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An Iterative Splitting Method via Waveform

Relaxation

Jürgen Geiser

geiser@mathematik.hu-berlin.de

Abstract. This paper explores a new numerical strategy for a closed for-
mulation of iterative splitting methods and their embedding in classical
Waveform-Relaxation methods. Since iterative splitting has been devel-
oped in several papers, an abstract framework that relates these methods
to other classical splitting methods would be useful and is needed. Here,
we present an embedding of the iterative splitting method in Waveform-
Relaxation and exponential splitting methods. While we can use the the-
oretical background of the classical schemes, a simpler iterative splitting
analysis is obtained. This is achieved by basing the analysis on semigroup
and fix-point schemes.
Our approach is illustrated with numerical results obtained on differential
equations with constant and time-dependent coefficients.

Keyword Iterative splitting method, Waveform-relaxation method, Pade
approximations.

AMS subject classifications. 65M15, 65L05, 65M71.

1 Introduction

Historically, iterative splitting methods are related to iterative solver methods.
The underlying ideas are based on waveform relaxation methods, which are fix-
point iterations or successive approximation schemes, see [24]. Their convergence
analysis and application to second-order differential equations are studied in [14–
18] They are developed to simplify the solver process, while saving time when
computing, e.g. simple diagonal matrices, see [26]. On the other hand, they can be
used to accelerate the iterative process of solving partial differential equations,
see [21]. In the next step, the generalization of iterative splitting schemes to
unbounded operators allows them be applied to partial differential equations,
see [8], [9]. In this paper, we deal with a general scheme, a so called multi-stage
scheme, which gives a significant improvement in terms of accuracy, numerical
stability and reduction of local and global errors.

We concentrate on an approximation to the solution of the linear evolution
equation

∂u

∂t
= Lu = (A + B)u, u(0) = u0, (1)
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where L, A and B are linear operators.
1.) For the numerical method, we employ an 1-stage iterative splitting scheme,

see [26], also called the Waveform-Relaxation method:

ui(t) = exp(At)u0 +

∫ t

0

exp(A(t − s))Bui−1(s) ds, (2)

where i = 1, 2, 3, . . . and u0(t) = u(0) is the initial condition.

2.) As a second numerical method, we employ a 2-stage iterative splitting
scheme, see [3], [5]:

ui(t) = exp(At)u0 +

∫ t

0

exp(A(t − s))Bui−1(s) ds, (3)

ui+1(t) = exp(Bt)u0 +

∫ t

0

exp(B(t − s))Aui(s) ds, (4)

where i = 1, 3, 5, . . . and u0(t) = u(0) is the initial condition.
3.) As a third numerical method, the 2-stage scheme is improved by combin-

ing it with equations (3) and (4) in a multiple-stage scheme and can be written
generally as an embedded iterative scheme with inner and outer layers.

uik
(t) = exp(At)u0 +

∫ t

0

exp(A(t − s))Buik+Jk−1−1(s) ds, (5)

ujk+Ik
(t) = exp(Bt)u0 +

∫ t

0

exp(B(t − s))Aujk+Ik−1(s) ds, (6)

where ik = 1, 2, 3, . . . , Ik, jk = 1, 2, 3, . . . , Jk, k = 1, . . . , K, I1, . . . , IK are the
number of iterations done with the A-operator, where J1, . . . , JK are the number
of iterations done with the B-operator. The initialization is given as u0(t) = u(0)
and J0 = 0. Here, we can control the iterative steps on each operator A and B.

