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Introduction

A classical problem in celestial mechanics is the study of the planetary motion, which its solutions are the so-called planetary theories. These theories can be classified, according to the used integration method, into analytical, semi-analytical and numerical theories.

In certain cases the numerical theories can be improved by using time transformations defined by means of dt = g(r)dτ , where r is the radius vector of the planet. The use of these transformations can improve the uniformity of the distribution of the orbit of the points defined by τ i = τ 0 + ih, and in certain cases may improve the variance of local truncation errors [12].

Analytical methods may also present convergence problems whey they are applied to dodies with high eccentricities. To solve this problem, Hansen introduced a new set of temporal variables known as partial anomalies, with these ones we can obtain developments rapidly convergents. These method was extended by Nacozy [13]. Sundman (1912) [15] in order to regularize the 3-body problem, introduces the transformation dt = Crdτ . This transformation can be extended as dt = C α r α dτ , and it is known as the generalized Sundman transformation. Besides includes the most common anomalies, for α = 0 and C 0 = 1 n we have the mean anomaly M ; for α = 1 and C 1 = a µ τ is the eccentric anomaly E; for α = 2 and

C 2 = 1 √ µa(1-e 2 )
τ is the true anomaly V . Nacozy [12] introduces a new anomaly in this class defined by α = 3 2 and C 3 2 = 1 √ µ , this anomaly is called the intermediate anomaly; in this case the formulas of the two-body problem can be written in closed form [12]. The mean of the quantities a, e, n, µ is the usual in the two body problem [2], [6].

Other families of anomalies were introduced by Ferrandiz [5] by means of g(r) = r 3 2 √ α0+α1r ; this family includes the elliptic anomaly [3].

The motion of a body in the solar system is completly defined by the value of its elements [2], [6], [16]. These values are given by the planetary Lagrange equations [8] d

-→ σ i dt = -→ f i ( -→ σ 1 , . . . , -→ σ n ), i = 1, . . . , n (1) 
The analytical and semi-analytical theories involve the management of the Fourier and Poisson series and the appropriate techniques to develop the inverse of the distance between two planets according to the chosen anomaly [7], [1], [14], [9], [10].

In this paper a general technique to use these temporal variables in analytical and semi-analytical methods will be developed. To arrange this pourpose, in section 2, the concept of the generalized anomaly of Sundman is defined; in this section the generalized anomaly is connected to the eccentric anomaly, and through this development we obtain by inversion the Kepler equation, and from them we obtain the most common developments.

In section 3 we explain the base of the developmet and the integration of the planetary equations of Lagrange. This problem involves two tasks, in first place it is necessary to obtain the development of the radius vector according to the selected anomaly, and in second place it is necessary to buid up a set of analytical integrators to be used to deal with each Sundman generalized anomaly.

In section 4 a set of practical examples of basic developments will be presented, the series are truncated in fourth order in the eccentricity. These developmets are necessary to obtain analytical development of inverse of the distance between two planets and the cosinus of the angle between the vector radii of the two planets.

In section 5 we analyze the main conclusions of this work.

The family of the Sundman generalized anomalies

Let us define the generalized anomaly as Ψ = Ψ(M ), where

Ψ(M ) satisfies that Ψ(M ) is a 2π periodic function of M , dΨ dM > 0, Ψ(-M ) = -Ψ(M ), Ψ(0) = 0, Ψ(2π) = 2π. Let dt = C α r α dτ
be a Sundman transformation of parameter α. From this transformation we define the Sundman generalized anomaly of parameter α as a variable Ψ α connected to M by means of

Ψ α = K α M 0 r -α dM , where K α = 2π 2π 0 r -α dM -1
.

(

) 2 
In the next developments the subindex α will be omitted.

To connect Ψ to M we can take account of the relation

r = a(1 -e cos E) (3) 
and then we can proceed as follows

Ψ = K M 0 a -α (1 -e cos E) -α dM (4) 
M is connected to E through the Kepler equation

E -e sin E = M (5) 
and from them we have dM = (1e cos E)dE, so To evaluate this integral it is interesting to develop the function (1-e cos E) 1-α as Fourier series according to the eccentric anomaly E. Let us define a new complex variable z = exp( √ -1 E), let g α (e, z) be the generating function defined by

