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Introduction

Finite element (FE) methods are increasingly used for micromechanics modelling of polycrystalline materials [1]. Polycrystalline FE has given valuable insights into grain-to-grain interaction behaviour and local deformation mechanisms, acts as an effective utility to simulate micro-forming processes for small scale metal products, and is capable of simulating local damage processes of components in service [2,3]. Since stress and strain are related to grain size, shape, orientation and their distributions, FE micromechanics simulations require a grain structure modelled within a FE/CAE Representation of a grain structure can be obtained directly by mapping metallographic observations to a FE model, by processing digitised images [4][5][6][7] or SEM/EBSD data to reconstruct the grain structure [8][9][10][START_REF] Barton | Direct 3D Simulation of Plastic Flow from EBSD Data[END_REF]. However, these approaches are generally very time-consuming and laborious for practical applications. X-ray diffraction techniques [START_REF] Poulsen | [END_REF][START_REF] Poulsen | 3DXRD -a New Probe for Materials Science[END_REF] can also be used for microstructure characterisation and reconstruction. As it is an in situ, non-destructive method, it can be used for time-dependent studies of grain structure evolution [START_REF] Schmidt | [END_REF]15], but requires high-intensity synchrotron sources that are not generally accessible. In recent years, a variety of numerical models have also been developed to simulate grain structures, e.g., the Monte-Carlo (Potts) model [16], the ellipsoid packing algorithm combined with the cellular automata (CA) method [17], the phase field model [18] and level-set methods [19,20]. In addition to the experiment-and simulation-based methods, computational geometrical models have been applied in representing equivalent grain structures. In early studies, grain structures were commonly represented by simplified geometrical units, such as hexagons, cubes, rhombic dodecahedra, and truncated octahedrons [2,[21][22][23][24][25][26]. In reality, grains exhibit large variations in both size and shape. Most importantly, the morphological characteristics can have a strong influence on various aspects of the mechanical behaviour, such as strain localisation [6,21] and micro-crack propagation [27].

Alternatively, Voronoi tessellation (VT) models have been traditionally applied in modelling polycrystalline grain structures for metallurgical applications [28][29][30][31], as they provide a natural solution to represent grain structures with non-uniform grain shapes. Since polycrystalline materials are originally formed by the nucleation and growth of grains, a VT is a good choice as it naturally describes a crystal aggregate growth process. Like a solidification process, grains in the Voronoi tessellation are spatially distributed and completely determined by initial nuclei/seeds and individual velocities within a given seed pattern, morphological features such as curved boundaries can be produced for particular simulation requirements [32,33], whilst, having defined a grain growth scheme, the grain size distribution properties of a VT is essentially decided by its seed lattice.

Therefore, in order to develop essential mechanisms to model VTs with grain size distribution control, researchers have mainly focused on grain seed lattice formation under the assumption of homogenous grain growth. In the beginning, Zhu et al. [34] introduced a 'regularity parameter' to quantify the degree of grain size uniformity for a VT. Then, Ho et al. [START_REF] Ho | An integrated approach for virtual microstructure generation and micromechanics modelling for micro-forming simulation[END_REF] and Cao et al. [START_REF] Cao | [END_REF] adopted this regularity parameter to inversely produce VTs with specified regularities.

However, the correlation between regularity and the grain structure is generally too obscure, so efforts have been devoted to replacing this parameter by a set of physical parameters obtainable from quantitative metallographic measurements. In [START_REF] Ho | An integrated approach for virtual microstructure generation and micromechanics modelling for micro-forming simulation[END_REF], a set of four parameters was used to determine the grain size distribution: the mean grain size, a large grain size, a small grain size, and the percentage of grains within that range. The numerical procedure to derive the regularity value implemented a simple search method with very low efficiency. Cao et al. [START_REF] Cao | [END_REF] attempted to improve upon this drawback by devising a statistical estimation to derive the grain size distribution based on a group of adopted physical parameters, including the mean grain size and two sampled grain sizes.

However, this statistical estimation failed to provide reasonable estimation precision.

Previous efforts tried to link practical physical parameters to the grain structure regularity.

