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ABSTRACT The recovery of the depth estimation has been increasingly

In this paper, we propose a new approach for estimating depHPed in a variety of fields such as movies, web networks, 3D

maps of stereo images which are prone to various types 5?(:_0”3”“0“0” and Compute_r games. D_urir!g the_ last c_ieca_des
noise. This method, based on a parallel proximal algorithm\,’ar'ous methods have been introduced in disparity eskmati

gives a great flexibility in the choice of the constrained cri especially in computer vision [1]. Stereo matching alguns

terion to be minimized, thus allowing us to take into accounf'® generally classified into two categories: feature based
different types of noise distributions. Our main objeciiseo area based ones. Feature based methods match the feature

present an iterative estimation method based on recent Coﬁl_e:cnents bettvt\:_eengwto images [|2], V(V:h"e artlea tbhased r(r;;:t htOdS
vex optimization algorithms and proximal tools. Results fo perform maiching between pixels. Lurrently, the assogiate

several error measures demonstrate the effectivenesoand problems are often solved using discrete optimization-tech

bustness of the proposed method for disparity map estimatid"94¢s based ona global approach. Algorithms.such as dy-
even in the presence of perturbations. namic programming [3], graph cuts [4] and variational meth-

o o _ ods [5] were proposed. Note that variational-based dispar-
Index Terms— Proximity operator, total variation, tight ity estimation methods demonstrated excellent performanc
frame, proximal algorithms, convex optimizatiof),-norm,  compared with the state-of-the-art.

Kullback-Leibler divergence. In [5], a convex energy function approximation.bfs derived
and minimized subject to various convex constraints (mod-
1. INTRODUCTION eled by convex setéC;)1<;<m) arising from prior knowl-

edges and observed data. The optimization problem (1) to
Given any two images of the same scene acquired by sterebe solved then becomes
scopic cameras, it can be seen that a degree of similargysexi .
between the two views. Indeed, the pixel at positioin the L,iugé{{??{l}?ﬁm} (), (3)
left imagel; corresponds to a pixel at position— u in the
right imagelr: the disparity of those pixels is denoted by
The matching problem amounts to searching for the disparitg
field © which minimizes an error measure. Consequently, w
can express the stereo matching problem as :

where (L;)1<;<m are linear operators. However, the em-
loyed algorithm requires not only the strict convexity loé t
riterion to be considered but a quadratic form of it.

This paper describes a new DDE (Dense Disparity Es-
timation) approach that generalizes the convex optinorati
minimize .J(u), 1) approximation presented in [5]. The proposed method is

u based on some proximity operatpi¢x) properties and then,
it is no longer limited to strictly convex quadratic criteri
Therefore, explicit expressions of theox of some norms
J(u) = Z oI (z,y) — Ir(z — u(z,y),y)) (2)  such ad;-norm and more generallf,-norm withp > 1 or
(2.9)€D the Kullback-Leibler divergence allow us to apply such prox
imal algorithms to our disparity map estimation problem. By
and ¢ is assumed to belong ,(R) which is the class of allowing a rich choice of distance functions, the proposed
a proper lower-semi continuous convex function fr&to  technique is well-suited for dealing with different typeks o
] — 00, +00]. D C Z? is the considered finite image domain. noise corrupting the observed data, such as Poisson noise,

where,



salt and pepper noise or Gaussian noise. [ f(2) [ ProX ;& l

é(x —2),z € RN 2z + prox, (z — 2)

The remainder of the paper is organized as follows: Seg-#(/#).p € R\ {0} PP p2 (/p)

tion 2 describes the basis tools employed in our approach.?(~); semi-orthogonal, z v L (proxy o (L) — L)
; VL ERMXN LLT = ul,y >0
Section 3 lays out the problem statement. Results on the Mid= 0 —
dlebury datasétare provided in Section 4. Finally, some con-| tc(z) = {+Oo it x ¢ C Pex
clusions are drawn in Section 5. XS 0050
—xIn(z) +az, if >0 Tz —a+ ]|z — a2 +4x
2. BACKGROUND +00 if <0 2

We will now present some tools which are useful in the solu-Table 1. Some proximity operator propertiek denotes the
tion of our minimization problem. In what follows, we will identity matrix) [7].

focus on the definition of the proximity operators, totalisar

tion and tight frames.