Ψ = K E 0 a -α (1 -e cos E)
g α (e, z) = 1 -e z + z -1 2 1-α (7) 
in the next developments the subindex α will be omitted

g(e, z) = 1 2 1-α z α-1 2z -ez 2 -e 1-α (8) Let z 1 = 1- √ 1-e 2 e , z 2 = 1+ √ 1-e 2 e
be the roots of the equation ez 2 -2z + e = 0. These roots, in the case of the elliptic motion, are in R and satisfy 0 < z 1 < 1 < z 2 . After some algebraic manipulation we get

g(e, z) = 1 2 1-α (z 2 ) α-1 e 1-α 2 1-α 1 - z 1 z 1-α 1 - z z 2 1-α (9) 
In the previous equation

| z1 z | < 1 and | z z2 | < 1.
For this reason we can develop g(e, z) in series as

g(e, z) = (z 2 ) α-1 e 1-α 2 1-α ∞ s=0 1 -α s (-1) s z s 1 z s   ∞ p=0 1 -α p (-1) p z p z p 2   (10) 
this equation can be rewritten as

g(e, z) = ∞ m=-∞ g m (e)z m (11) 
where

g m (e) = (-1) m ∞ p=0 1 -α p 1 -α m + p z 2p 2 , if m ≤ 0, g m (e) = g -m (e) if m < 0 ( 12 
)
To compute K we have

K = 2πa α 2π 0 r -α dM -1 = 2π a -α 2π 0 (1 -e cos E) 1-α dE -1 = 2a α g 0 (e) (13) 
The value of K can be obtain directly by integration

K = a α (1 -e) 1-α F ( 1 2 , α -1, 1; 2e e -1 ) + (1 + e) 1-α F ( 1 2 , α -1, 1; 2e 1 + e ) -1 (14) 
where F (a, b, c; z) is the hypergeometric function. The functions g m (e) satisfy the recurrence formula 

e(1 -α + m)g m (e) -2(m -1)g m-1 (e) + (3 -α -m)g m-2 = 0 ( 15 
)
g 0 (e) = (1 -e) 1-α F ( 1 2 , α -1, 1; 2e e -1 ) + (1 + e) 1-α F ( 1 2 , α -1, 1; 2e 1 + e ) (16) 
g 1 (e) = (1 -e) 1-α F ( 1 2 , α -1, 1; 2e e -1 ) + (1 + e) 1-α F ( 1 2 , α -1, 1; 2e 1 + e )- - (1 + e) 1-α 1 + e (1 + e + 4e(1 -α))F ( 1 2 , α -1, 2; 2e e -1 )- - (1 -e) 1-α e -1 (e -1 + 4e(1 -α))F ( 1 2 , α -1, 2; 2e e + 1 ) (17) 
Let us define G m (e, z) = Ka α g m (e, z), functions g m satisfy the same recurrence and for m = 0, 1. The generalized anomaly is connected to the eccentric anomaly through the equation

Ψ = G 0 (e)E + ∞ s=1 2 s G s (e) sin sE (18) 
The eccentric anomaly E is connected to the mean anomaly M through the classical development [16]

E = M + ∞ k=1 e k [J k-1 (ke) + J k+1 (ke)] sin kM (19) 
and the functions sin mE, cos mE are given by the well known relations [16] sin mE

= ∞ k=1 m k (J k-m (ke) + J k+m (ke)) sin kM (20) cos E = - e 2 + ∞ k=1 J k-1 (ke) -J k+1 (ke) k cos kM, (21) 
cos mE = - e 2 + ∞ k=1 m k (J k-m (ke) -J k+m (ke)) cos kM, m > 1 ( 22 
)
where J k (x) are the first kind Bessel functions. Replacing (19), (20) in (18) we obtain

Ψ = M + ∞ s=0 Ψ s (e, α) sin sM (23) 
where

Ψ k = e k [J k-1 (ke) + J k+1 (ke)] + ∞ s=1 2 k G s (e) (J k-s (ke) + J k+s (ke)) , s = 1, 2, . . . (24) 
To obtain the kepler equation,(it is the development of M according to Ψ), it is necessary the inversion of the equation (23). In the particular case y = x + εψ(y) this problem can be solved through the Lagrange inversion formulae [16]:

y = x + ∞ n=1 ε n ψ n (y) (25) 
F (x) = y + ∞ n=1 ε n n! d n-1 dy n-1 y=x ψ(y) n F ′ (y) (26)
the particular case of F (y) = y can be solved by

x = y + ∞ n=1 ε n n! d n-1 dy n-1 y=x [ψ(y) n ] ( 27 
)
This problem is a particular case of the more general problem of the inversion of a function F (y) where

y = x + ∞ n=1 ε n n! ϕ n (y) (28) 
This problem can be solve by using the Deprit inversion algorithm [4], a resume of this algorithm is:

y(x, ε) = x + ∞ n=1 ε n n! y 0,n (x) (29) 
This algorithm obtains the development of an analytical function F (y) as