However, they all failed to validate the uniqueness of the mapping from the physical parameters to the regularity parameter. In [37] In this work, the two-dimensional controlled Poisson Voronoi tessellation model proposed in [37] is re-examined, and three major tasks fulfilled. A critical module in the CPVT model is the empirical relationship between the tessellation's regularity and its distribution parameter in terms of a one-parameter gamma distribution function. The fitting model proposed in [37] is inadequate over a broad range of distribution parameter values, suffering from a weakness of global quality, which causes irregularity as the distribution parameter becomes large. An improved non-local fitting model will be presented and the corresponding CPVT system will be updated. Secondly, comprehensive statistical tests will be performed serving a twofold purpose: 1) Examination of the effectiveness of the core mechanism that links the grain size distribution to the tessellation's regularity, and 2) comparison of the distribution properties of the virtual grain structure produced by the CPVT model with the prescribed values. Finally, plane strain FE simulations are performed to demonstrate application of this integrated system in representing virtual grain structures. The demonstrations start from original metallurgical micrographs and corresponding quantitative measurements, with virtual grain structures generated based on the physical measurements, which are then used to produce CPFE models.

Controlled Poisson Voronoi tessellation model

VT and its regularity

Representation of the FE model by means of a Voronoi tessellation requires prescription of a workpiece domain 𝛺 and the number of seeds, 𝑁 !""# . There are two schemes in generating the grain structure. One is to prepare a sufficiently large tessellation and cut a region from it having a specific dimension, as illustrated in Fig. 1 (a). This scheme accounts for the influence of outer seeds on grains cut by the region boundary. In contrast, the other scheme is to generate grains within the given domain, in which the effect of outside seeds is ignored, as shown in Fig. 1 (b).

In quantitative metallography, the number of grains in a region is based on the heuristic rule that grains cut by the region boundary are counted as half grains, which can be applied in the first scheme. However, ignoring the outer seeds in the second scheme results in nearly half of the grains disappearing, as shown in (b) of Fig. 1. In such a situation, grains cut by boundaries can be approximately treated as whole grains rather than half grains. Consequently, for a VT obtained by the second scheme, the number of seeds 𝑁 !""# to be generated is equivalent to the number of grains 𝑁, i.e., 𝑁 !""# ≈ 𝑁.

(

In addition, the number of grains is calculated by means of the tessellation area 𝐴 ! and the mean grain size (in terms of grain area) 𝐷 !"#$ , i.e.,

𝑁 = 𝐴 ! /𝐷 !"#$ . (2) 
Note that, as a convention, to develop a quantitative mechanism for generating VTs, the second scheme is employed, i.e., provided a mean grain size 𝐷 !"#$ , 𝑁 !""# seeds are generated in the given domain 𝐴 ! .

Whilst Voronoi tessellations are capable of capturing natural variance of grain shape and organisation, a quantitative evaluation of the degree of uniformity is critical. In [34], Zhu et al.

introduced a non-local regularity parameter to evaluate a VT obtained by the second scheme. For a regular hexagonal tessellation (RHT) generated in the domain 𝐴 ! , where the size of an individual hexagon is 𝐷 !"#$ , the distance between any two adjacent seeds is given by Obviously, this RHT is a fully ordered VT, and to construct a VT with a mean grain size 𝐷 !"#$ in the area 𝐴 ! , the minimum distance between adjacent seeds 𝛿 should be less than the regular distance 𝑑 !"# . Therefore, a parameter 𝛼 is defined to evaluate the regularity of a VT:

𝑑 !"# = ! ! 𝐷 !"#$ . (3) 
𝛼 = 𝛿/𝑑 !"# . ( 4 
) For a RHT, 𝛿 = 𝑑 !"# and 𝛼 = 1, while for any other irregular VT, 𝛿 is less than 𝑑 !"# . As tessellations become more disordered, the regularity 𝛿 decreases; if 𝛿 = 0, the tessellation is a completely random tessellation.

CPVT

The regularity parameter was proposed in [34] to evaluate a tessellation's uniformity in terms of the minimum seed distance. This parameter could alternatively be used to monitor the seed generation process, and hence to produce a VT with a particular regularity. This mechanism is realised by introducing a control parameter 𝛿, which reformulates the meanings of the minimum seed distance as

𝛿 = 𝛼𝑑 !"# . ( 5 
)
Given a domain 𝛺 with area 𝐴 ! and a mean grain size 𝐷 !"#$ , the number of seeds 𝑁 !""# and the regular distance 𝑑 !"# are correspondingly defined by Eqs. ( 1)- (3). Seeds are to be generated sequentially in this domain by sampling their 𝑥 and 𝑦 coordinates independently based on a uniform random number generator. It is assumed that a newly generated seed can only be accepted if its distance from any existing seeds is greater than or equal to the control parameter 𝛿. The resultant Voronoi tessellation is referred to as a controlled Poisson Voronoi tessellation (CPVT) with the control parameter 𝛿, denoted as 𝐶𝑃𝑉𝑇(𝛿|𝛺, 𝐷 !"#$ ). Note that, if 𝛿 = 0, the CPVT is reduced to a standard Poisson Voronoi tessellation, and if 𝛿 = 1, the CPVT is a regular hexagonal tessellation with grain size 𝐷 !"#$ . In addition, a tessellation generated by the model 𝐶𝑃𝑉𝑇(𝛿|𝛺, 𝐷 !"#$ ) has a regularity value that converges to the prescribed 𝛼 with a small and allowable asymptotic error. When sampling a small number of seeds, the resultant VT tends to be slightly more regular than the prescribed regularity. This effect is to be discussed later.

