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Abstract—High speed unmanned ground vehicles evolving on
natural terrains can exhibit a significant slip and skid. An
estimation of both friction and traction forces can allow to achieve
a better control. In order to implement a control architecture
based on the vehicle dynamic model and the wheel-soil interaction
model, the knowledge of the wheels slip rate is required. The
wheel angular velocities can be precisely measured. But the true
measurement of the ground speed of the vehicle is much more
challenging. A low-cost Doppler radar is used, in conjunction
with an accelerometer, to obtain the ground speed. Thus, the
knowledge of the slip rate allows us to set up an in-situ procedure
for the estimation of soil parameters that is based on the
measurement of the motors torques. A wheel slippage controler
has also been implemented, which is a first step toward high-level
dynamic control.

Index Terms—field robotics, slippage, rover, wheel-soil inter-
action, Doppler.

I. INTRODUCTION

IN recent years, much interest has been focused on high

speed off-road autonomous wheeled vehicles. This field

raises specific issues such as the way to take into account

dynamic effects in obstacle avoidance or in path tracking.

The concept of high velocity for ground vehicles depends on

the vehicle itself and the environment traveled over. As an

example, recent planetary rovers have an average velocity of

about 1 km per day [1], which may be insufficient for large

scale exploration.

In the design of controllers for wheeled mobile robots, it

is usually assumed that wheels are rolling without slipping.

This leads to introduce a non-holonomic constraint in the

kinematic or dynamic model (see [2] for an example). This

assumption is quite legitimate for usual applications such as

autonomous vehicles on asphalted roads or slow robots used

for indoor exploration. However, it is no longer suitable for

many applications where wheel slip cannot be neglected [3],

especially for traveling at high speed over natural soils [4].

Due to the dynamics of the vehicle and the saturation of

admissible forces by the soil, the wheels are slipping when the

rover is moving on such terrains. Thus, the stability of the path

tracking control cannot be guaranteed with the classical control

architectures. Therefore, the distance to the desired path can

be large and hard to quantify, which could be a problem to

achieve a correct corridor tracking or obstacle avoidance.

In a previous work [5], we proposed a model-based con-

troler applied to a skid-steering autonomous mobile robot
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evolving at high velocity on soft soils such as sand, where slip

and skid phenomena can be significant. Slippage was taken

into account, not as a perturbation, but as a genuine input that

we intended to use in order to master traction forces.

In this work, the terrains considered are horizontal and rel-

atively smooth compared to the size of the wheels, but with a

low cohesion. The point here is the practical implementation of

the slippage measurement, which is basically a ratio between,

on the one hand, the speed of the center of the wheel with

respect to the ground, and on the other hand, the velocity of

the wheel at the soil contact point with respect to the hub.

The definition we use for the slip is given in section II,

where we also develop the model we adopt for the computation

of the traction force [6]. A lightweight skid-steering rover

has been developped to demonstrate the feasability of these

concepts. In section III, the description of this experimental

platform can be found. As the rotational speed of each wheel

is relatively easy to measure, we focus on the estimation of

the true speed of the vehicle, since we cannot rely on contact

methods. Section IV describes our experimental device that

has been mounted and tested onto the rover. Then in section

V, an in situ soil identification procedure which is based on

the slippage estimation and the wheel-soil interaction model,

is proposed so that the path controller is able to adapt to a

specific soil. In the section VI, we present some experimental

results on the control issues. The estimated ground speed is

used to control the velocity of the robot, independently from

the wheels velocity and from the conditions of slippage. Then,

we present experiments on control of wheel slip.

II. WHEEL-SOIL INTERACTION MODEL

Several modeling frameworks can be used to compute the

forces involved in the wheel-soil interaction process (As an

example, a sophisticated empirical road-tyre model can be

found in [7]). We selected a wheel-soil interaction model

adapted to non-cohesive soils. This model is semi-empirical:

it is based on data fitting of experimental data and shows that

the raw traction force depends on the slip rate.