F (y, ε) = ∞ n=0 ε n n! F n,0 (y) (30) 
and from them F * (x, ε) defined as

F * (x, ε) = F (y(x, ε) = ∞ n=0 ε n n! F n,0 (y) (31) 
the development

dy dε = ∞ n=0 ε n n! W n+1 (32) 
where W n are defined by

W 1 = ϕ 1 W n+1 = ϕ n+1 + n-1 m=0 n m W m+1 dϕ n-m dy
To use the Deprit algorithm it is necessary to develop Ψ as 

M = Ψ + ∞ s=1 e s g s (M ) (33) 
M = Ψ + ∞ s=1
H s (e) sin sΨ (34)

Semi-analytical integrators based on the generalized Sundman anomalies

To integrate the Lagrange planetary equations it is necessary to develop the second member of these equations as Poisson series according to the selected anomalies. Brumberg [3] defines a Poisson series of type (s, l) as a mathematical object defined as

S = ∞ i1=0 • • ∞ is=0 • • ∞ j1=-∞ • • ∞ jl=-∞ C j1,..,jl i1,..,is x i1 1 • •x is s exp((j 1 y 1 + • • +j l y l ) √ -1) (35) 
where C j1,..,jl i1,..,is are real or complex numbers and Φ j1,..,jl i1,..,is are real numbers. The variables (x 1 , ••, x s ) are called power variables, and the variables (y 1 , ••, y l ) are called angular variables.

The second member of the Lagrange planetary equations can be developed as

d -→ σ i dt = ∞ k=0 ∞ j1=0 • • ∞ jl=-∞ C j1,..,jl i t k cos(j 1 Ψ 1 + • • +j l Ψ l + Φ j1,••• ,jl ) ( 36 
)
where t is the time and Ψ i the anomaly of the body i. To arrange these developments it is necessary to develop the radius vector according to the selected anomaly. To reach this purpose it is interesting to obtain the development of E, sin E, and cos E in Fourier series of the generalized anomaly. Obtaining these quantities is suitable from (18) using the inversion Deprit algorithm.

To integrate the Lagrange planetary equations it is necessary the evaluation of the quantities

t t0 cos(j 1 Ψ 1 + . . . + j l Ψ l + Φ j1,••• ,jl )dt ( 37 
)
This process is immediate if the mean anomalies M 1 , . . . , M k are used in the developmets. In the other case the procees in more difficult. Let Ψ i be an anomaly connected with M i through of the Kepler equation.

M i = Ψ + ∞ k=0 H k (e) cos kΨ (38) 
and from this equation we get

n i dt = 1 + ∞ k=1 kH k (e i ) sin kΨ i dΨ i (39)
where n i is the mean motion of the body i. From this equation we get Let us define ξ = j 1 Ψ 1 + . . . + j l Ψ l , then

dΨ i = n i 1 + ∞ k=0 T k (e i ) sin kΨ i dt (40) 
dt = 1 j 1 n 1 + . . . + j l n l dξ + j s n s j 1 n 1 + . . . + j l n l l s=0 h(e s , Ψ s ) dt (41) 
where

h(e s , Ψ s ) = ∞ k=1 kK k (e s ) sin kΨ s 1 + ∞ k=0 T k (e s ) sin kΨ s (42) 
Note that the functions h s (e s ) are almost of firts order in e s , for this reason the method can be applied as an iterative method.

Examples of basic develoments

To illustrate the previous sections, a particular case has been developed. For space reasons the developments have been truncated in fourth order in eccentricities. The operations described in the previuos sections involve a hard management of Poisson Series. For this purpose we can use a new C++ class developed by the authors called poisson.h [11]. This processor uses the Poisson series in the trigonometric form.

The most important features of the class poisson.h are the following: The main public methods of poisson.h are the arithmetic operations +, -, * , pow; the extension of the most common functions sin cos, exp, . . ., to be evaluated over Poisson series [3]; and functional operations as Taylor developments and series inversion procedures based on Lagrange and Deprit methods [4]. The operators and common functions have been overloaded in order to be more user friendly. For more details see [11] Let Ψ a generalized Sundman anomaly of parameter α. The constant K α is given by

K α = 1 + 1 4 e 2 α -α 2 + 1 64 e 4 3α 4 -10α 3 + 5α 2 + 2α + O(e 5 ) ( 43 
)
This anomaly is connected to the eccentric anomaly through To finish this section we show an integrator for a term in the form cos(2Ψ 1 -3Ψ 2 + Φ) 

