Ξ
k
2 ⊂ R

5 and Ξ5 ⊂ R the sets of elementary events associated with

patches Λ1 = Λ̃1, Λ3 = Λ̃3 and Λ5 = Λ̃5 respectively.
Domain Ω(ξ) also presents geometrical details with homogeneous Dirichlet

conditions on circular internal boundaries. Let us denote sD = {2, 4, 6, 7} the
set of indices of the patches with random internal Dirichlet boundaries. Patches
Λ2(ξ) and Λ4(ξ) present circular boundaries of random radii rs = 0.3+0.1 ξs and
centered on cs for s = 2, 4. In patch Λ6(ξ) we define a circular boundary with
radius r6 = 0.3 and with random position of the center c(ξ6) = (8 + 0.1ξ6, 6).
Finally, in patch Λ7(ξ) we consider a corner in a circular arc with center (1 +
0.5ξ7, 9 − 0.5ξ7) and with radius r7 = 1 + 0.5ξ7. ξs for s ∈ sD are uniform
identically distributed random variables on Ξs = (0, 1) respectively.

We introduce fictitious patches Λ̃2, Λ̃4, Λ̃6 and Λ̃7 and fictitious domain Ω̃
such that Ω̃ = (0, 10) × (0, 10) and Ω(ξ) = (Ω̃ \ ∪s∈sD

Λ̃s) ∪s∈sD
Λs(ξs).

The global problem is defined on domain Ω̃ which does not contain any
geometrical detail and it is associated with deterministic diffusion coefficient
K̃ = 1 on Ω̃. The global problem has thus a deterministic operator. The local
problems on Λs(ξ) with s ∈ sD are solved using the characteristic function
method. The characteristic functions ψs(x, ξs) are chosen as the opposite of the

random level-set functions the iso-zero of which in patch Λ̃s (for s ∈ sD) define

the random boundaries inside Λ̃s. Non nested finite element approximation
spaces ŨH and W̃h are introduced using regular meshes with element sizes H =
0.5 and h ≈ 0.07 on Ω̃ and Λ̃ respectively. The dimensions of approximation
spaces ŨH and W̃s

h (for s = 1, . . . , 7) are 441 and 900 respectively. We introduce
a stochastic approximation space SP = S1,P1

⊗ . . .⊗S7,P7
, where for s ∈ sD, the

Ss,Ps
are piecewise polynomial spaces with degree 3 on a uniform partition of

Ξs (resulting in dimensions Ps = 24 for s ∈ sD), and where for s /∈ sD, the Ss,Ps

are multidimensional polynomial spaces of degree 3 (resulting in dimensions
P1 = P3 = 56 and P5 = 4). It results in a dimension dim(SP ) ≈ 4.2 109.
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Λ1 Λ3

Λ5

Λ2(ξ2)

Λ4(ξ4) Λ6(ξ6)

Λ7(ξ7)

Figure 13: Diffusion problem with 7 patches

Global and local problems are approximated in canonical or hierarchical
canonical tensor formats. Global problems are solved exactly since they only
involve a deterministic operator, while the local problems are solved using the
greedy constructions presented in section 7.3.

8.2. Tensor approximations of the local solutions using Proper Generalized De-
compositions

8.2.1. Canonical tensor approximations

Here, canonical tensor approximations of the local solutions (in Rm(W̃s
h ⊗

S1,P1
⊗ . . . ⊗ S7,P7

)) are constructed using the greedy algorithm presented in
section 7.3. When the local problem is formulated on the iterate zn, we solve the
problem with a prescribed tolerance ǫ = 5.10−3 on the residual. When the local
problem is formulated on the increment δzn, we use a coarse tolerance ǫ∗ = 0.1
on the residual. At each iteration the global iterates Un and the Lagrange
multipliers λs

n are compressed using classical canonical tensor decomposition
algorithms in order to reduce their representation rank. For this compression
step, we use a tolerance ǫ = 5.10−3.