In the present CPVT scheme, the regularity parameter 𝛼 must be assigned to derive the control parameter 𝛿 (Eq. ( 5)). But in practice, it is physical measurements from quantitative metallography rather than this abstract regularity parameter that are well known and widely used by engineers and scientists. In such a circumstance, the regularity parameter is too obscure for practical use. In this section, two modules are presented for replacing the regularity parameter by a set of four physical parameters, including the mean grain size 𝐷 !"#$ , a small grain size 𝐷 ! , a large grain size 𝐷 ! and the percentage 𝑃 ! of grains within this range.

Distribution model

The first module links the regularity parameter to a grain size distribution, i.e. it uses the parameter(s) of a grain size distribution function to describe the regularity of a VT. In previous studies, grain area distributions of Voronoi tessellations have been modelled using lognormal distributions [38] and gamma distributions, wherein various gamma distribution models have been intensively studied. Reported distribution models include three-parameter gamma distributions [39],

and two-parameter gamma distributions [40,41]. Provided that grain size values are normalised by the mean grain size, a one-parameter gamma distribution can also provide accurate fitting for grain size distributions in terms of grain area [30,31,34,42].

A one-parameter gamma distribution function takes the form,

𝑃 !,!!!" = ! ! ! ! 𝑥 !!! e !!" 𝑑𝑥 𝑥 > 0, (6) 
where the distribution parameter 𝑐 > 1, and 𝛤 𝑐 is the gamma function, defined as Note that the variance of a one-parameter gamma distribution is 1/𝑐. As the distribution parameter 𝑐 increases, the distribution function becomes narrower, which is more suitable for modelling regular VTs; smaller 𝑐 values are more suitable for irregular VTs. In addition, there are two major advantages to using the one-parameter gamma distribution to describe the grain size distribution: 1)

𝛤 𝑐 = 𝑥 !!! e !!" 𝑑𝑥 ! ! . (7) 
Only one parameter, 𝑐, is involved in the relation with the regularity parameter 𝛿, and 2) the mean value of this distribution function is 1, which makes the distribution capable of modelling the normalised grain size distribution of a VT.

In [34], a series of statistical tests have been conducted to summarise the relationship between the fitting parameter 𝑐 and the regularity 𝛼, where 𝛼 takes values in the range 0, 0.1 … 0.8.

In [START_REF] Ho | An integrated approach for virtual microstructure generation and micromechanics modelling for micro-forming simulation[END_REF] and [START_REF] Cao | [END_REF], a descriptive model was proposed based on statistical data:

𝛼(𝑐) = 𝐴 𝑧(𝑐) -𝑧 ! !!!"(!) , 𝑐 ! ≤ 𝑐 (8) 
where In Fig. 2, the new result of 𝛼(𝑐) is given by the solid lines. 

𝑧(𝑐) = 𝑐/𝑐 ! , 𝑧 ! = 𝑐 ! /𝑐 ! , 𝑐 ! = 3.

Physical parameters

The second module aims to introduce physical parameters to determine the distribution parameter 𝑐 of the one-parameter distribution model given by Eq. ( 6). The physical parameters include a mean grain size 𝐷 !"#$ , a small grain size 𝐷 ! , a large grain size 𝐷 ! and the percentage 𝑃 ! of the grains within this range; grain size is taken to be grain area. The mechanism to determine the distribution parameter 𝑐 from the four physical parameters can be formulated as finding the solution 𝑐 to the integral equation:

𝑃 ! = 𝑐 ! 𝛤 𝑐 𝑥 !!! e !!" 𝑑𝑥 ! ! ! ! (9) 
where the integral bounds 𝑥 ! and 𝑥 ! are 𝑥 ! = 𝐷 ! /𝐷 !"#$ and 𝑥 ! = 𝐷 ! /𝐷 !"#$ , and 0 < 𝑥 ! < 1 < 𝑥 ! . Two issues must be resolved to achieve the mapping between the distribution parameter and the physical parameters: 1) The uniqueness of the 𝑐 value determined from the set of {𝑃 ! , 𝑥 ! , 𝑥 ! } must be established, 2) and an efficient algorithm to solve Eq. ( 9) for the 𝑐 value is required. In [37],