Remark 1. The motivation for expanding the 1-stage scheme to a 2-stage scheme
comes from the reduction of local and global errors, as illustrated in the following
example:

Example 1. Let A, B be constant matrices, not dependent of t, not commuting
([A, B] 6= O ) and no zero matrices (A, B 6= O). We obtain the following schemes:
For an 1-stage scheme (2), for i = 1:

u1,one(t) = exp(At)u0 +

∫ t

0

exp(A(t − s))Bu0 ds, (7)

further for an 1-stage scheme (2), for i = 2:

u2,one(t) = exp(At)u0 +

∫ t

0

exp(A(t − s))Bu1(s) ds, (8)
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and for a 2-stage scheme for i = 2:

u2,two(t) = exp(Bt)u0 +

∫ t

0

exp(B(t − s))Au1,one(s) ds. (9)

So we find that equation (7) is locally a second order approximation of exp((A+
B)t) for t > 0, meaning that:

|| exp((A + B)t)u0 − u1,one(t)|| ≤ Ct2||u0|| + O(t3), (10)

where C = ||BA||
2 + ||B2||

2 and || · || is the L1-norm.
Further equation (8) is locally a third order approximation of exp((A + B)t)

for t > 0, meaning that:

|| exp((A + B)t)u0 − u2,one(t)|| ≤ Ĉt3||u0|| + O(t4), (11)

where Ĉ = ||BAB||
6 + ||B3||

6 and || · || is the L1-norm.
and equation (9) is locally a third order approximation of exp((A + B)t) for

t > 0, meaning that:

|| exp((A + B)t)u0 − u2,two(t)|| ≤ C̃t3||u0|| + O(t4), (12)

where C̃ = ||ABA||
6 + ||AB2||

6 and || · || is the L1-norm.

Remark 2. The motivation for expanding the 2-stage scheme to a multi-stage
scheme comes from the improvement in numerical stability of the scheme. In
numerical examples, the operators are not equal and often one operator can be
bounded by the other operator. So, in a multi-stage scheme, we can control the
iterative stage over each operator.

Example 2. Let A, B be bounded operators, but ||A|| >> ||B||, while || · || is a
matrix norm. We assume 0 < ||B|| ≤ 1 otherwise we have trivially to solve only
with operator A.

We apply a 2-stage method until i = 2 and obtain the error bound of equation
(9) for bounded operators given as:

C̃ =
||ABA||

6
+

||AB2||

6
≤

||A2||

6
. (13)

We can reduce the error bound and therefore the stability of the scheme,
while applying an 1-stage method to operator A, see equation (2), and obtain
the error bound of equation (8) for bounded operators as:

Ĉ =
||BAB||

6
+

||B3||

6
≤

||A||

6
(14)

where we have three cases:
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1. If ||A|| >> 1, then Ĉ << C̃.

2. If ||A|| << 1, then Ĉ >> C̃.

3. If ||A|| ≈ 1, then Ĉ < C̃.

Here we have some benefits in applying different stages with respect to the
underlying operators. Such benefits are discussed later in the error analysis.

The outline of the paper is as follows. The iterative splitting methods and
their error analysis are presented in Section 2. In Section 3, we discuss an effi-
cient computation of the iterative splitting method with a closed formulation.
In Section 4, we discuss the numerical experiments and the benefits of the iter-
ative splitting schemes. Finally, we discuss future works in the area of iterative
methods.

2 Splitting Method and Error Analysis

In the following, the iterative splitting scheme is presented as a multi-stage
scheme.

2.1 General Iterative Splitting Method (multiple stage scheme)

A general setting of an iterative splitting method is given with inner and outer
iterative schemes, so that each part of a 2-stage scheme can be chosen inde-
pendently to control the stages over each operator. The method is given in the
following:

∂uik+Jk−1
(t)

∂t
= Auik+Jk−1

(t) + Buik+Jk−1−1(t), (15)

with uik+Jk−1
(tn) = un,

∂ujk+Ik
(t)

∂t
= Aujk+Ik−1(t) + Bujk+Ik

(t), (16)

with ujk+Ik
(tn) = un,

where ik = Jk−1 + 1, . . . , Ik, jk = Ik + 1, . . . , Jk, k = 1, . . . , K, Ik − Jk−1 are the
number of iterations done with the A-operator, where Jk − Ik is the number of
iterations done with the B-operator. The initialization is given as u0(t) = u(0)
and I0 = J0 = 0.