2.1. Proximity operator 2.3. Tight frame
The proximity operator of a convex function is a natural ex-Frame representations [12] and more precisely tight frame
tension of the projection operaté¥- onto a nonempty closed representations have been widely used during the last decad

convex seC' c RN [6, 7, 8]. The projectiorPcy of a point Such transforms can be described by an analysis frame oper-
y € RN ontoC is the solution to the problem: ator I’ and a synthesis frame operatr . F is said to be a

tight frame whenF' T F' = v1, wherev > 0.

A simple example of a tight frame is the unionmaforthogo-
nal wavelet bases [13], thus leading to a tight frame represe
tation withy = m.

whereic € To(RY) is the indicator function of’. In thi r we will restrict our attention to the uniondof
In a seminal paper [9], Moreau proposed the following exten- S paper, we estrict our attention 1o the unio

sion of the notion of projection by replacing the function shifted orthonormal Haar bases overesolution level.
by an arbitrary functiory € T'x(R™). Then, the problem can
be rewritten as

. 1 2
minimize (o(z — ||z — 4
mimize 10(z) + 5 o~y @

2.4. PPXA+ Algorithm

1
minimize flz)+ 5 |z —yl?. (5)

2ERN Many algorithms have been formulated in the literature to

. . . . _ ... solve optimization problems like (1). In our case, we use the
This problem admits a unique solution which is the proximity o, .o11el Proximal Algorithm (PPXA+) [14] which is a flexible

operatorprox sy of f aty. _ , tool. PPXA+ (algorithm 1) allows us to minimize a convex
Proximity operators have very attractive properties [@tth criterion.J on some closed convex constraint SEts) < ;<.

make them particularly well-suited to design iterative imin It consists of computing, in parallel, the projections otite

mization algorithms. In Table 1, we summarize some of themyigarant convex SetéC;)1<i<, and the proximity operator
that will be needed to obtain closed form expressions of th(af the criterion.J -
required proximity operators. Suppose that the following assumptions hold.

2.2. Total variation e > L[ L; +Iis an invertible matrix.

Let H andV be two spatial convolution operators correspond-

ing respectively to the computation of horizontal and waiti e 34 € RE suchthat(Vi € {1,...,m}) L;u € 1i(C;)
discrete gradients. Then, a discrete version of the tora va anda € ri(dom J).2
ation (TV) for which proximity tools can be applied is the
following [10, 11]: e (M)nen is @ sequence of relaxation parameters such
that ¥n € N) A < A\, 11 < A\, < 2, wherel €]0,2[.
TV() = Y V[Hu(z,y)? + [Vulz,y)]?  (6)

(z.y)eD Then, the sequende.,, ),cn generated by Algorithm 1 con-
It should be noticed that, in our simulations, we apply peri-Verges to a solution to Problem (3), provided that such & solu
odic convolutions, which means that the operatdrandl/  tlon exists.
are diagonalized by a Fast Fourier Transform.

2dom J is the domain of and the relative interior of a s€t is denoted
Ihttp://cat.mddl ebury. edu/ st er eo/ newdat a. ht by riC.




of the similarity criterion. This is performed by rewriting
[Initialization] as:
(W1, ooy wim) €]0, +o00[™,y >0
(zi,0)1<i<mt1 € RV x ... x RVm x RE _ _
G D Jw)= Y oT(y)ulz,y) —r(z,y) @11
uo = QX7 wil] 25,0 + YzZm41,0) (@,y)€P\O
Forn=0,1,...do The proposed PPXA+ algorithm provides an efficient solution
Fori=1,...,mdo to solve this problem. Our main contribution here lies in the
| pijn = Po,(zin) various choices that can be made for the error measure. As
end For already mentioned, the algorithm is based on iterating com-
Pm+1,n = Prox.j (Zm+1,n) . — . .
. . putations of the proximity operator of and projections onto
o S(lzizlnfféﬁi Pin +1Pme1,n) convex sets related to constraints. We will first give the ex-
| Zm+1 :Zm (Lt (26 — un) — pin) plicit forms of the proximity operators of interest in thiuk
end For which correspond to error measutésaken ag,,—norms or
ZmA41,n+1 = Zmt1,n + An(2¢n — Un — Pmt1,n) Kullback-Leibler divergence.
Up+1 = Un + An (Cn - un)
end For
3.2. Error measures
Algorithm 1: Constrained version of PPXA+. 3.2.1. £,-norm