Zhang et al. derived bounds on the parameters {𝑃 ! , 𝑥 ! , 𝑥 ! } such that the 𝑐 value is uniquely determined. For completeness, the key results are listed below:

Lemma 1. There exists an interval 𝑆 * = 𝑥 ! * , 𝑥 ! * , such that for any interval 𝑆 = 𝑥 ! , 𝑥 ! , where 

𝑥 ! < 1 < 𝑥 ! , if 𝑆 ⊆ 𝑆 * , the implicit function 𝑃 ! (𝑐) = 𝑐 ! 𝛤 𝑐 𝑥 !!! e !!" 𝑑𝑥 ! ! ! ! (10) 
𝑥 ! * = 1 -𝛥 ! * ≈ 1 - ! ! + 𝒪(𝛥 !/! ) 𝑥 ! * = 1 + 𝛥 ! * ≈ 1 + ! ! , ( 11 
)
where the term 𝒪(𝛥 !/! ) > 0.

Theorem 1. Given the constants 𝑥 ! , 𝑥 ! and the percentage value

𝑃 ! 𝑥 ! , 𝑥 ! ! , where 𝑥 ! < 1 < 𝑥 ! , if the interval 𝑆 = 𝑥 ! , 𝑥 ! ⊂ 𝑆 * = (𝑥 ! * , 𝑥 ! * )
, where 𝑥 ! * and 𝑥 ! * are determined from Eq. [START_REF] Barton | Direct 3D Simulation of Plastic Flow from EBSD Data[END_REF], the implicit function 𝑃 ! 𝑐 in Eq.( 10), defined over the domain 𝐷 𝑃 ! ⊆ [1, ∞) and range 𝑅 𝑃 ! ⊆ (0,1), has the properties that:

• 𝑃 ! (𝑐) is a bijection; • 𝑃 ! (𝑐) has a continuous inverse 𝑃 ! !! (𝑐) on the range 𝑅 𝑃 ! .
Lemma 1 and Theorem 1 taken together explain the existence of a valid range of physical parameters, where uniqueness is satisfied. Consider the function 𝜑(𝑐, 𝛥):

𝜑 𝑐, 𝛥 = 𝜕𝑃 ! 𝑐, 𝛥 𝜕𝑐 = 𝑐 ! 𝛤(𝑐) 𝑥 !!! e !!" ⋅ [1 + ln𝑐 -𝜓 𝑐 + ln𝑥 -𝑥]𝑑𝑥 !!! !!! , (12) 
and for any 𝑐 > 1, let

𝑔 ! (𝛥) = 1 + ln𝑐 -𝜓 𝑐 + ln 1 -𝛥 -(1 -𝛥) 𝑔 ! (𝛥) = 1 + ln𝑐 -𝜓 𝑐 + ln 1 + 𝛥 -(1 + 𝛥) , (13) 
then there exist 𝛥 ! , 𝛥 ! ∈ (0,1) such that

𝑔 ! 𝛥 ! = 0 𝑔 ! 𝛥 ! = 0 . ( 14 
)
This leads to the following result: Since 𝜑(𝑐, 𝛥) is strictly monotonically decreasing for 𝛥 ∈ 𝛥 * , 1 , Zhang et al. [37] examined the values of 𝜑(𝑐, 𝛥) for ∆= 0.999 using high precision numerical calculation. Together with the numerical results, a conclusion can be made that within the range

F
1 -𝛥, 1 + 𝛥 ⊆ [0.001,1.999],
where 𝐷 ! /𝐷 !"#$ = 1 -𝛥 and 𝐷 ! /𝐷 !"#$ = 1 + 𝛥, the mapping from the percentage value 𝑃 ! to the distribution function parameter 𝑐 is one to one.

Solving Eq. ( 9) for the 𝑐 value can be achieved by a Newton-Raphson procedure. It can be implemented by letting

𝑓 𝑐 = 𝑐 ! 𝛤 𝑐 𝑥 !!! e !!" 𝑑𝑥 ! ! /! !"#$ ! ! /! !"#$ -𝑃 ! , (15) 
hence

𝑓 ! 𝑐 = 𝑐 ! 𝛤 𝑐 𝑥 !!! e !!" 1 + ln 𝑐 -𝜓 𝑐 + ln 𝑥 -𝑥 𝑑𝑥 ! ! /! !"#$ ! ! /! !"#$ . ( 16 
)
The iterative root finding procedure is defined as

𝑐 !!! = 𝑐 ! - 𝑓 𝑐 𝑓 ! 𝑐 , (17) 
where 𝑖 = 0,1,2, …, and 𝑐 ! is the given initial value. This process is continued until a prescribed tolerance 𝜖 is achieved. That is,

𝑐 !!! -𝑐 ! ≤ 𝜖 . ( 18 
)

System description

The CPVT model is the core mechanism for grain structure generation in the system presented here.