A. Slip rate

We consider only the longitudinal motion. Let v be the

linear velocity of the center of the wheel, ω the angular

velocity of the wheel and R the wheel radius. v and ω are

algebraic values relative to the frame attached to the hub.

In the model, the traction force depends on the slip rate s,

which is defined as:
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s =







1− v
ωR if Rω ≥ v

ωR
v − 1 if Rω < v
0 if ω = v = 0

(1)

for v ≥ 0 and ω ≥ 0. Thus, s > 0 for traction and s < 0 for

braking. We have also 1 > s > −1. Note that s = 0 means

rolling without slipping.

B. Terramechanics model

We use an extended version of the terramechanics model

introduced by Bekker [8][6]. We assume that the entire wheel

is relatively stiff compared to the ground so that we can

consider the wheel rigid (Fig. 1).
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Fig. 1. Model of a rigid wheel

For each wheel, the net longitudinal force DP (drawbar

pull) is the difference between the raw traction force Ft and

the rolling resistance Rr:

DP (s) = Ft(s)−Rr (2)

The rolling resistance is the sum of several contributions:

Rr = Rc +Rh +Rb (3)

where Rc is the resistance due to the compaction of the soil,

Rb is the bulldozing resistance, resulting from the material

displacement. Rh stems from hysteresis effects of tyre distor-

tion.

For horizontal terrains, we can assume that the rolling

resistance is mainly caused by soil compaction, and is a

function of the penetration depth z:

Rr = ww
zn+1

n+ 1

(

kc
r

+ kφ

)

(4)

where kc, kφ and n are Bekker’s soil parameters. ww is the

width of the wheel. r = min(ww, l), l being the length of the

contact patch. The tractive force is related to the slip rate s:

Ft(s) = Fm

[

1−
K

s.l

(

1− e−s.l/K
)

]

(5)

where Fm = lwwc+Fn tanφ. c, φ and K are soil parameters.

Fn is the normal force applied on one wheel. Ft(s) is a

monotonic function and it reaches its extreme values ±Ft,max

for extreme values of s.

This contact model has been validated by experimental

measurements on an instrumented test bench (Fig. 2).

An actuated carriage moves the wheel with a given velocity.

The wheel itself is rotated at a given speed. So the slip rate

is imposed as the wheel traverses the terrain. A force sensor

(a) Experimental bench (b) Close-up

Fig. 2. Experimental device

is mounted above the wheel, to measure the forces generated

by the wheel on the supporting structure, including the net

traction force. Different types of wheels can be tested. A

normal force can also be set by adding reference weights on

a tray.

A set of experimental data is depicted in Fig. 3 [9].
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Fig. 3. Experimental measure of drawbar pull

A curve-fitting algorithm is used to find the soil parameters

of the interaction model. The resulting curve fits quite pre-

cisely to the data, despite a high experimental noise of about

±5N on force measurement.

III. ROVER DESCRIPTION

All experiments are made with a skid-steering vehicle with

four independent electrically driven wheels (Fig. 4 and 5).

This is an autonomous low-cost platform, driven by a 400MHz

onboard PC (K-Team Korebot). The kinematic and geometric

parameters of the vehicle are detailed in table I.

A passive revolute joint has been introduced between both

sides of the platform to ensure four permanent contacts with

the ground. The center of mass G is approximately located at

the center of the platform.

This rover is equipped with four optical encoders with a

resolution of 120 pulses per revolution (PPR) (gear ratio is

50:1). An accelerometer is used to measure the longitudinal

acceleration. Low level control of motors is done by four

microcontrollers that can measure current flowing through

MOSFET drivers. The speed of wheels is servoed with

proportional-integral-derivative controllers (PID) and gains
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Fig. 4. Model of the four-wheel rover

Fig. 5. Skid-steering demonstrator

have been empirically set. High level control is done by an

onboard microprocessor.

Each wheel is made of a plastic rim and a rubber tyre con-

taining a piece of high density polymer foam. An aluminium

hub ensures the transmission of power from the motor shaft.