In order to illustrate the robustness of the method with respect to approx-
imations, the error of stagnation εeΩ(Un−1;Un) is plotted as a function of the
iteration n in figure 14. The relaxation parameter of the global-local iterative
algorithm is chosen as ρ = 0.2 ≈ ρ∗ = 1

λmax(A) . We see that for both formu-

lations, on the solution or on the increment, the error decreases down to the
finite precision 5.10−3 introduced in the tensor decompositions. Note that when
formulating local problems on increments, we still observe a stagnation of the
global-local algorithm due to additional errors introduced in the compression of
the global iterates and the Lagrange multipliers (corresponding to an error of
type ǫ in theorem 5).
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(a) Formulation on the solution zn.
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(b) Formulation on the increment δzn.

Figure 14: Evolution of error indicator εeΩ
(Un−1, Un) with the number of iterations n with

a prescribed tolerance ǫ = 5.10−3 on the canonical representation of global solutions. (a)
Formulation on the solution zn, canonical decomposition with prescribed tolerance ǫ = 5.10−3,
(b) formulation on the increment δzn, canonical decomposition with prescribed tolerance
ǫ∗ = 0.1.

Figure 15 shows a random sample of the solutions obtained at iteration
n = 14. For a sake of clarity, the subscript n referring to the iteration has been
omitted in the legend of the figure and vm denotes here a rank-m decompo-
sition of a quantity v. This light notation is adopted in the following of this
section only. We see that the local solutions in patches with random Dirich-
let boundaries have higher ranks than those in patches with random diffusion
coefficients.

We now analyze the convergence of rank-m canonical tensor decompositions
Um and ws

m of global iterate U and local iterates ws at iteration n = 14. Figure
16 shows the evolution of εeΩ(Um;U) and εeΛs

(ws
m;ws) with respect to rank

m. The local solutions in patches with random geometry still have higher ranks
than those of U and of the other local solutions in patches with random diffusion
fields. However, by operating a separation of scales, the multiscale method with
patches has participated in reducing the ranks of the tensor decompositions of
the local and global solutions and therefore contributes to the good performance
of the overall method.

8.2.2. Hierarchical canonical tensor approximations

Now, hierarchical canonical tensor approximations are introduced for solving
local problems, which are here formulated on the iterate (and not on the incre-

ment). Approximations in HRr

m(W̃s
h ⊗ SP ) are constructed using the greedy

algorithm presented in section 7.3. The tolerance is set to 5.10−3 in terms of the
residual error at the two levels of approximations in the hierarchical canonical
decomposition. At each iteration the global iterates Un are also compressed in

HRr

m(ŨH ⊗ SP ) with a tolerance ǫ = 5.10−3 at each level of approximation in
the hierarchical canonical decomposition. Figure 17 illustrates the convergence
of the global-local iterative algorithm and again we observe a very good con-
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(a) U5 (b) Reconstructed solution u

(c) w1
8 = U⋄ + z13 (d) w2

27 = U⋄ +
ψ2z211

(e) w3
8 = U⋄ + z33 (f) w4

25 = U⋄ +
ψ4z410

(g) w5
9 = U⋄ + z54 (h) w6

23 = U⋄+ψ6z69 (i) w7
17 = U⋄ +ψ7z76

Figure 15: Random samples of global solution U , local solutions ws for s = 1, . . . , 7 and
reconstructed solution u at iteration n = 14.

vergence down to an error lower than the prescribed tolerance 5.10−3. This is
due to the fact that hierarchical canonical decompositions converge very fast
(as illustrated below) and that the effective precision of the resulting low rank
decompositions is less than the prescribed tolerance.

