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Introduction

Historically, iterative splitting methods are related to iterative solver methods. The underlying ideas are based on waveform relaxation methods, which are fixpoint iterations or successive approximation schemes, see [START_REF] Showalter | Hilbert Space Methods for Partial Differential Equations[END_REF]. Their convergence analysis and application to second-order differential equations are studied in [START_REF] Jiang | Convergence analysis of waveform relaxation for nonlinear differential-algebraic equations of index one[END_REF][START_REF] Jiang | Waveform relaxation of nonlinear secondorder differential equations[END_REF][START_REF] Jiang | Periodic waveform relaxation solutions of nonlinear dynamic equations[END_REF][START_REF] Jiang | Periodic waveform relaxation of nonlinear dynamic systems by quasi-linearization[END_REF][START_REF] Jiang | A general approach to waveform relaxation solutions of differentialalgebraic equations: the continuous-time and discrete-time cases[END_REF] They are developed to simplify the solver process, while saving time when computing, e.g. simple diagonal matrices, see [START_REF] Vandewalle | Parallel Multigrid Waveform Relaxation for Parabolic Problems[END_REF]. On the other hand, they can be used to accelerate the iterative process of solving partial differential equations, see [START_REF] Kelley | Solving Nonlinear Equations with Newton's Method[END_REF]. In the next step, the generalization of iterative splitting schemes to unbounded operators allows them be applied to partial differential equations, see [START_REF] Geiser | Consistency of Iterative Operator-Splitting Method: Theory and Applications[END_REF], [START_REF] Geiser | Stability of Iterative Operator-Splitting Methods[END_REF]. In this paper, we deal with a general scheme, a so called multi-stage scheme, which gives a significant improvement in terms of accuracy, numerical stability and reduction of local and global errors.

We concentrate on an approximation to the solution of the linear evolution equation where L, A and B are linear operators. 1.) For the numerical method, we employ an 1-stage iterative splitting scheme, see [START_REF] Vandewalle | Parallel Multigrid Waveform Relaxation for Parabolic Problems[END_REF], also called the Waveform-Relaxation method:

∂u ∂t = Lu = (A + B)u, u(0) = u 0 , (1) 
u i (t) = exp(At)u 0 + t 0 exp(A(t -s))Bu i-1 (s) ds, (2) 
where i = 1, 2, 3, . . . and u 0 (t) = u(0) is the initial condition.

2.) As a second numerical method, we employ a 2-stage iterative splitting scheme, see [START_REF] Farago | Iterative Operator-Splitting Methods for Linear Problems[END_REF], [START_REF] Geiser | Iterative operator-splitting methods for nonlinear differential equations and applications of deposition processes[END_REF]:

u i (t) = exp(At)u 0 + t 0 exp(A(t -s))Bu i-1 (s) ds, (3) 
u i+1 (t) = exp(Bt)u 0 + t 0 exp(B(t -s))Au i (s) ds, (4) 
where i = 1, 3, 5, . . . and u 0 (t) = u(0) is the initial condition.

3.) As a third numerical method, the 2-stage scheme is improved by combining it with equations ( 3) and ( 4) in a multiple-stage scheme and can be written generally as an embedded iterative scheme with inner and outer layers.

u i k (t) = exp(At)u 0 + t 0 exp(A(t -s))Bu i k +J k-1 -1 (s) ds, (5) 
u j k +I k (t) = exp(Bt)u 0 + t 0 exp(B(t -s))Au j k +I k -1 (s) ds, (6) 
where i k = 1, 2, 3, . . . , I k , j k = 1, 2, 3, . . . , J k , k = 1, . . . , K, I 1 , . . . , I K are the number of iterations done with the A-operator, where J 1 , . . . , J K are the number of iterations done with the B-operator. The initialization is given as u 0 (t) = u(0) and J 0 = 0. Here, we can control the iterative steps on each operator A and B.