Motors have a maximum mechanical power of 4W.

Remote supervision and data reception are done through a

Wifi interface.

IV. GROUND SPEED MEASUREMENT

In order to measure the slip rate, a measurement or esti-

mation of the true velocity of the vehicle with respect to the

ground is necessary, without resorting to wheel-based methods

(optical encoders, resolvers).

Several techniques exist for this purpose and we can classify

them into three main categories:

• Acceleration integration

• Position differentiation

• Direct speed measurement

The first one is a dead-reckoning method which involves

an inertial sensor. The accelerometric data is time-integrated.

However, this kind of method is subject to drift and is

practically unusable, especially for low-cost sensors. Actually

inertial sensor data is often fused with drift-less measurements.

TABLE I
ROVER PARAMETERS

mr 150 g wheel mass
M 2.88 kg total mass

J 5 gm2 wheel inertia
R 5.7 cm wheel radius (under load)
ww 42mm wheel width
L 30 cm total length
W 27 cm total width
H 18.5 cm total height
a 8.3 cm half wheelbase
b 12 cm half track width
vmax 1m/s maximum speed

Position differentiation consists of a wide variety of sensor

and techniques, inboard or outboard, absolute or relative, with

a large variety of range, accuracy and refresh rate. A popular

position sensor is, for instance, global satellite positioning

[10], [11], [12], which can be implemented onboard a small

terrestrial rover but suffers important drawbacks. Because of

the low refresh rate and the poor accuracy (for non-diffential

GPS), fusion with other sensors is required (IMU, as in [13]).

The signal quality may be poor, not to say inexistant, in

urban environments. Furthermore, the sensor needs a satellite

constellation that is not present for extra-terrestrial planetary

missions. Thus, some authors propose to realize the fusion

of only on-board sensors, including motor current, gyro and

vision, in order to provide a more accurate estimation of wheel

slippages [14]. Other authors have used visual odometry [15].

Among direct measurement methods, we can cite ultrasonic

Doppler sensors [16] and electromagnetic Doppler sensors. A

frequency analysis of GPS signal is possible and gives rather

accurate data but the resfresh rate is still low (1Hz in general).

The solution we have chosen is based on a direct speed

measurement from a low-cost Doppler radar (MDU1130). The

base frequency is 9.9GHz (X-band). This kind of sensor has

been used for many years in measuring the true speed for

agricultural tractors on slippy soils [17][18].

Indeed there are more efficient ground speed sensors. Tab.

II gives key information for some of them. The accuracy

increases with the base frequency and the sharpness of the

beam. But for light, cost efficient robotic applications, one

should not need such heavy devices.

TABLE II
PARAMETERS OF SEVERAL RADARS

model frequency(GHz) beamwidth(◦) weight(g) cost accuracy

MDU1130 9.9 36×72 15 - -
DJ Radar II 24.13 ≈15 2000 + +
DJ Radar III 24.13 20×16 500 + +
DRS1000 35.5 12 230 ++ ++

A. Measurement principle

The principle of the measure is the Doppler effect: an

electromagnetic wave with a given frequency is received with

a different frequency if the receiver is moving with respect to

the transmitter.

Here, we use a radar pointed to the ground with a given

angle and we measure a frequency shift proportional to the

correspondant speed component (Fig. 6).
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Fig. 6. Attachment of the sensor

The general formula for the non-relativist Doppler effect is:

fa =
c− vr
c− vs

f0 (6)

where: f0 is the base frequency of the emitted wave, vr the

speed of the receiver and vs the speed of the source. Here,

c is the propagation velocity of electromagnetic waves. This

gives the apparent frequency fa.

Therefore, the apparent frequency of the wave received by

the ground is:

f1 =
1

1− vd

c

f0 (7)

where vd is the component of the velocity along xd.