Figure 18 shows the ranks m of local solutions zs with respect to the iter-
ations n using either the canonical or the hierarchical canonical tensor approx-
imations. The hierarchical decomposition shows a significant improvement in
the rank of local solutions zs. Indeed, while the canonical decompositions reach
ranks up to m = 4 in patches with random diffusion field or m = 12 for patches
with random Dirichlet boundaries, the hierarchical decompositions have very
low ranks 1 or 2. Having these low rank representations, the Lagrange multi-
pliers λs also have low ranks and do not need to be compressed for efficiency
reasons. Therefore, no additional error is introduced.
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Figure 16: Evolutions of εeΩ
(Um;U) and εeΛs

(ws
m;ws) for s = 1, · · · , 7 with respect to rank

m. Um and ws
m denote rank-m canonical decompositions of solutions at iteration n = 14.

(Dashed lines) patches with random diffusion field and (Dotted lines) patches with random
internal boundaries with Dirichlet conditions.
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Figure 17: Evolution of error indicator εeΩ
(Un−1, Un) with the number of iterations n when

using hierarchical canonical tensor approximations for local and global solutions (with a pre-
scribed tolerance ǫ = 5.10−3).

9. Conclusion

A dedicated method has been proposed for dealing with multiscale problems
with localized sources of uncertainties. It is based on a domain decomposition
method with patches associated with a global-local iterative algorithm that en-
ables the introduction of refined local approximation to well describe local quan-
tities. When dealing with geometrical variability, fictitious domain methods that
enable the formulation of the problem on a tensor product space have been in-
troduced. The global-local iterative algorithm has nice convergence properties.
Indeed, results on the first numerical example have shown that the parameters
of the algorithm can be chosen so to have simple deterministic global problems
while conserving a good convergence rate. The separation of scales also benefits

34



0 5 10 15 20 25 30
0

1

2

3

4

 

 

(a) s = 1

0 5 10 15 20 25 30
0

2

4

6

8

10

12

 

 

(b) s = 2

0 5 10 15 20 25 30
0

1

2

3

4

 

 

(c) s = 3

0 5 10 15 20 25 30
0

2

4

6

8

10

12

 

 

(d) s = 4

0 5 10 15 20 25 30
0

1

2

3

4

 

 

(e) s = 5

0 5 10 15 20 25 30
0

2

4

6

8

10

12

 

 

(f) s = 6

0 5 10 15 20 25 30
0

2

4

6

8

10

 

 

(g) s = 7

Figure 18: Ranks of local solutions zs for patches s = 1, . . . , 7: (red) canonical decomposition
and (black) hierarchical canonical decomposition.

tensor based methods that are used to solve high dimensional global and local
problems. The hierarchical canonical decomposition has revealed particularly
efficient for obtaining very low ranks decompositions of the global and local so-
lutions. The sizes of the patches should however be chosen with attention since
they reveal to have a double impact: when chosen too small, that is to say when
the patch does not hold the main effects of the localized uncertainties on the
response, the convergence rate of the iterative algorithm deteriorates and the
global solutions have higher rank decompositions.

The global and local problems can be simplified by exploiting the sensitivity
indices introduced for assessing the zone of influence of the different sets of
random variables on the solution. In fact, the dependancy of the global and local
solutions to some sets of variables can be neglected for further computational
savings. The proposed approach can be extended to a wider class of models
including non-linear models.
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Finite Element Method for solving stochastic partial differential equations
on random domains. Computer Methods in Applied Mechanics and Engi-
neering, 197(51-52):4663–4682, 2008.

[30] A. Nouy, M. Chevreuil, and E. Safatly. Fictitious domain method and
separated representations for the solution of boundary value problems on
uncertain parameterized domains. Computer Methods in Applied Mechanics
and Engineering, 200:3066–3082, 2011.

[31] B.I. Wohlmuth. Discretization methods and iterative solvers based on do-
main decomposition. 2001.

[32] D. Xiu and D. M. Tartakovsky. Numerical methods for differential equa-
tions in random domains. SIAM J. Sci. Comput., 28(3):1167–1185, 2006.
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