2.2 Error Analysis for the General Scheme

In this section, we analyze the convergence of the general scheme (15) and (16)
in which Waveform Relaxation and the iterative splitting method are embedded.

We consider the error of the iterative splitting method on a Banach space X
with norm and induced operator norm denoted by || · ||.

Further we have the following assumptions:
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Assumption 21 The linear operators A + B, A, B generate C0 semigroups on
X, and the operators A, B satisfy in addition the bounds:

|| exp(Aτ)|| ≤ exp(ω|t|) and || exp(Bτ)|| ≤ exp(ω|t|) (17)

for some ω ≥ 0 and all t ∈ IR.

In the next we present the convergence of the iterative splitting scheme.

Theorem 1. For the numerical solution of (3), consider an iterative operator
splitting scheme on operator A with i-th iterative steps.

If the assumption 21 is valid, then

||Sn
i − exp((A + B)nτ)|| ≤ C||Bi||τ i−1, nτ ≤ T, (18)

where the constant C can be chosen uniformly on bounded time intervals and in
particular, independent of n and τ .

Proof. By applying the telescopic identity we obtain

(Sn
i − exp((A + B)nτ)u0

=

n−1
∑

ν=0

Sn−ν−1
i (S − exp((A + B)τ)) exp(ντ(A + B))u0, (19)

if we assume the stability bound:

||Si|| ≤ exp(cωτ), (20)

with a constant c only depends on the estimation of the method.
Furthermore, if we assume the consistency bound:

||Sn
i − exp((A + B)nτ)||

≤ exp(cωT )

n−1
∑

ν=0

||(S − exp(τ(A + B))) exp(ντ(A + B))|| (21)

≤ Cτ i, nτ ≤ T, (22)

where C is a constant and independent of τ .
The desired consistency and stability bound is given in the next subsections.

Consistency and Stability:

Proof. Let us consider the iteration (15)–(16) on the sub-interval [tn, tn+1].
For the first iteration of (15), we have:

∂u1(t)
∂t = Au1(t), t ∈ (tn, tn+1], (23)

and for the second iteration, we have:

∂u2(t)
∂t = Au2(t) + Bu1(t), t ∈ (tn, tn+1], (24)
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In general we have:
for m = 1, 2, . . . ,

∂ui(t)
∂t = Aui(t) + Bui−1(t), t ∈ (tn, tn+1], (25)

where u0(t) ≡ 0.
We have the following solutions for the iterative scheme:
The solutions for the first two equations are given by the variation of con-

stants:
u1(t) = exp(A(tn+1 − t))u(tn), t ∈ (tn, tn+1], (26)

u2(t) = exp(At)u(tn) +
∫ tn+1

tn exp(A(tn+1 − s))Bu1(s)ds, t ∈ (tn, tn+1],
(27)

For m = 0, 1, 2, . . .

ui(t) = exp(A(t − tn))u(tn) +
∫ t

tn exp(sA)Bui−1(t
n+1 − s) ds, t ∈ (tn, tn+1].

(28)
The stability is given as:

||Si|| ≤ exp(cωτ), (29)

where c only depends on the coefficients of the method, τ = t − tn and ω ≥ 0.
and we assume the bound of the operators as:

|| exp(Aτ)|| ≤ exp(ω1τ), (30)

|| exp(Bτ)|| ≤ exp(ω2τ), (31)

where ω1, ω2 ≥ 0.
The consistency is given as:
For e1 we have:

u1(τ) = exp(A)τ)u(tn), (32)

u(τ) = exp((A + B)τ)u(tn) = exp(Aτ)u(tn) (33)

+

∫ tn+1

tn

exp(As)B exp((tn+1 − s)(A + B))u(tn) ds.