Remark 1. The motivation for expanding the 1-stage scheme to a 2-stage scheme comes from the reduction of local and global errors, as illustrated in the following example:

Example 1. Let A, B be constant matrices, not dependent of t, not commuting ([A, B] = O ) and no zero matrices (A, B = O). We obtain the following schemes: For an 1-stage scheme (2), for i = 1:

u 1,one (t) = exp(At)u 0 + t 0 exp(A(t -s))Bu 0 ds, (7) 
further for an 1-stage scheme (2), for i = 2: and for a 2-stage scheme for i = 2:

u 2,one (t) = exp(At)u 0 + t 0 exp(A(t -s))Bu 1 (s) ds, (8) 
u 2,two (t) = exp(Bt)u 0 + t 0 exp(B(t -s))Au 1,one (s) ds. (9) 
So we find that equation ( 7) is locally a second order approximation of exp((A + B)t) for t > 0, meaning that:

|| exp((A + B)t)u 0 -u 1,one (t)|| ≤ Ct 2 ||u 0 || + O(t 3 ), (10) 
where

C = ||BA|| 2 + ||B 2 || 2
and || • || is the L 1 -norm. Further equation ( 8) is locally a third order approximation of exp((A + B)t) for t > 0, meaning that:

|| exp((A + B)t)u 0 -u 2,one (t)|| ≤ Ĉt 3 ||u 0 || + O(t 4 ), (11) 
where Ĉ = ||BAB|| 6

+ ||B 3 || 6
and || • || is the L 1 -norm. and equation ( 9) is locally a third order approximation of exp((A + B)t) for t > 0, meaning that:

|| exp((A + B)t)u 0 -u 2,two (t)|| ≤ Ct 3 ||u 0 || + O(t 4 ), (12) 
where

C = ||ABA|| 6 + ||AB 2 || 6 and || • || is the L 1 -norm.
Remark 2. The motivation for expanding the 2-stage scheme to a multi-stage scheme comes from the improvement in numerical stability of the scheme. In numerical examples, the operators are not equal and often one operator can be bounded by the other operator. So, in a multi-stage scheme, we can control the iterative stage over each operator.

Example 2. Let A, B be bounded operators, but ||A|| >> ||B||, while || • || is a matrix norm. We assume 0 < ||B|| ≤ 1 otherwise we have trivially to solve only with operator A.

We apply a 2-stage method until i = 2 and obtain the error bound of equation ( 9) for bounded operators given as:

C = ||ABA|| 6 + ||AB 2 || 6 ≤ ||A 2 || 6 . (13) 
We can reduce the error bound and therefore the stability of the scheme, while applying an 1-stage method to operator A, see equation [START_REF] Blanes | Splitting Methods for Non-autonomous separable dynamical systems[END_REF], and obtain the error bound of equation [START_REF] Geiser | Consistency of Iterative Operator-Splitting Method: Theory and Applications[END_REF] for bounded operators as:

Ĉ = ||BAB|| 6 + ||B 3 || 6 ≤ ||A|| 6 ( 14 
)
where we have three cases: Here we have some benefits in applying different stages with respect to the underlying operators. Such benefits are discussed later in the error analysis.
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The outline of the paper is as follows. The iterative splitting methods and their error analysis are presented in Section 2. In Section 3, we discuss an efficient computation of the iterative splitting method with a closed formulation. In Section 4, we discuss the numerical experiments and the benefits of the iterative splitting schemes. Finally, we discuss future works in the area of iterative methods.

Splitting Method and Error Analysis

In the following, the iterative splitting scheme is presented as a multi-stage scheme.

General Iterative Splitting Method (multiple stage scheme)

A general setting of an iterative splitting method is given with inner and outer iterative schemes, so that each part of a 2-stage scheme can be chosen independently to control the stages over each operator. The method is given in the following:

∂u i k +J k-1 (t) ∂t = Au i k +J k-1 (t) + Bu i k +J k-1 -1 (t), (15) 
with

u i k +J k-1 (t n ) = u n , ∂u j k +I k (t) ∂t = Au j k +I k -1 (t) + Bu j k +I k (t), (16) 
with

u j k +I k (t n ) = u n , where i k = J k-1 + 1, . . . , I k , j k = I k + 1, . . . , J k , k = 1, . . . , K, I k -J k-1
are the number of iterations done with the A-operator, where J k -I k is the number of iterations done with the B-operator. The initialization is given as u 0 (t) = u(0) and I 0 = J 0 = 0.