Ψ α = E + - 1 8 e 3 α 3 + e 3 α
t t0 cos(2Ψ 1 -3Ψ 2 + Φ)dt = 1 2n 1 -3n 2 sin(2Ψ 1 -3Ψ 2 + Φ) t t0 + 2n 1 2n 1 -3n 2 t t0 cos(2Ψ 1 -3Ψ 2 )h(e 1 , Ψ 1 , α)dt- - 3n 1 2n 1 -3n 2 t t0 cos(2Ψ 1 -3Ψ 2 )h(e 2 ,

Concluding Remarks

This paper extends the most usual formulas of two-body problem in order to arrange an analytical development of the equations of perturbed motion. This formulas include the development of the generalized anomaly according to the eccentric and mean anomalies, the kepler equation, and the expansion of the sin E and cos E according to the generalized anomaly.

An algorithm to construct integrators to be used in analytical and semi-analytical planetary theories has been developed. These integrators can be used as an iterative method, where the order of residuals in eccentricities increase in one unit in each iteration.

The process described above is a suitable algorithm to construct a set of semi-analytical integrators using an extended class of anomalies as temporal variables. The use of the the C++ class poisson.h allows the managment of the equations; the kernel of this class is available if it is required. A classical problem in celestial mechanics is the study of the planetary motion, which its solutions are the so-called planetary theories. These theories can be classified, according to the used integration method, into analytical, semi-analytical and numerical theories.

In certain cases the numerical theories can be improved by using time transformations defined by means of dt = g(r)dτ , where r is the radius vector of the planet. The use of these transformations can improve the uniformity of the distribution of the orbit of the points defined by τ i = τ 0 + ih, and in certain cases may improve the variance of local truncation errors [12].

Analytical methods may also present convergence problems whey they are applied to dodies with high eccentricities. To solve this problem, Hansen introduced a new set of temporal variables known as partial anomalies, with these ones we can obtain developments rapidly convergents. These method was extended by Nacozy [13]. Sundman (1912) [15] in order to regularize the 3-body problem, introduces the transformation dt = Crdτ . This transformation can be extended as dt = C α r α dτ , and it is known as the generalized Sundman transformation. Besides includes the most common anomalies, for α = 0 and C 0 = 1 n we have the mean anomaly M ; for α = 1 and C 1 = a µ τ is the eccentric anomaly E; for α = 2 and

C 2 = 1 √ µa(1-e 2 )
τ is the true anomaly V . Nacozy [12] introduces a new anomaly in this class defined √ µ , this anomaly is called the intermediate anomaly; in this case the formulas of the two-body problem can be written in closed form [12]. The mean of the quantities a, e, n, µ is the usual in the two body problem [2], [6].

Other families of anomalies were introduced by Ferrandiz [5] by means of g(r) = r 3 2 √ α0+α1r ; this family includes the elliptic anomaly [3]. The motion of a body in the solar system is completly defined by the value of its elements [2], [6], [16]. These values are given by the planetary Lagrange equations [8] 

d - → σ i dt = - → f i ( - → σ 1 , . . . , - → σ n ), i = 1, . . . , n (1) 
The analytical and semi-analytical theories involve the management of the Fourier and Poisson series and the appropriate techniques to develop the inverse of the distance between two planets according to the chosen anomaly [7], [1], [14], [9], [10].

In this paper a general technique to use these temporal variables in analytical and semi-analytical methods will be developed. To arrange this pourpose, in section 2, the concept of the generalized anomaly of Sundman is defined; in this section the generalized anomaly is connected to the eccentric anomaly, and through this development we obtain by inversion the Kepler equation, and from them we obtain the most common developments.

In section 3 we explain the base of the developmet and the integration of the planetary equations of Lagrange. This problem involves two tasks, in first place it is necessary to obtain the development of the radius vector according to the selected anomaly, and in second place it is necessary to buid up a set of analytical integrators to be used to deal with each Sundman generalized anomaly.

In section 4 a set of practical examples of basic developments will be presented, the series are truncated in fourth order in the eccentricity. These developmets are necessary to obtain analytical development of inverse of the distance between two planets and the cosinus of the angle between the vector radii of the two planets.

In section 5 we analyze the main conclusions of this work.

The family of the Sundman generalized anomalies

Let us define the generalized anomaly as Ψ = Ψ(M ), where Ψ(M ) satisfies that Ψ(M ) is a 2π periodic function of M , dΨ dM > 0, Ψ(-M ) = -Ψ(M ), Ψ(0) = 0, Ψ(2π) = 2π. Let dt = C α r α dτ be a Sundman transformation of parameter α. From this transformation we define the Sundman generalized anomaly of parameter α as a variable Ψ α connected to M by means of

Ψ α = K α M 0 r -α dM , where K α = 2π 2π 0 r -α dM -1
.