Based on Table 1, it can be deduced that
3. APPLICATION TO THE DISPARITY

ESTIMATION PROBLEM U(5) =Prox. 157 (s).—r(e)) ES)
1
3.1. Problem statement =T [pfoxw—l|T(s)\2¢(T(8)ﬁ(5) —7(s)) +r(s)

In the class of convex optimization methods in stereo vision

an interesting approach that was shown to be competitive witvheres = (z,y). Then the proximity operator of *|T(s)[*¢
other state-of-the-art methods, was proposed in [5]. lagel  With ¢ = | - [P and&(s) = T(s)a(s) — r(s), is [15]:

on a subgradient projection method. In what follows, we Will ProX., -1 7(s)2( (€(5)) =

adopt the same problem formulation and then we will solve it

using the tools described in Section 2. sign(&(s)) max(&(s) — v~ HT(s)|%,0), ifp=1;

The functionJ defined in (2) is nonconvex despite the con- £(s) ifp = 92
. . . . 21T (s) P+’ up )

vexity of the function¢. To alleviate this problem, we pro- VI T RG]

pose to perform a Taylor expansion of the nonlinear termy sign(&(s)) IO : ifp = 3;

_ initi i ut-€(s) 1 £(s) % e —
{é:;(ﬁ. u(zx,y),y) around an initial estimate(x, y). We have (S'y/*l\T(ss)lz )3 (87 1|T(S)‘2)5 ifp=4,
where n = \/6(8)2 + m

IR(.%‘—U(J:,Z/)/!/) :IR(x—ﬂ(:c,y),y) - (u(x7y) (12)

—ﬂ(x,y)) Iﬁ(x—ﬂ(m,y),y) ) (7)

wherel7 is the horizontal gradient of the right image.

3.2.2. Kullback-Leibler divergence

Based on (2) and (7), we deduce that: One can note that (7) can be rewritten as
Y T @y uy) —r(zy) (@) Trlw = u(s),y) =r(s) + 1o (s) —u(s)T(s)
(@.y)€D =7(s) —u(s)T(s) = ((s).  (13)
where Then, the criterion to be minimized takes a form slightly dif
ferent from (11):
T(LC,y) :Iﬁ(x—ﬂ(x,y),y), (9)
r(,y) = Ir(x —u(z,y),y) + ulz,y) T(z,y) — I(z,y). Ju)= > (Ir(s)((s)) (14)

(10) (2,4)€D\O

Since the occluded image areas (denotedZh)yyield very  where ®(I.(s),((s)) is the Kullback-Leibler divergence
large disparity errors, they will be discarded in the expi@s function given by:



4. SIMULATION RESULTS

The objective of this section is to present numerical result
Ip(s)In (If(:;)) +((s) = Io(s), if (I(s),¢(s)) € 10,+00[*  obtained with the proposed method for a variety of synthetic
¢(s), if Ir(s)=0,¢(s)>0 stereo noisy images. In [17], we provided some comparisons
+00, otherwise. with the state-of-the-art DDE method presented in [5]. We

(15)  briefly report the results of the application of our approtch

The properties in Table 1 allow us to re-express the proximthe standard Middlebury stereo dataset. The objectiveisf th

ity operatoru(s) at(s) of the functiony='®(1(s),7(s) —  first experimentis to demonstrate the validity of the pragabs

T(s)-) as: method without any perturbation. Fig. 1 shows the stereo

image pairs considered in this work, namely Corridor, Saw,
(Vs € D\ O) Teddy and Cones, along with their ground truth images. Our
NN S PR s method allows us to compute a smooth disparity map with ac-
i) = T(s) (T(S) POy T ()P (11 (5), ) (C(S)» curate depth discontinuities as also shown by the prelimina
results in [17]. We specify in each case the considered error
measure and constraints (the choice was made according to

where((s) = 7(s) — a(s)T(s). If I(s) € ]0,+oc], then

prOX,yf1|T(S)‘2<I>(IL(S)’_)(C_(8)) the best performances). We evaluate our method using two
. = error measures between the computed figldnd the ground
= PYOX, 17 ()2 (— 11 (5) In() 4+ (S (5)) truth field ..
_ L) = TP S o)l
K. SNR = 10 Iog10< seD [ref 2), (19)
| VGG =1 TEPP + 4 TTG)PLL() 2sep e(s) = et (5)]
2 ’ 1
MAE = — o(s) —uy , 20
Furthermore, it can be shown that the above expression re- N Z fuc(s) = tirer (s)] (20)

s€D

whereN is the number of pixels.