Error Analysis for the General Scheme

In this section, we analyze the convergence of the general scheme ( 15) and [START_REF] Jiang | Periodic waveform relaxation solutions of nonlinear dynamic equations[END_REF] in which Waveform Relaxation and the iterative splitting method are embedded. We consider the error of the iterative splitting method on a Banach space X with norm and induced operator norm denoted by || • ||.

Further we have the following assumptions: for some ω ≥ 0 and all t ∈ IR.

In the next we present the convergence of the iterative splitting scheme.

Theorem 1. For the numerical solution of ( 3), consider an iterative operator splitting scheme on operator A with i-th iterative steps.

If the assumption 21 is valid, then

||S n i -exp((A + B)nτ )|| ≤ C||B i ||τ i-1 , nτ ≤ T, ( 18 
)
where the constant C can be chosen uniformly on bounded time intervals and in particular, independent of n and τ .

Proof. By applying the telescopic identity we obtain

(S n i -exp((A + B)nτ )u 0 = n-1 ν=0 S n-ν-1 i (S -exp((A + B)τ )) exp(ντ (A + B))u 0 , (19) 
if we assume the stability bound:

||S i || ≤ exp(cωτ ), (20) 
with a constant c only depends on the estimation of the method. Furthermore, if we assume the consistency bound:

||S n i -exp((A + B)nτ )|| ≤ exp(cωT ) n-1 ν=0 ||(S -exp(τ (A + B))) exp(ντ (A + B))|| (21) 
≤ Cτ i , nτ ≤ T, (22) 
where C is a constant and independent of τ . The desired consistency and stability bound is given in the next subsections.

Consistency and Stability:

Proof. Let us consider the iteration ( 15)-( 16) on the sub-interval [t n , t n+1 ].

For the first iteration of (15), we have:

∂u1(t) ∂t = Au 1 (t), t ∈ (t n , t n+1 ], (23) 
and for the second iteration, we have: In general we have: for m = 1, 2, . . . ,

∂u2(t) ∂t = Au 2 (t) + Bu 1 (t), t ∈ (t n , t n+1 ], (24) 
∂ui(t) ∂t = Au i (t) + Bu i-1 (t), t ∈ (t n , t n+1 ], (25) 
where u 0 (t) ≡ 0.

We have the following solutions for the iterative scheme:

The solutions for the first two equations are given by the variation of constants:

u 1 (t) = exp(A(t n+1 -t))u(t n ), t ∈ (t n , t n+1 ], (26) 
u 2 (t) = exp(At)u(t n ) + t n+1 t n exp(A(t n+1 -s))Bu 1 (s)ds, t ∈ (t n , t n+1 ], ( 27 
) For m = 0, 1, 2, . . . u i (t) = exp(A(t -t n ))u(t n ) + t t n exp(sA)Bu i-1 (t n+1 -s) ds, t ∈ (t n , t n+1 ]. ( 28 
)
The stability is given as:

||S i || ≤ exp(cωτ ), (29) 
where c only depends on the coefficients of the method, τ = tt n and ω ≥ 0. and we assume the bound of the operators as:

|| exp(Aτ )|| ≤ exp(ω 1 τ ), ( 30 
) || exp(Bτ )|| ≤ exp(ω 2 τ ), (31) 
where ω 1 , ω 2 ≥ 0.

The consistency is given as:

For e 1 we have:

u 1 (τ ) = exp(A)τ )u(t n ), (32) 
u(τ ) = exp((A + B)τ )u(t n ) = exp(Aτ )u(t n ) (33) + t n+1 t n exp(As)B exp((t n+1 -s)(A + B))u(t n ) ds.
We obtain:

||e 1 || = ||c -u 1 || ≤ || exp((A + B)τ )u(t n ) -exp(Aτ )u(t n )|| (34) ≤ C 1 ||B||τ ||u(t n )||.
where C 1 is a constant and independent of τ .