It requires that the control parameter 𝛿 be derived from the user input parameters. The entire system is illustrated in Fig. 4, and the implementation procedure is explained as follows:

(1) The workpiece related parameters are input to the model, including the domain 𝛺 and the mean grain size 𝐷 !"#$ . This is followed by calculation of:

a. The number of seeds 𝑁 !""# (using Eq. ( 1) and Eq. ( 2));

b. The regular distance 𝑑 !"# (using Eq. ( 3));

(2) The physical parameters are input, followed by operations to:

a. Compute the distribution parameter 𝑐 by the Newton-Raphson method (using Eqs.

(15)-( 18)); b. Derive the regularity parameter 𝛼 from the empirical model (using Eq.( 8)); c. Combine 𝑐 and 𝛼 with the obtained regular distance 𝑑 !"# to compute the control parameter 𝛿 (Eq.( 4)).

(3) A seed lattice is generated from the model 𝐶𝑃𝑉𝑇(𝛿|𝛺, 𝐷 !"#$ ) and the corresponding VT is used to define the grain structure.

System validation

The CVPT model works in sequence, mapping the user-defined physical parameters to the distribution parameter 𝑐, then from the distribution parameter 𝑐 to the regularity 𝛼, and finally from the regularity 𝛼 to the control parameter 𝛿. VTs are subsequently produced by the model 𝐶𝑃𝑉𝑇(𝛿|𝛺, 𝐷 !"#$ ). The ultimate objective is to produce VTs with two properties: 1) Regularity of a generated tessellation is similar to the value derived from the physical parameters input, 2) the mean grain size and the overall grain size distribution of the tessellation conform to the gamma distribution derived from the physical parameters. It is important to note that the equation linking the obtained tessellation's regularity to the distribution parameter is based on statistical data from virtual grain The number of grains in an individual tessellation is a factor that strongly influences evaluation of the statistical results. For a VT with fewer grains, statistical variation is greater.

Therefore, all statistical tests were conducted for 200, 1000 and 5000 grains, respectively. The mean grain size used for all tessellations was 10 µμm ! . For the VT having 200 grains, the domain 𝛺 was 40 µμm × 50 µμm; for the VT having 1000 grains, 𝛺 was 100 µμm × 100 µμm; and for the VT having 5000 grains, 𝛺 was 200 µμm×250 µμm. The following statistical results were all based on 1000 independent generations of VTs for each individual case.

Regularity property analysis

Regularity of a VT is determined by its minimum seed distance and mean grain size. In the CPVT model, regularity is employed as an intermediate parameter to derive the control parameter 𝛿. The small asymptotic error in the regularity mentioned previously is to be investigated in this section. In order to compare the difference between an ideal regularity and the regularity of a resultant VT, a relative error 𝜀 is defined as

𝜀 = 𝛼 -𝛼 𝛼 = 𝑑 !"# -𝛿 𝛿 ( 19 
)
where 𝛼 and 𝑑 !"# are resultant values of the regularity and minimum seed distance of a VT, respectively. To estimate the accuracy of the regularity, the mean and standard error of 𝜀, given by Values of 𝜀 and 𝑠𝑒 were calculated for a range of regularity values and for three different numbers of grains and a fixed domain, as described previously, shown in Table 1 and Fig. 5. It can be observed that for a VT having 1000 or more grains, 𝜀 is less than 3%, which can be ignored in practical usage. For a VT that has roughly 200 grains, if 𝛼 ≤ 0.25, the mean asymptotic error 𝜀 becomes significant, greater than or equal to 5%. This occurs because when the regularity is sufficiently small, the value of the control parameter is significantly decreased, hence the acceptable interval of grain seed distances is enlarged. Further, given a certain number of randomly generated seeds, the larger the domain, the more uncertainty there will be in the regularity. In all cases, the standard error of 𝜀 is very small, indicating that the error 𝜀 is consistent from one generation to the next.

𝜀 = 𝜀 ! ! !!! , ( 20 
) 𝑠𝑒 = (𝜀 ! -𝜀) ! ! !!! 𝑛(𝑛 -1) , (21) 
The following facts about the effectiveness of the CPVT model for regularity control can be deduced from these results: 1) For a large number of grain (> 1000), the CPVT regularity control is very accurate and precise for all prescribed regularity values; 2) for a small number of grains, the CPVT regularity control is very precise for all prescribed regularity values, but is only very accurate for 𝛼 > 0.25; 3) for any grain size, both the accuracy and precision are improved for larger prescribed regularity values. Overall, the CPVT model provides excellent accuracy and precision in the regularity control for tessellations either having large numbers of grains or highly regular distributions.