(

) 2 
In the next developments the subindex α will be omitted.

To connect Ψ to M we can take account of the relation and then we can proceed as follows

r = a(1 -e cos E) (3 
Ψ = K M 0 a -α (1 -e cos E) -α dM (4) 
M is connected to E through the Kepler equation

E -e sin E = M (5) 
and from them we have dM = (1e cos E)dE, so

Ψ = K E 0 a -α (1 -e cos E) 1-α dE (6) 
To evaluate this integral it is interesting to develop the function (1e cos E) 1-α as Fourier series according to the eccentric anomaly E. Let us define a new complex variable z = exp( √ -1 E), let g α (e, z) be the generating function defined by

g α (e, z) = 1 -e z + z -1 2 1-α (7) 
in the next developments the subindex α will be omitted

g(e, z) = 1 2 1-α z α-1 2z -ez 2 -e 1-α (8) Let z 1 = 1- √ 1-e 2 e , z 2 = 1+ √ 1-e 2 e
be the roots of the equation ez 2 -2z + e = 0. These roots, in the case of the elliptic motion, are in R and satisfy 0 < z 1 < 1 < z 2 . After some algebraic manipulation we get

g(e, z) = 1 2 1-α (z 2 ) α-1 e 1-α 2 1-α 1 - z 1 z 1-α 1 - z z 2 1-α (9) 
In the previous equation

| z1 z | < 1 and | z z2 | < 1.
For this reason we can develop g(e, z) in series as

g(e, z) = (z 2 ) α-1 e 1-α 2 1-α ∞ s=0 1 -α s (-1) s z s 1 z s   ∞ p=0 1 -α p (-1) p z p z p 2   (10) 
this equation can be rewritten as

g(e, z) = ∞ m=-∞ g m (e)z m (11) 
where To compute K we have

g m (e) = (-1) m ∞ p=0 1 -α p 1 -α m + p z 2p 2 , if m ≤ 0, g m (e) = g -m (e) if m < 0 ( 12 
K = 2πa α 2π 0 r -α dM -1 = 2π a -α 2π 0 (1 -e cos E) 1-α dE -1 = 2a α g 0 (e) (13) 
The value of K can be obtain directly by integration

K = a α (1 -e) 1-α F ( 1 2 , α -1, 1; 2e e -1 ) + (1 + e) 1-α F ( 1 2 , α -1, 1; 2e 1 + e ) -1 (14 
) where F (a, b, c; z) is the hypergeometric function. The functions g m (e) satisfy the recurrence formula

e(1 -α + m)g m (e) -2(m -1)g m-1 (e) + (3 -α -m)g m-2 = 0 ( 15 
)
g 0 (e) = (1 -e) 1-α F ( 1 2 , α -1, 1; 2e e -1 ) + (1 + e) 1-α F ( 1 2 , α -1, 1; 2e 1 + e ) (16) 
g 1 (e) = (1 -e) 1-α F ( 1 2 , α -1, 1; 2e e -1 ) + (1 + e) 1-α F ( 1 2 , α -1, 1; 2e 1 + e )- - (1 + e) 1-α 1 + e (1 + e + 4e(1 -α))F ( 1 2 , α -1, 2; 2e e -1 )- - (1 -e) 1-α e -1 (e -1 + 4e(1 -α))F ( 1 2 , α -1, 2; 2e e + 1 ) (17) 
Let us define G m (e, z) = Ka α g m (e, z), functions g m satisfy the same recurrence and for m = 0, 1. The generalized anomaly is connected to the eccentric anomaly through the equation

Ψ = G 0 (e)E + ∞ s=1 2 s G s (e) sin sE (18) 
The eccentric anomaly E is connected to the mean anomaly M through the classical development [16]

E = M + ∞ k=1 e k [J k-1 (ke) + J k+1 (ke)] sin kM (19) 
and the functions sin mE, cos mE are given by the well known relations [16] sin mE 

= ∞ k=1 m k (J k-m (ke) + J k+m (ke)) sin kM (20) cos E = - e 2 + ∞ k=1 J k-1 (ke) -J k+1 (ke) k cos kM, (21) 
cos mE = - e 2 + ∞ k=1 m k (J k-m (ke) -J k+m (ke)) cos kM, m > 1 (22) 
where J k (x) are the first kind Bessel functions. Replacing (19), (20) in ( 18) we obtain