We obtain:

||e1|| = ||c − u1|| ≤ || exp((A + B)τ)u(tn) − exp(Aτ)u(tn)|| (34)

≤ C1||B||τ ||u(tn)||.

where C1 is a constant and independent of τ .
For e2 we have:

u2(τ) = exp(Aτ)u(tn)

+

∫ tn+1

tn

exp(As)B exp((tn+1 − s)A)u(tn) ds, (35)

Page 6 of 18

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

7

u(τ) = exp(Aτ)u(tn) +

∫ tn+1

tn

exp(As)B exp((tn+1 − s)A)u(tn) ds

+

∫ tn+1

tn

exp(As)B (36)

∫ tn+1−s

tn

exp(Aρ)B exp((tn+1 − s − ρ)(A + B))u(tn) dρ ds.

We obtain:

||e2|| ≤ || exp((A + B)τ)u(tn) − u2|| (37)

≤ C2||B
2||τ2||u(tn)||.

For the iterations, a recursive proof is given as follows:
For m = 0, 1, 2, . . ., for ei, we have :

ui(τ) = exp(A)τ)u(tn) (38)

+

∫ tn+1

tn

exp(As)B exp((tn+1 − s)A)u(tn) ds

+

∫ tn+1

tn

exp(As1)B

∫ tn+1−s1

tn

exp(s2A)B exp((τ − s1 − s2)A)u(tn) ds2 ds1

+ . . . +

+

∫ tn+1

tn

exp(As1)B

∫ tn+1−s1

tn

exp(s2A)B exp((τ − s1 − s2)A)u(tn) ds2 ds1 + . . . +

+

∫ tn+1

tn

exp(As1)B

∫ tn+1−
Pi−1

j=1
s1

tn

exp(s2A)A exp((τ − s1 − s2)A)u(tn) ds2 ds1 . . . dsi,

u(τ) = exp(Aτ) +

∫ tn+1

tn

exp(As)B exp((tn+1 − s)A)u(tn) ds (39)

+ . . . +

+

∫ tn+1

tn

exp(As1)B

∫ tn+1−s1

tn

exp(s2A)B exp((τ − s1 − s2)A)u(tn) ds2 ds1 + . . . +

+

∫ tn+1

tn

exp(As1)B

∫ tn+1−
Pi−1

j=1
s1

tn

exp(s2A)B exp((τ − s1 − s2)A)u(tn) ds2 ds1 . . .

∫ tn+1−
P

i
j=1

s2

tn

exp(s2A)B exp((τ − s1 − s2)(A + B))u(tn)dsi,

We obtain:

||ei|| ≤ || exp((A + B)τ)u(tn) − ui|| (40)

≤ C||Bi||τ i||u(tn)||,

where i is the iterative step, C is a constant independent of t.
The same idea can be applied to the operator B.
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Remark 3. At least we obtain for the general iterative splitting method with I
iterative steps to operator A and J iterative steps to operator B the following
consistency error:

||eI+J || ≤ || exp((A + B)τ)u(tn) − uI+J || (41)

≤ C||AI || ||BJ ||τI+J ||u(tn)||,

where C is a constant and independent of τ .

Embedding the result to the convergence results we obtain at least an error
of O(τI+J−1).

In the next section, we describe the computation of the integral formulation
with exponential functions.

3 Computation of the Iterative Splitting Method: Closed

Formulation

In the last few years, the computational effort to compute integrals with exp-
functions has increased. We present a closed form and re-substitute the integral
with closed functions. Such benefits accelerate the computation and allow the
ideas to be parallelized.

Here, we present a closed form for the iterative splitting method for the first
4 splitting iterations.

For i = 1, we have:

u1(t) = exp(At) exp(Bt)u(tn). (42)

where we have a first order method, also known as an AB splitting method, see
[3].

For i = 2, we have:

u2(t) =
1

2
(exp(At) exp(Bt) + exp(Bt) exp(At))u(tn), (43)

where we have a second order method, also known as a parallel AB splitting
method, see [3].