In the presence of noise, we evaluate our method using dif-
ferent kinds of perturbation. To introduce a significantseoi
variation, we modified the left and the right images by using
The motivation behind introducing these constraints isito i thei moi se function in Matlab. Fig. 2 shows the computed

corporate additional prior knowledge about the solution. ~ disparity maps from the noisy stereo pairs. As we can see,
First, we will constrain the range values of the dispasity Our method is less affected than DDE by noise changes and

mains valid if I, (s) = 0. Let us now turn our attention to the
convex constraints that can be introduced.

3.3. Convex constraints

by setting a first constraint: provides accurate depth maps.
We display in Fig. 2 results obtained with the proposed
S1 = {u | tmin < U < Unmax} - (16)  error measures{-norm for salt and paper noise, Kullback-

Then, we can impose an upper bound on the total variatiolgibler divergence for Poisson noise and quadratic norm for
measure. Indeed, this constraint allows us to recover piec&aussian noise). Different constraints were also takem int

wise and homogeneous areas with sharp edges: account: we chose the one that leads to the best results ei-
ther for DDE or PPXA+. As shown in the last column, our
Sy ={u|TV(u) <7} (17)  approach outperforms the DDE method [5], which proves the

Finally, one can introduce some prior information on theeffectweness of our method even in the presence of Gaus-

wavelet coefficients of the disparity. Based on Section 2.3§|an noise. Furthermore, as we can see in the_ first and second
lumns, numerical values and visual comparisons on the ob-

we can represent the associated constraint in terms of BestY . . . .
1 ; . tained disparity maps confirm that our PPXA+ algorithm pro-
spaceB; ; semi-norm as: . : g :
’ duces good estimates in the presence of other kinds of noise.
Ss = {u | E : Cka- L) < H}. (18) Finally, Fig. 3 displays the MAE with respect to the Pois-
J>1,k€72, 06 {H,V} h son noise intensity (a smallera corresponding to a higher

) . noise). PPXA+ algorithm outperforms the DDE approach es-
One can link these constraints;); <i<3 to some convex sets peacially when the noise intensity is high.

4 . .. h _ _ L—l h
(Ci)1<i<3 by noticing thatS; = Cy, S, 2> (C2) where 5. CONCLUSIONS

H _ :
Ly =] | andS; = Ly '(Cs) with Ly = F'. The pro- An efficient proximal method that deals with disparity esti-
jection ontoC is straightforward. The projections onto the mation problems has been proposed in this paper. Being very
convex set¥’; andC's were implemented using the iterative flexible, it allows us to minimize various criteria (not neee
projection algorithm proposed in [16]. sarily differentiable nor strictly convex), which can besfid



Corridor [Umin, Umax] = [2,11]

Saw [Umin, Umax] = [4, 18]

Teddy [Umin, Wmax] = [10, 50]

[umiru umax} = [5: 55]

Fig. 1. From top to bottom: Corridor, Saw, Teddy, Cones.
PPXA+ results.

when perturbations are present during image acquisitioe. T

C1 + Cs, £1-norm, SNR=20.20 dB, MAE=0.28

C1 + C3, Kullback-Leibler, SNR= 21.25 dB, MAE= 0.34

C1 + Ca, £2-norm, SNR=22.29 dB, MAE= 0.84

C1 + Cs, £3-norm, SNR= 24.78 dB, MAE= 0.68

From leftight: left reference images, ground truth images,

[4] V. Kolmogorov and R. Zabih, “Computing visual corresponde with

effectiveness of the proposed approach was demonstrated on occlusions using graph cuts,” #EEE International Conference on

different stereo image pairs, while taking into accounfiedif
ent kinds of perturbations. In the future, we plan to extend
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