Ψ = M + ∞ s=0 Ψ s (e, α) sin sM (23) 
where

Ψ k = e k [J k-1 (ke) + J k+1 (ke)] + ∞ s=1 2 k G s (e) (J k-s (ke) + J k+s (ke)) , s = 1, 2, . . . (24) 
To obtain the kepler equation,(it is the development of M according to Ψ), it is necessary the inversion of the equation (23).

y = x + ∞ n=1 ε n ψ n (y) (25) 
In the particular case y = x + εψ(y) this problem can be solved through the Lagrange inversion formulae [16]:

F (x) = y + ∞ n=1 ε n n! d n-1 dy n-1 y=x ψ(y) n F (y) (26) 
the particular case of F (y) = y can be solved by

x = y + ∞ n=1 ε n n! d n-1 dy n-1 y=x [ψ(y) n ] ( 27 
)
This problem is a particular case of the more general problem of the inversion of a function F (y) where

y = x + ∞ n=1 ε n n! ϕ n (y) (28) 
This problem can be solve by using the Deprit inversion algorithm [4], a resume of this algorithm is:

y(x, ε) = x + ∞ n=1 ε n n! y 0,n (x) (29) 
This algorithm obtains the development of an analytical function F (y) as and from them F * (x, ε) defined as

F (y, ε) = ∞ n=0 ε n n! F n,0 (y) 
F * (x, ε) = F (y(x, ε) = ∞ n=0 ε n n! F n,0 (y) (31) 
the development

dy dε = ∞ n=0 ε n n! W n+1 (32) 
where W n are defined by

W 1 = ϕ 1 W n+1 = ϕ n+1 + n-1 m=0 n m W m+1 dϕ n-m dy
To use the Deprit algorithm it is necessary to develop Ψ as

M = Ψ + ∞ s=1 e s g s (M ) (33) 
in this equation g s (M ) are Fourier series in M . From this algoritmh we get the Kepler equation

M = Ψ + ∞ s=1 H s (e) sin sΨ (34) 

Semi-analytical integrators based on the generalized Sundman anomalies

To integrate the Lagrange planetary equations it is necessary to develop the second member of these equations as Poisson series according to the selected anomalies. Brumberg [3] defines a Poisson series of type (s, l) as a mathematical object defined as

S = ∞ i1=0 • • ∞ is=0 • • ∞ j1=-∞ • • ∞ jl=-∞ C j1,..,jl i1,..,is x i1 1 • •x is s exp((j 1 y 1 + • • +j l y l ) √ -1) (35) 
where C j1,..,jl i1,..,is are real or complex numbers and Φ j1,..,jl i1,..,is are real numbers. The variables (x 1 , ••, x s ) are called power variables, and the variables (y 1 , ••, y l ) are called angular variables.

The second member of the Lagrange planetary equations can be developed as

d - → σ i dt = ∞ k=0 ∞ j1=0 • • ∞ jl=-∞ C j1,..,jl i t k cos(j 1 Ψ 1 + • • +j l Ψ l + Φ j1,••• ,jl ) ( 36 
)
where t is the time and Ψ i the anomaly of the body i. To arrange these developments it is necessary to develop the radius vector according to the selected anomaly.

To reach this purpose it is interesting to obtain the development of 

+ . . . + j l Ψ l + Φ j1,••• ,jl )dt (37)
This process is immediate if the mean anomalies M 1 , . . . , M k are used in the developmets. In the other case the procees in more difficult. Let Ψ i be an anomaly connected with M i through of the Kepler equation.

M i = Ψ + ∞ k=0 H k (e) cos kΨ (38) 
and from this equation we get

n i dt = 1 + ∞ k=1 kH k (e i ) sin kΨ i dΨ i ( 39 
)
where n i is the mean motion of the body i. From this equation we get

dΨ i = n i 1 + ∞ k=0 T k (e i ) sin kΨ i dt (40) 
Let us define ξ = j 1 Ψ 1 + . . . + j l Ψ l , then

dt = 1 j 1 n 1 + . . . + j l n l dξ + j s n s j 1 n 1 + . . . + j l n l l s=0 h(e s , Ψ s ) dt (41) 
where

h(e s , Ψ s ) = ∞ k=1 kK k (e s ) sin kΨ s 1 + ∞ k=0
T k (e s ) sin kΨ s (42)

Note that the functions h s (e s ) are almost of firts order in e s , for this reason the method can be applied as an iterative method.

Examples of basic develoments

To illustrate the previous sections, a particular case has been developed. For space reasons the developments have been truncated in fourth order in eccentricities. The operations described in the previuos sections involve a hard management of Poisson Series. For this purpose we can use a new C++ class developed by the authors called poisson.h [11]. This processor uses the Poisson series in the trigonometric form.