For i = 3, we have:

u3(t) =
1

6
(exp(At) exp(Bt) exp(At) + exp(Bt) exp(At) exp(At) (44)

+ exp(Bt) exp(Bt) exp(At) + exp(At) exp(At) exp(Bt)

+ exp(At) exp(Bt) exp(Bt) + exp(Bt) exp(At) exp(Bt))u(tn),

where we can reduce the operators by making assumptions about the commuta-
tors, e.g. [A, [A, B]] = [B, [A, A]].
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Remark 4. Higher order iterative splitting methods involve at the very least the
derivation of the remaining forms for all commutations between operators A and
B. Here an optimization is possible by assuming that commutators are equal or
at least zero, see [2] and [8].

Exp-Approximations with Pade Approximations
In applications, we have to extend differential equations to systems of differ-

ential equations. Therefore, we have to apply matrix functions to our analytical
tools.

To approximate matrix functions in the following section, we apply Pade
approximations.

For the matrix exponential we apply:

I + 1
2At

1 − 1
2At

= exp(At) + O((At)3) , (45)

I + 2
3 (At) + 1

6 (At)2

I − 1
3At

= exp(At) + O((At)4) , (46)

where A ∈ IRn×n is the matrix.

Remark 5. The general formulation for different Pade approximations applied
to exponential functions exp(At) is given in [1].

In the next experiments, we apply the Pade approximations for m = n = 1,
m = n = 2 and m = n = 3.

4 Numerical Experiments

In the following experiment, we start by presenting the enhancement of the
multi-stage procedure to a standard Waveform relaxation method. Further, we
present the improvement of the iterative splitting scheme to a classical splitting
method.

4.1 First Example: Benchmark with 2 × 2 Matrix

In the first experiment, we deal with an ODE and separate the complex operator
into two simpler operators.

We deal with the following equation :

∂u1

∂t
= −λ1u1 + λ2u2 , (47)

∂u2

∂t
= λ1u1 − λ2u2 , (48)

u1(0) = u10 , u2(0) = u20 (initial conditions) , (49)

where λ1, λ2 ∈ IR+ are the decay factors and u10, u20 ∈ IR+. We have the time
interval t ∈ [0, T ].
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We rewrite equation (47) in operator notation, we concentrate on the follow-
ing equations :

∂u

∂t
= A(t)u + B(t)u , (50)

(51)

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial conditions, where we
have λ1(t) = t and λ2(t) = t2.

Our split operators are:

A =

(

−λ1 λ2

0 0

)

, B =

(

0 0
λ1 −λ2

)

. (52)

The actual parameters for the experiments are given as:
λ1 = 0.05 λ2 = 0.01 T = 1.0 u0 = (1, 1)t

We apply AB, Strang and 3rd order splitting and compare with the unsplit
solutions:

1.) Unsplit :

uexact(t) = exp((A + B)t)u(tn). (53)

2.) A-B splitting

u1(t) = exp(Aτ) exp(Bτ)u(tn), (54)

where we have a first order method, also known as an AB splitting method, see
[3].

3.) Strang splitting

u2(t) =
1

2
(exp(At) exp(Bt) + exp(Bt) exp(At))u(tn), (55)

where we have a second order method, also known as a parallel AB splitting
method, see [3].

4.) 3rd order splitting

u3(t) =
1

6
(exp(At) exp(Bt) exp(At) + exp(Bt) exp(At) exp(At) (56)

+ exp(Bt) exp(Bt) exp(At) + exp(At) exp(At) exp(Bt)

+ exp(At) exp(Bt) exp(Bt) + exp(Bt) exp(At) exp(Bt))u(tn),

where the solution is derived from the iterative splitting methods.
The L1-error is computed as:

errnum =

N
∑

k=1

|uexact(tk) − unum(tk)|, (57)

where tk = k∆t, where t0, t1, . . . and ∆t = 0.1.
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number of err1 (2nd order) err2 (2nd order) err1 (3rd order) err2 (3rd order)
time partitions