The reflected wave has the same frequency f1. The apparent

frequency of the wave received by the vehicle (reflected wave)

is then:

f2 =
(

1 +
vd
c

)

f1 (8)

hence:

f2 =
c+ vd
c− vd

f0 (9)

A first order limited development gives (we have vd << c):

f2 =
(

1 + 2
vd
c

)

f0 (10)

Therefore the frequency shift is:

∆f =
2vd
c

f0 (11)

with vd = v cos θd where θd is the angle of the radar with

respect to the horizontal plane.

Fig. 7 describes the frequency acquisition process. The

mixer gives a signal composed of two frequency (∆f et

2f0 +∆f ). The first filter eliminates the high frequency. The

signal is then amplificated and filtered. The band-pass filter

is set to cut frequencies below 3Hz and above 80Hz. An

analog-to-digital converter (ADC) gives data to a Fast Fourier

transform routine (FFT) to obtain the power spectrum, in order

to identify ∆f . An offset voltage is added before the ADC to

facilitate the acquisition of negative values, so the spectrum

has a non zero value at zero frequency. ∆f is simply taken at

the maximum of the power spectrum except zero frequency.

The FFT is performed on a 256 samples window.

This process gives one data every 0.5 s approximately.

B. Accuracy

Due to the angular dispersion of the sensor, the frequency

shift measurement is very noisy. On Fig. 8a is plotted the

amplified signal for a speed of 0.18m/s on a concrete ground.

Its spectrum is plotted on Fig. 8b.

trans-
mitter

receiver
mixer amplifi-
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filterADCFFTto control 
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��

�� ���

��

Fig. 7. Frequency acquisition process
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Fig. 8. Radar signal after amplification

According to [17], the relative error can be written as:

ve =
1

2 cos θd

√

c α sin θd
2f0vTp

(12)

where α is the beamwidth in the vertical plane (in rad) and

Tp the processing time.

In our case, for θd = 20◦ and v = 0.2m/s, we have

ve = 10%, which can be acceptable for this sensor. The

accuracy will be better with higher frequencies (24GHz or

even 35GHz). The processing time cannot be too much

increased, as it would introduce delay into the control loop.

The error is also dependent on the angle of incidence θd.

Authors generally choose an angle of 35 − 40◦. We found

that 20◦ was a good compromise between accuracy, power

received and mechanical constraints.

The most problematic parameter in our case is the

beamwidth of the radar, which is relatively high, and leads

to highly noisy measures. However, some promising results

could be obtained.

C. Sensor Fusion

We use a simple Kalman filter to fuse doppler data and ac-

celerometer data, in order to estimate the longitudinal velocity.

The filter gives an estimate v̂ of the ground speed from the

radar measure vdoppler and the acceleration ax. The process

noise ξ is the noise of the accelerometer. Its variance is taken

from its specifications. η is the noise on the Doppler measure,

which is considered gaussian. Its variance has been measured.

The state vector is simply x = (v). Process equations are

simple:

v(k + 1) = v(k) + (ax(k) + ξ(k))∆T (13)

vdoppler(k) = v(k) + η(k) (14)

The sample time ∆T of the filter is 10ms.
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D. Sensor Validation

An external sensor has been used in order to validate our

sensor. It consists in a set of video cameras following a target

attached to the robot (Scheme in Fig. 9(a)). Thus, a precise

recording of its trajectory can be achieved (accuracy of 1 mm

at 7 Hz). The speed is obtained by time differentiation of the

positions. The picture in Fig. 9(b) is one of the frames of the

recording sequence.

�
radar

video camera

(a) Concept of sensor validation (b) Robot localization

Fig. 9. Vision system for sensor validation

Then, we compare the velocity given by our sensor fusion

and the one computed by this vision system (Fig. 10). It was

found that the absolute value given by the radar is correct

but with a high measurement noise. The accuracy is better for

higher speeds (±10% at 1m/s).
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Fig. 10. Comparison of speed measurements between vision system and
radar-based sensor

V. IN-SITU SLIP-FORCE SOIL CHARACTERISTICS

MEASUREMENT

In order to build a model-based control law, soil parame-

ters are needed to compute interaction forces. Therefore, an

estimation algorithm is required. This problem is not trivial

and can requires complex sensing systems. For example, in

[19], author proposed a prototype of a wheel tread deformation

sensing system that can be used to capture the wheel/ground

friction characteristics.