The most important features of the class poisson.h are the following: The main public methods of poisson.h are the arithmetic operations +, -, * , pow; the extension of the most common functions sin cos, exp, . . ., to be evaluated over Poisson series [3]; and functional operations as Taylor developments and series inversion procedures based on Lagrange and Deprit methods [4]. The operators and common functions have been overloaded in order to be more user friendly. For more details see [11] Let Ψ a generalized Sundman anomaly of parameter α. The constant K α is given by

K α = 1 + 1 4 e 2 α -α 2 + 1 64 e 4 3α 4 -10α 3 + 5α 2 + 2α + O(e 5 ) (43) 
This anomaly is connected to the eccentric anomaly through This paper extends the most usual formulas of two-body problem in order to arrange an analytical development of the equations of perturbed motion. This formulas include the development of the generalized anomaly according to the eccentric and mean anomalies, the kepler equation, and the expansion of the sin E and cos E according to the generalized anomaly.

Ψ α = E + - 1 
An algorithm to construct integrators to be used in analytical and semi-analytical planetary theories has been developed. These integrators can be used as an iterative method, where the order of residuals in eccentricities increase in one unit in each iteration.

The process described above is a suitable algorithm to construct a set of semianalytical integrators using an extended class of anomalies as temporal variables. The use of the the C++ class poisson.h allows the managment of the equations; the kernel of this class is available if it is required. 

  g s (M ) are Fourier series in M . From this algoritmh we get the Kepler equation
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  Ψ 2 , α)dt (50)

	where														
	h(e, Ψ, α) = -	e 2 α 2 2	+	3e 4 α 4 32	-	9e 4 α 3 16	+	3e 4 α 2 32	+	3e 3 α 3 16	-	21e 3 α 2 16	+	3e 3 α 8	-eα cos(Ψ)+
		+ -	1 9	e 4 α 4 +	7e 4 α 3 8	-	31e 4 α 2 18	+	11e 4 α 24	+	e 2 α 2 4	-	3e 2 α 4	cos(2Ψ)+
							+ -	5 48	e 3 α 3 +	9e 3 α 2 16	-	17e 3 α 24	cos(3Ψ)+
											+		31e 4 α 4 576	-	13e 4 α 3 32	+	557e 4 α 2 576	-	71e 4 α 96	cos(4Ψ) + O(e 5 ) (51)
		F o r							
						P					
								e			
									e r
														R
															e
																v i e
																w
																O n l
																y

  E, sin E, and cos E in Fourier series of the generalized anomaly. Obtaining these quantities is suitable from (18) using the inversion Deprit algorithm.To integrate the Lagrange planetary equations it is necessary the evaluation of the quantities
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  To develop the second member of the Lagrange Planetary equations according to the new anomaly, it is necessary to obtain first the develoments of the sin E and cos E with respect to the new anomaly. For this purpose we can use the DepritTo finish this section we show an integrator for a term in the form cos(2Ψ 1 -3Ψ 2 +Φ) -3Ψ 2 )h(e 1 , Ψ 1 , α)dt--3Ψ 2 )h(e 2 , Ψ 2 , α)dt (50)