2 4.5321e-002 3.6077e-003 4.5321e-002 3.6077e-003

3 4.6126e-004 3.6077e-003 4.6126e-004 3.6077e-003

4 4.6126e-004 2.2459e-005 4.6126e-004 2.2464e-005

5 1.9096e-006 2.2459e-005 1.9040e-006 2.2464e-005

6 1.9096e-006 6.1224e-008 1.9040e-006 6.6759e-008

Table 1. Numerical results for the first example with the iterative splitting method
and 2nd- and 3rd-order method.

Remark 6. Our numerical results are based on higher order iterative schemes in
closed formulations. Table 1 presents the results in which the 3rd order methods
can achieve more accurate results. The numerical results show that the splitting
error decreases as long as the Pade approximations employed allow it. Therefore,
we can say that more iterations are only sufficient when a higher order method
is used. One can also see that the iterative operator-splitting method is of order
i as long as the Pade approximation is also of order i.

4.2 Second Experiment

In the second experiment, we deal with a time-dependent ODE and separate the
complex operator into two simpler operators.

We deal with the following equation :

∂u1

∂t
= −λ1(t)u1 + λ2(t)u2 , (58)

∂u2

∂t
= λ1(t)u1 − λ2(t)u2 , (59)

u1(0) = u10 , u2(0) = u20 (initial conditions) , (60)

where λ1(t) ∈ IR+ and λ2(t) ∈ IR+ are the decay factors and u10, u20 ∈ IR+. We
have the time-interval t ∈ [0, T ].

We rewrite the equation (58) in operator notation and concentrate on the
following equations :

∂u

∂t
= A(t)u + B(t)u , (61)

(62)

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial conditions, where we
have λ1(t) = t and λ2(t) = t2.

and our split operators are

A(t) =

(

−λ1(t) λ2(t)
0 0

)

, B(t) =

(

0 0
λ1(t) −λ2(t)

)

. (63)
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For equation (58), we could apply a higher order Pade approximation, e.g.
3rd order.

To start, we apply sequential splitting and the iterative operator-splitting,
further we combine them by using pre-step methods to see the improvement in
results.

For time-steps ∆t, we have ∆t = 1 for 1 time-partition and ∆t = 0.1 for 10
time-partitions.

number of err1 (2nd order) err2 (2nd order) err1 (3rd order) err2 (3rd order)
time partitions

1 4.5321e-002 3.6077e-003 4.5321e-002 3.6077e-003

10 4.6126e-004 3.6077e-003 4.6126e-004 3.6077e-003

Table 2. Numerical results for the second example with the iterative splitting method
and 2nd and 3rd order method.

4.3 Third Experiment

We tackle the 2-dimensional advection-diffusion equation with periodic boundary
conditions

∂tu = −v∇u + D∆u, (64)

= −vx
∂u

∂x
− vy

∂u

∂y
+ D

∂2u

∂x2
+ D

∂2u

∂y2
, (65)

u(x, t0) = u0(x), (66)

with parameters

vx = vy = 1, (67)

D = 0.01, (68)

t0 = 0.25. (69)

The advection-diffusion problem has an analytical solution

ua(x, t) =
1

t
exp

(

−(x − vt)2

4Dt

)

, (70)

which we will use as a convenient initial function:

u(x, t0) = ua(x, t0). (71)

We apply dimensional splitting to our problem:

∂u

∂t
= Axu + Ayu, (72)

Page 12 of 18

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

13

where:

Ax = −vx
∂u

∂x
+ D

∂2u

∂x2
(73)

Ay = −vy
∂u

∂y
+ D

∂2u

∂y2
. (74)

We use a 1st order upwind scheme for ∂
∂x and a 2nd order central difference

scheme for ∂2

∂x2 . By introducing the artificial diffusion constant Dx = D − vx∆x
2

we achieve a 2nd order finite difference scheme

Lxu(x) = −vx
u(x) − u(x − ∆x)