Here, we limit ourselves to an offline estimation of soil

parameters, assuming that the ground surface is homogeneous

and that these parameters have a negligible variation during

the displacement. On the basis of this strong assumption an

estimation procedure can be set up. This procedure has to be

run before the trajectory or path control phase.

The concept is to measure motor currents while forcing the

slip rate to vary between two specified bounds. We impose a

given slip on front wheels by controlling their rotational speed

and by regulating the speed of the platform (using method

presented in section VI).

This method is similar to the one described in [20] (method

III), except that the ground speed is measured and that we take

into account the dynamic model of the wheels.

The desired front wheels angular velocity are

ω2,3 = ω̇at (15)

where ω̇a is a constant.

A constant platform speed is obtained by controlling rear

wheels speed with the following control law:

ω0,1 =
v∗

R
+Kv (v

∗

− v) (16)

The desired value of ground speed is 0.3m/s. Fig. 11(b)

and 11(a) show the evolution of wheel velocities.
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Fig. 11. Angular velocity of wheels during soil estimation

The lack of accuracy in the tracking is mainly due to

large inaccuracy on the speed estimate. Note also the high

characteristic time (about 2 seconds) because of the high

convergence time of the Kalman filter.

Fig. 12 shows a typical result. Front wheel slip is slowly

increasing from -1 (wheels are blocked) to 0.4 (actually

actuators saturate at this value), while rear wheel slip is de-

creasing symmetrically to maintain the overall speed constant.

At t = 10 s, all wheels have the same velocity and roll without

slipping. This estimation phase lasts about 20 s. We isolate the

growing part of this curve for one testing wheel (dash box).

Meanwhile, front wheel motor currents I2 and I3 are

measured. Thus, we can plot the slip-current curve (Fig. 13).

From data, an experimental relation between slip and

traction force can be depicted. This curve characterizes the

longitudinal interaction. It can be fitted by the terramechanics

model, in order to find soil parameters.

Furthermore, the wheel dynamics can be written:

Γi = KΓIi = Γri + Jω̇i +RFti i = 2, 3 (17)

where Fti is the raw traction force and Ii the current consumed

by motor i. KΓ is the torque constant of the gear motor taken

from specifications (KΓ = 0.265Nm/A). Γri is the resistant

torque for wheel i. It has been identified by measuring the
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Fig. 13. Slip-current relation

current and the angular velocity for each wheel under no-load

condition:

Γri = 1.6.10−3ωi + 0, 03Nm i = 2, 3 (18)

with ωi in rad/s. The angular acceleration ω̇0 is a constant

parameter of the experiment.

The inertia J of the wheel-motor system can be identified

offline by applying a constant acceleration under no-load

condition (J = 5.10−3 kgm2).

From (17), we have:

Fti =
1

R
(KΓIi − Γri (ωi)− Jω̇i) i = 2, 3 (19)

Finally, the slip-raw traction force relation can be found

using (19) (Fig. 14).

For sand and gravel, the data are fitted with the terrame-

chanics model (equation (5)). Actually, the accuracy of mea-

surements does not permit to estimate the rolling resistance,

so we neglect it. The length l of the contact patch is unknown

since we cannot measure the sinkage z. It is not possible to

separate the contributions of cohesion and friction so we have

two aggregated parameters to estimate: Fm and sc=K
l :

Ft(s) = Fm

[

1−
sc
s

(

1− e−
s

sc

)]

(20)

For concrete, the data is fitted with the model:

Ft(s) = Fm

(

1− e−
s

sc

)

(21)
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Fig. 14. Slip-traction force relation for concrete
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Fig. 15. Data interpolation for several soils

with Fm = µFn. This is a simplified version of the empirical

Burckhardt model [21], commonly used for tyre-road inter-

action. µ is the static friction coefficient. The parameters of

this model are µ and sc. The normal force Fn is assumed to

be one quarter of the total weight. This gives Fn = 7N . We

found µ = 0.8 (as a rough guide, [22] gives µ = 0.5−0.9 for

rubber on concrete).