Distribution property analysis

The can be found according to the descriptive model given by Eq. ( 8). Fig. 6 summarises the grain size distributions of the generated VTs; the bar graphs are the ideal grain size distributions, and the data points and error bars give the mean and standard deviation, respectively, of the VT output based on 1000 generations with the same control parameters. The standard deviations demonstrate the degree of variation for the grain size intervals shown, which allows comparison between ideal and generated grain structure local distribution characteristics for the grain size intervals shown.

VTs with greater than or equal to 1000 grains exhibit nearly perfect agreement, in terms of generated grain size accuracy and precision per grain size interval, with the ideal distributions for regularity values of 𝛼 = 0.1 and 𝛼 = 0.7; the remaining generated cases shown in Fig. 6 are somewhat less accurate and/or precise compared to the ideal distributions. Notably, the distribution with 200 grains is very accurate in terms of mean grain size per interval but has a very large variability from one independent generation to the next. By contrast, the 5000 grains cases show little variability, but the accuracy is somewhat inferior for 𝛼 = 0.3 and 𝛼 = 0.5. One reason for the inferior results for 𝛼 = 0.3 and 𝛼 = 0.5 is the stiffness of the 𝛼(𝑐) curve given by Eq. ( 8) for regularity values less than 0.5. This can amplify stochastic errors and even very small inaccuracies in the fitting model given by Eq. ( 8). That is, a small noise may lead to appreciable lack of correlation between the 𝑐 and 𝛼 values. The statistical results of Figs. 6 (e), (f), (h) and (i) suggest the value of the distribution parameter 𝑐 is consistently too large, hence an improved descriptive model relating 𝑐 to 𝛼 should give a slightly smaller 𝑐 value for a given value of 𝛼, compared to the proposed model.

In the case of 200 grains, and 𝛼 = 0.7, the relative inaccuracy is a result of the significance of the way in which grains cut by boundaries are counted, which influences the mean grain size (see Zhang et al. [37] for further details). 

Comparison of virtual and real grain structures

A grain structure generation software system, VGRAIN, has been developed by employing the CPVT model described here to produce the virtual grain structures defined by user inputs. Fig. 7 illustrates the working process of the VGRAIN system. After generating a grain structure using the CPVT model, grain orientations and material properties are assigned in sequence. In the VGRAIN system, the generated grain structure together with the grain orientations and material properties can be directly imported into commercially available FE codes, e.g., ABAQUS/CAE, via suitable input file generation for further pre-processing operations, such as meshing, boundary and loading conditions defined based on the simulation requirements.

In this section, a process of applying the proposed CPVT model and the VGRAIN system to generate virtual grain structures is demonstrated. SEM observations of the grain structures of commercial aluminium alloys were used to extract the necessary physical properties, shown in Figs. 2.

Virtual grain structures were generated for the regular and irregular cases, as shown in Figs. 8 (c) and 9 (c), with histograms of grain size shown for the ideal and virtual cases in Figs. 9 (d) and 10 (d). As noted previously, repeated application of the same physical parameters using the CPVT model will result in slightly different grain structures, but all the virtual grain structures are statistically consistent with the specified physical parameters. The orientations of grains can be assigned based on a fixed texture, or be defined by a random number generator based on a uniform distribution or a normal distribution. Grain orientations can also be defined according to measurements, such as EBSD. In this case, grain orientations were created by a normal distribution random number generator. Figs. 9 (e) and 10 (e) show the resultant FE models with virtual grain structures and grain orientations assigned by a uniform random number generator. In addition, corresponding meshing results are given in Figs. 9 (f) and 10 (f). Further details of CPFE simulations carried out using the VGRAIN system have been described in [37].

Conclusions

Micromechanics simulations often require representation of a grain structure for FE simulation.

There is an increasing demand for effectively generating high-fidelity virtual grain structures for accurate prediction of material deformation. Methods to construct virtual grain structures must be capable of generating realistic or statistically equivalent structures at any scale. That is, grain size distributions in the virtual structure must conform to physical observations, with the virtual grain structure generated within any specified area efficiently. The CPVT model described in this work has been developed to fulfil these requirements.