∆x
(75)

+ Dx
u(x + ∆x) + u(x) + u(x − ∆x)

∆x2
,

because the new diffusion constant eliminates the first order error (i.e. numerical
viscosity) of the Taylor expansion of the upwind scheme. Lyu is derived in the
same way.
We apply a BDF5 method to gain 5th order accuracy in time:1

Ltu(t) =
1

∆t

(

137

60
u(t + ∆t) − 5u(t) + 5u(t− ∆t)

−
10

3
u(t − 2∆t) +

5

4
u(t − 3∆t) −

1

5
u(t − 4∆t)

)

. (76)

Our aim is to compare the iterative splitting method with AB splitting (Lie-
Trotter splitting, see [3]). Since [Ax, Ay] = 0 there is no splitting error for AB
splitting and therefore we cannot expect to achieve better results with the itera-
tive splitting in terms of general numerical accuracy. Instead, we will show that
iterative splitting out-competes AB splitting in terms of computational effort
and round-off errors. But first some remarks need to be made about the special
behaviour of both methods when combined with high-order Runge-Kutta and
BDF methods.

Splitting and Schemes of High Order in Time, Concerning AB-Splitting:
The principle of AB-splitting is well known and simple. The equation du

dt =
Au + Bu is broken up into:

dun+1/2

dt
= Aun+1/2,

dun+1

dt
= Bun+1,

which are connected via un+1(t) = un+1/2(t + ∆t). This is pointed out in figure
(1). AB splitting works very well for any given one-step method like the Crank-

1 Please note that the dependencies of u(x, t) are suppressed for the sake of simplicity.
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Fig. 1. Principle of the AB-Splitting.

Nicholson-Scheme. Not taking into account the splitting error (which is an error
in time) it is also compatible with high order schemes such as explicit/implicit
Runge-Kutta-schemes.
Things look different if one tries to use a multi-step method like the implicit
BDF or the explicit Adams method with AB splitting, as these cannot be prop-
erly applied as shown by the following example:
Choose for instance a BDF2 method which, in the case of du/dt = f(u), has the
scheme

3

2
u(t + ∆t) − 2u(t) +

1

2
u(t − ∆t) = ∆tf(u(t + ∆t)).

So, the first step of AB splitting looks like:

3

2
un+1/2(t + ∆t) − 2un+1/2(t) +

1

2
un+1/2(t − ∆t) = ∆tAu(t + ∆t)

Clearly, un+1/2(t) = un(t) but what is un+1/2(t − ∆t)? This is also shown in
figure (1) and it is obvious that we won’t have knowledge about un+1/2(t −∆t)
unless we compute it separately, which means additional computational effort.
This overhead increases dramatically when we move to a multi-step method of
higher order.
The mentioned problems with AB splitting will not occur with a higher order
Runge-Kutta method since only knowledge of un(t) is needed.
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Remarks about iterative splitting: The BDF methods apply very well to
iterative splitting. Let us recall at this point that this method, although being a
real splitting scheme, always remains a combination of the operators A and B,
so no steps have to be done in one direction only 2.
In particular, we make a subdivision of our existing time-discretization tj =
t0 + j∆t into I parts. So we have sub-intervals tj,i = tj + i∆t/I, 0 ≤ i ≤ I on
which we solve the following equations iteratively:

dui/I

dt
= Aui/I + Bu(i−1)/I (77)

du(i+1)/I

dt
= Aui/I + Bu(i+1)/I (78)

(79)

u−1/I is either 0 or a reasonable approximation3 while u0 = u(tj) and u1 =
u(tj + ∆t). The crucial point here is that we only know our approximations at
given times which happen not to be the times at which a Runge-Kutta (RK)
method needs to know them. Therefore, in the case of a RK method, the values of
the approximations have to be interpolated with at least the accuracy one wishes
to attain with the splitting and this means a lot of additional computational
effort. We can now summarize our results in table 4.3 which shows which methods
are practicable for each kind of splitting scheme.4

low order s.s.m. high order s.s.m. m.s.m.