	Page 19 of 21			International Journal of Computer Mathematics
	algorithm.									
	8 + -1 e 3 α 3 + 48 e 4 α 4 + e 3 α 2 2 e 4 α 3 -12 -3e 3 α 8 e 4 α 2 + eα -e sin(E)+ 24 -e 4 α 48 + e 2 α 2 8 -e 2 α 8 -e 3 α 72 sin(3E) + e 4 α 4 768 + e 4 α 3 384 -e 4 α 2 768 -e 4 α 384 F e 3 α 3 72 o r E = Ψ + + 3e 3 α 3 16 -3e 3 α 2 4 + 11e 3 α 16 -e 3 8 t t0 cos(2Ψ 1 -3Ψ 2 + Φ)dt = 1 2n 1 -3n 2 sin(2Ψ 1 -3Ψ 2 + Φ) -eα + e sin(Ψ)+ + -23 144 e 4 α 4 + 61e 4 α 3 72 -13e 4 α 2 9 + 133e 4 α 144 -e 4 6 + 3e 2 α 2 8 -7e 2 α sin(2E)+ t + t0 8 + e 2 2 + -29 144 e 3 α 3 + 3e 3 α 2 4 -133e 3 α 144 + 3e 3 8 sin(3Ψ)+ + 289e 4 α 4 2304 -743e 4 α 3 1152 + 2855e 4 α 2 2304 -1213e 4 α 1152 + t 2n 1 2n 1 -3n 2 t0 cos(2Ψ 1 -t 3n 1 2n 1 -3n 2 t0 cos(2Ψ 1 where e 4 3 sin(4Ψ) + O(e 5 ) (47) sin(2Ψ)+ F h(e, Ψ, α) = -e 2 α 2 2 + 3e 4 α 4 32 -9e 4 α 3 16 + 3e 4 α 2 32 + 3e 3 α 3 16 -21e 3 α 2 16 + 3e 3 α 8 -eα cos(Ψ)+ o + -1 9 e 4 α 4 + 7e 4 α 3 8 -31e 4 α 2 18 + 11e 4 α 24 + e 2 α 2 4 -3e 2 α 4 cos(2Ψ)+ r sin(4E) + O(e 5 ) (44) The development of Ψ α according to M is given by Ψ α = M + -1 8 e 3 α 3 + 3e 3 α 2 8 -3e 3 α 8 -e 3 4 + eα sin(M )+ + -1 48 e 4 α 4 + e 4 α 2 12 -11e 4 α 48 -e 4 6 + e 2 α 2 8 + 3e 2 α 8 sin(2M )+ + e 3 α 3 72 + e 3 α 2 8 + 17e 3 α 72 sin(3M )+ + e 4 α 4 768 + 3e 4 α 3 128 + 95e 4 α 2 768 + 71e 4 α 384 sin(4M ) + O(e 5 ) (45) Kepler equation is given by P e e r R e v i e w sin E = 127e 4 α 4 2304 -293e 4 α 3 1152 + 731e 4 α 2 2304 -71e 4 α 576 + e 4 192 -3e 2 α 2 16 + 5e 2 α 16 -e 2 8 + 1 sin(Ψ)+ + 2e 3 α 3 9 -3e 3 α 2 4 + 25e 3 α 36 -e 3 6 -eα 2 + e 2 sin(2Ψ)+ + -7 32 e 4 α 4 + 67e 4 α 3 64 -431e 4 α 2 256 + 273e 4 α 256 -27e 4 128 + 5e 2 α 2 16 -11e 2 α 16 + 3e 2 + -31 144 e 3 α 3 + 3e 3 α 2 4 -125e 3 α 144 + e 3 3 sin(4Ψ)+ + 361e 4 α 4 2304 -869e 4 α 3 1152 + 1567e 4 α 2 1152 -2507e 4 α 2304 + 125e 4 384 sin(5F ) + O(e 5 ) (48) w e i v e R 8 sin(3Ψ)+ + -5 48 e 3 α 3 + 9e 3 α 2 16 -17e 3 α 24 cos(3Ψ)+ P e + 31e 4 α 4 576 -13e 4 α 3 32 + 557e 4 α 2 576 -71e 4 α cos(4Ψ) + O(e 5 ) (51) 96 e r 5. Concluding Remarks
	M = Ψ + + -cos E = eα 23 3e 3 α 3 16 144 e 4 α 4 + -2 -e 2 -1 9e 3 α 2 16 5e 4 α 3 8 16 e 3 α 3 + + -215e 4 α 4 2304 -553e 4 α 3 1152 + 1699e 4 α 2 3e 3 α 8 25e 4 α 2 -eα sin(Ψ)+ 36 + 11e 4 α 48 + 3e 2 α 2 8 e 3 α 2 4 -3e 3 α 16 + 2304 -217e 4 α 576 + 5e 4 192 -5e 2 α 2 -3e 2 α 8 O n 16 + 11e 2 α 16 -3e 2 8 O n sin(2Ψ)+ + -29 144 e 3 α 3 + 7e 3 α 2 16 -17e 3 α + 289e 4 α 4 2304 -55e 4 α 3 128 + 1127e 4 α 2 2304 -71e 4 α + -31 144 e 3 α 3 + 3e 3 α 2 4 -125e 3 α 144 + 3 cos(4Ψ)+ e 3 384 sin(4Ψ) + O(e 5 ) (46) + 1 cos(Ψ)+ + -+ 1 4 e 4 α 4 + 79e 4 α 3 64 -537e 4 α 2 256 + 375e 4 α 256 -45e 4 128 + 5e 2 α 2 16 -11e 2 α 16 + 8 cos(3Ψ)+ 3e 2 72 sin(3Ψ)+ l y + 5e 3 α 3 18 -e 3 α 2 + 19e 3 α 18 -e 3 3 -eα 2 + e 2 cos(2Ψ)+ l y
	+	361e 4 α 4 2304	-	869e 4 α 3 1152	+	1567e 4 α 2 1152	-	2507e 4 α 2304	+	125e 4 384	cos(5Ψ) + O(e 5 ) (49)
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