Our final result of this analysis is a comparison between

data fittings for various soils (Fig. 15). We have also plotted

the vertical force Fn. The estimated parameters can be found

in Tab. III.

TABLE III
ESTIMATED AGGREGATED SOIL PARAMETERS

soil Fm(N) sc
sand 5.1 0.27
gravel 6.8 0.088

We notice that the maximum value for sand is lower than

for gravel. It is probably due to the higher friction angle φ of

gravel, because of a much more irregular shape of grains, and

because the cohesion of gravel is very low.

A comparaison can be done with the predicted curve for

sand computed from (5) with parameters taken from the

litterature ([6], dry sand, Land Locomotion Lab) and l = 4 cm.

These parameters are c = 1040Pa, φ = 28 ◦ and K = 2 cm.
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VI. CONTROL ISSUES

The estimated ground speed allows to carry out longitudinal

speed control of the rover. Combined with the encoders

information, one is able to control also the slip rate.

A. Speed control

Platform speed control, independantly from slip conditions,

can be applied with the following control law:

ω∗

i =
v∗

R
+Kv (v

∗

− v) i ∈ [0, 3] (22)

where v∗ is the desired platform velocity, and Kv is a

proportional gain.

Figure 16(a) and 16(b) illustrate an experiment highlight-

ing speed control capabilities for concrete. Desired speed

is 0.2m/s. The system is disturbed by simulating actuators

failures: some wheels are intentionnally blocked. The wheel

0 (left-rear) is blocked for 5 < t < 9 s and the wheel 1

(right-rear) is blocked for t > 10 s.
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Fig. 16. Experiment of speed control

Since only the longitudinal velocity is controlled, the head-

ing of the vehicule changes during the motion as we block the

wheels asymmetrically with respect to the sagittal plane. This

result shows that the robot can roughly regulate its velocity

even in presence of strong slip conditions.

B. Slip servoing

Several slip control methods exist in the literature, including

nonlinear and gain-scheduled PID, sliding mode [23], fuzzy

logic [24], or Lyapunov synthesis [25]. Recently, simple slip

controllers have been used for mobile robots in rough terrain

[26][27]. In the same way, we implement a PI-controller:

U = Kps (s
∗

− s) +Kis

∫

(s∗ − s) dt (23)

where U is the PWM rate of motor input. s∗ is the desired

slip rate. The gains Kps and Kis have been found empirically.

And for each wheel, the actual slip rate is estimated.

Fig. 17(a) shows an example of wheel slip control on

concrete ground. The desired value is 40%. Other wheels are

submitted to the control law (22) and do not slip or slip lightly.

For natural non cohesive soils, such as gravel (Fig. 17(b)) and

sand (Fig. 17(c)), the tracking is much more coarse, due to

vibrations and heterogeneity of the surface.

These are encouraging results, in view of the quality of

sensors, that show that one can design innovative control based

on a better knowledge of the interaction with ground.
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Fig. 17. Slip control for one wheel

VII. CONCLUSIONS AND FUTURE WORKS

A low-cost radar sensor has been set up to measure the

ground speed of a small wheeled mobile robot. A Kalman

fusion algorithm was used to combine this information with in-

ertial data and improve the measurement. It was consequently

possible to measure the slip rate for each wheel.

A simple procedure for the in-situ estimation of the wheel-

soil interaction parameters has been designed. This procedure

which has been implemented and tested off-line, allows the

system to get the slip-torque relation in the contact area,

and eventually gives the slip-traction force relation of the

interaction.

The control of the slip rate is a further step that makes it
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possible to control traction forces. In the future, a model-based

control architecture will be implemented and the path tracking

control at high speed will be experimentally studied.
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