AB-splitting X X -

Iterative splitting X - X

Table 3. Practicability of single- and multi-step methods (s.s.m: single-step methods,
m.s.m. multi-step methods).

Numerical results After resolving the technical aspects of this issue, we can
now proceed to the actual computations. A question which arises is which of the

2 As we will see there is an exception to this.
3 In fact the order of the approximation is not of much importance if we fulfill a

sufficient number of iterations. In the case of u−1/I = 0, we have the exception that
a step in the A-direction is done while B is left out. The error of this step certainly
vanishes after a few iterations, but mostly after only one iteration

4 Something in favour of the iterative splitting scheme is that it also takes into the
account the fact that AB splitting may be used alongside the high order methods
alluded to but cannot maintain the order if [A, B] 6= 0, while the iterative splitting
scheme re-establishes the maximum order of the scheme after a sufficient number of
iterations have been done.
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splitting methods requires the least computational effort since we can expect
them to solve the problem with more or less the same accuracy if we use prac-
ticable methods with equal order, as [Ax, Bx] = 0. We tested the dimensional
splitting of the 2-dimensional advection-diffusion equation with AB splitting
combined with a 5th order RK method after Dormand and Prince, and with it-
erative splitting in conjunction with a BDF5 scheme. We used 40x40 and 80x80
grids and completed nt time steps each subdivided into 10 smaller steps until
we reached time tend = 0.6 which is sufficient to see the main effects. Iterative
splitting was performed with 2 iterations which was already enough to attain
the desired order. In tables 4 and 5, the errors at time tend and the computation
times are shown.

Number of steps Error AB Error It.spl. AB computation time It. spl. computation time

5 0.1133 0.1154 0.203 s 0.141 s

10 0.1114 0.1081 0.500 s 0.312 s

30 0.1074 0.1072 1.391 s 0.907 s

50 0.1075 0.1074 2.719 s 1.594 s

Table 4. Errors and computation times of AB splitting and iterative splitting for a
40x40 grid.

Number of steps Error AB Error It.spl. AB computation time It. spl. computation time

5 0.0288 0.0621 0.812 s 0.500 s

10 0.0276 0.0285 2.031 s 1.266 s

30 0.0268 0.0267 6.109 s 4.000 s

50 0.0265 0.0265 12.703 s 7.688 s

Table 5. Errors and computation times of AB splitting and iterative splitting for a
80x80 grid.

Remark 7. As we can see, the error in the iterative splitting scheme reaches
the same value as the AB splitting error after a certain number of time steps
and stays below it for all additional steps we accomplish. Of course, the error
cannot drop below a certain value which is governed by the spatial discretization
increments. It is to be noticed that, while the computation time used for iterative
splitting is always about 20%-40% less than that of AB splitting5 the accuracy is,
with a sufficient number of time steps, slightly better than that of AB splitting.
This is due to the roundoff error which is higher for the Runge-Kutta method

5 The code for both methods is kept in the simplest possible form.
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because of the greater amount of basic operations needed to compute the RK
steps.
A future task will be to introduce non-commuting operators in order to show
the superiority of iterative splitting over AB splitting when the order in time is
reduced due to the splitting error.

5 Conclusions and Discussions

We have presented an iterative operator-splitting method and analyzed the error
bounds for linear operators. Under weak assumptions, we could prove the higher
order error bounds. The benefit of higher accuracy and more computational effi-
ciency with respect to the multi-stage scheme shows the importance of iterative
splitting schemes. Numerical examples confirm the potential of applying our new
scheme to differential equations. In the future, we will focus on the development
of improved operator-splitting methods which are better adapted to applications
involving nonlinear differential equations.
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