In the CPVT model, grain organisation is determined by a single quantity, i.e., the regularity parameter 𝛼, which is used to derive the distribution parameter 𝑐 and the control parameter 𝛿. In this work, an improved descriptive model has been given for the mapping of 𝛼(𝑐). Moreover, assignment of grain size distribution in the form of a one-parameter gamma function is extended to a set of four physical parameters including a mean grain size, a small grain size, a large grain size and the percentage of grains within that range. The uniqueness of the 𝑐 value determined from the specified physical parameters has been proved, and an efficient numerical method for its determination has been provided. This might be due to the characteristics of the mapping from the distribution parameter 𝑐 to the regularity 𝛼, in which a tiny fitting error in 𝑐 may result in a large disturbance in 𝛼.

F

The final case studies were focused on engineering applications of the CPVT model and the VGRAIN system. Two images of a commercial aluminium alloy, which present different regularity and grain organisations, have been employed to derive the physical parameters for configuration of the CPVT. The overall process has been presented, including image processing for the physical parameters, generation of virtual grain structures and formation of corresponding FE models, which can be used for CPFE analysis. The major benefit of the CPVT model described in this work is the flexibility to repeatedly reconstruct virtual grain structures at any scale with proper regularity and grain size distribution characteristic, and the procedure from metallographic measurements to reconstruction of virtual grain structures for finite element simulations has been seamlessly integrated. The present CPVT model can also be extended to the case of three-dimensional virtual grain structure generation, which will be presented in a forthcoming publication. Fig. 2. Comparison of the two descriptive models, both of which describe the relationship between the grain area distribution parameter 𝑐 and the regularity parameter 𝛼. The dotted line is the model proposed in [START_REF] Ho | An integrated approach for virtual microstructure generation and micromechanics modelling for micro-forming simulation[END_REF] and [START_REF] Cao | [END_REF], and the solid line is the improved model: (a) Global quality, (b) local quality. 
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  Controlled Poisson Voronoi tessellation for virtual grain structure generation: A statistical evaluation P Zhang, D Balint * and J Lin Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK

  environment. Building FE models derived from realistic grain structures is critical for accurate simulations.

  growth velocities. Previous research into the utilisation of a Voronoi tessellation for modelling grain structures has been primarily devoted to the development of sophisticated grain growth schemes and seed distribution control mechanisms. By designating different grain growth

  , Zhang et al. theoretically studied the conditions on replacement of by a set of four physical parameters. Valid ranges for the physical parameters to uniquely determine the corresponding regularity have been established and an efficient solution algorithm has been devised. In addition, a controlled Poisson Voronoi tessellation (CPVT)model was proposed to generate virtual grain structures for crystal plasticity finite element models.

  555, 𝑐 ! = 47.524, 𝐴 = 0.738895, 𝑘 = 0.323911 and 𝑛 = -0.414367. The dotted lines in Fig.2show that this model provides good predictions for 𝑐 < 30. However, as 𝑐 increases beyond 40, the related regularity 𝛼 decreases, which fails to describe the tendency of the tessellation's regularity to increase as the distribution function becomes narrower.In order to fix this problem, a set of newly calibrated values are provided. This has been done by adding four supporting data points to the experimental data set to aid in formulating a sound objective function for optimisation. The CMA-ES algorithm[43] is applied here to find the model's parameters. The new parameter values are 𝑐 ! = 3.555, 𝑐 ! = 230, 𝐴 = 0.98, 𝑘 = 0.2 and 𝑛 = -0.3.

Fig. 2 (

 2 a) compares the overall quality of both descriptions. It can be seen that the newly proposed model provides a consistent description of the relationship between the regularity and the distribution parameter, i.e., 𝛼(𝑐) is monotonically contrast, the previous model failed to capture this feature. Fig.2 (b) also reveals that the fit quality of the new model is as good as the previous model for small 𝑐 values.

Fig. 3

 3 Fig. 3 demonstrates an example of the relation between the distribution for 𝑐 = 16 and the set of

  increasing, as the parameter 𝑐 increases for any 𝑐 ≥ 1. Moreover, the interval 𝑆 * = 𝑥 ! * , 𝑥 ! * can be estimated by

  , there is an asymptotic error between the regularity value derived from the physical parameters input and the resultant value of a VT. Thus, a comprehensive investigation of the effectiveness and robustness of the CPVT model for regularity control and grain size distribution control is necessary.

  a set of 𝑛 = 1000 independent runs, are calculated.

  other key feature of the CPVT model is automatic generation of VTs with grain size distribution control. The following results are presented to identify the quality of the grain size distribution control. Results are shown for a range of regularity values, from which the distribution parameters

8

  (a) and 9 (a). Workpiece related input to the CPVT model was taken directly from the domains of the images, while the physical parameters were identified by image processing including digital filtering and enhancement, segmentation of the grains by a watershed algorithm, and measuring the grain areas using pixel information. The images after segmentation are presented in Figs. 9 (b) and 10 (b), which clearly show the grain shapes and boundaries. The input parameters for the CVPT model test are listed in Table

Fig. 3 .Fig. 4 .Fig. 5 .

 345 Fig. 3. Example of a one-parameter gamma distribution, where the lower and upper bounds of the integral are 𝑥 ! = 0.8 and 𝑥 ! = 1.2, respectively.Fig. 4. Scheme of the CPVT(𝛿|𝛺, 𝐷 !"#$ ) model and its relationship to the physical parameters Fig. 5. The relative error of the ideal regularities and those of generated VTs. Error bars represent 95% confidence intervals.

Fig. 6 .

 6 Fig. 6. Grain size distributions of VTs with different regularities and numbers of grains. Error bars with standard deviation highlight the dispersion of frequency variation of local grain distributions from generated VTs.

Fig. 7 .

 7 Fig.7. The virtual grain structure generation system (VGRAIN) for micro-mechanics modelling.

Fig. 8 .

 8 Fig. 8. CPFE simulation for a regular grain structure. (a) Original microscopic image; domain is 846 µμm × 563 µμm, with 100 µμm scale shown, (b) The result after image processing; the grain structure was segmented into 181 grains. (c) The sampled virtual grain structure. (d) The grain size distribution of the virtual structure. A histogram of the virtual structure is plotted by shaded bars, and the ideal distribution given by the remaining bars. (e) An FE model with assignment of grain orientations. (f) The FE model after meshing.

Fig. 9

 9 Fig. 9 CPFE simulation for a regular grain structure. (a) Original microscopic image; domain is 1000 µμm × 730 µμm, with 100 µμm scale shown, (b) The result after image processing; the grain structure was segmented into 179 grains. (c) The sampled virtual grain structure. (d) The grain size distribution of the virtual structure. A histogram of the virtual structure is plotted by shaded bars, and the ideal distribution given by the remaining bars. (e) An FE model with assignment of grain orientations. (f) The FE model after meshing.

  

  

  

  

  

  

  

  There exists a point 𝛥 * ∈ 𝛥 ! , 𝛥 ! , where 𝛥 ! and 𝛥 ! are given by Eq.[START_REF] Schmidt | [END_REF], such that for any 𝛥 ∈ 0, 𝛥 * , 𝜑 𝑐, 𝛥 > 0. Moreover, the function 𝜑 𝑐, 𝛥 is strictly monotonically increasing for 𝛥 ∈ 0, 𝛥 * and strictly monotonically decreasing for 𝛥 ∈ [𝛥
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  To investigate the performance of the CPVT model, two groups of statistical tests have been conducted. The first group of tests concentrates on the fitness of the regularity control. Results show that for VTs with medium and large numbers of grains, the improved descriptive model performs extremely well. In contrast, for VTs with a small number of grains, random noise arises in irregular grain structure cases, whilst for structures with a regularity value larger than 0.3, the regularity control mechanism performs well regardless of the number of grains in the tessellation. The second group of tests provides a comprehensive comparison of virtual and ideal grain size distributions given as user input. Comparisons have been carried out with consideration of scale effects, i.e., random noise occurred in structures with few grains. The statistical results show the robustness of the CPVT model for generating expected grain structures in terms of grain size distribution. It should be mentioned that the VTs with 𝛼 = 0.3 and 𝛼 = 0.5 were slightly more irregular than the user input.
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Table 1 .

 1 Statistical results for the mean value of relative error 𝜀 and the standard error, where the mean grain size for each VT was chosen to be 10 µμm !
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Table 2 .

 2 Physical parameters and corresponding grain structure properties for the two grain structures. Fig. 1. Schemes to count the number of grains for grain structures represented by VTs. (a) The first scheme, in which there are 22 boundary grains, 8 inner grains and correspondingly 19 grains, (b) the second scheme, where there are 19 seeds and correspondingly 19 grains.

	Label	Physical parameters	Equivalent grain size †	Model parameters
		𝐷 !"#$ 𝐷 !	𝐷 !	𝑃 ! 𝑑 !"#$ 𝑑 !	𝑑 !	𝑑 !"#	𝛼	𝛿
	irregular 4078 2039 6117 75% 68.6 48.5 84.0	68.6 0.265 18.2
	Regular 2632 1579 3685 80% 55.1 42.7 65.2	55.2 0.453 25.0
	† Assuming a hexagonal grain shape.			
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