For e 2 we have: 

u 2 (τ ) = exp(Aτ )u(t n ) + t n+1 t n exp(As)B exp((t n+1 -s)A)u(t n ) ds, (35) 
u(τ ) = exp(Aτ )u(t n ) + t n+1 t n exp(As)B exp((t n+1 -s)A)u(t n ) ds + t n+1 t n exp(As)B ( 36 
) t n+1 -s t n exp(Aρ)B exp((t n+1 -s -ρ)(A + B))u(t n ) dρ ds.
We obtain:

||e 2 || ≤ || exp((A + B)τ )u(t n ) -u 2 || (37) ≤ C 2 ||B 2 ||τ 2 ||u(t n )||.
For the iterations, a recursive proof is given as follows: For m = 0, 1, 2, . . ., for e i , we have :

u i (τ ) = exp(A)τ )u(t n ) (38) + t n+1 t n exp(As)B exp((t n+1 -s)A)u(t n ) ds + t n+1 t n exp(As 1 )B t n+1 -s1 t n exp(s 2 A)B exp((τ -s 1 -s 2 )A)u(t n ) ds 2 ds 1 + . . . + + t n+1 t n exp(As 1 )B t n+1 -s1 t n exp(s 2 A)B exp((τ -s 1 -s 2 )A)u(t n ) ds 2 ds 1 + . . . + + t n+1 t n exp(As 1 )B t n+1 - P i-1 j=1 s1 t n exp(s 2 A)A exp((τ -s 1 -s 2 )A)u(t n ) ds 2 ds 1 . . . ds i , u(τ ) = exp(Aτ ) + t n+1 t n exp(As)B exp((t n+1 -s)A)u(t n ) ds (39) 
+ . . . + + t n+1 t n exp(As 1 )B t n+1 -s1 t n exp(s 2 A)B exp((τ -s 1 -s 2 )A)u(t n ) ds 2 ds 1 + . . . + + t n+1 t n exp(As 1 )B t n+1 - P i-1 j=1 s1 t n exp(s 2 A)B exp((τ -s 1 -s 2 )A)u(t n ) ds 2 ds 1 . . . t n+1 - P i j=1 s2 t n exp(s 2 A)B exp((τ -s 1 -s 2 )(A + B))u(t n )ds i ,
We obtain:

||e i || ≤ || exp((A + B)τ )u(t n ) -u i || (40) ≤ C||B i ||τ i ||u(t n )||,
where i is the iterative step, C is a constant independent of t.

The same idea can be applied to the operator B. Remark 3. At least we obtain for the general iterative splitting method with I iterative steps to operator A and J iterative steps to operator B the following consistency error:

||e I+J || ≤ || exp((A + B)τ )u(t n ) -u I+J || (41) ≤ C||A I || ||B J ||τ I+J ||u(t n )||,
where C is a constant and independent of τ .

Embedding the result to the convergence results we obtain at least an error of O(τ I+J-1 ).

In the next section, we describe the computation of the integral formulation with exponential functions.

Computation of the Iterative Splitting Method: Closed Formulation

In the last few years, the computational effort to compute integrals with expfunctions has increased. We present a closed form and re-substitute the integral with closed functions. Such benefits accelerate the computation and allow the ideas to be parallelized.

Here, we present a closed form for the iterative splitting method for the first 4 splitting iterations.

For i = 1, we have:

u 1 (t) = exp(At) exp(Bt)u(t n ). ( 42 
)
where we have a first order method, also known as an AB splitting method, see [START_REF] Farago | Iterative Operator-Splitting Methods for Linear Problems[END_REF]. For i = 2, we have:

u 2 (t) = 1 2 (exp(At) exp(Bt) + exp(Bt) exp(At))u(t n ), (43) 
where we have a second order method, also known as a parallel AB splitting method, see [START_REF] Farago | Iterative Operator-Splitting Methods for Linear Problems[END_REF]. For i = 3, we have: Here an optimization is possible by assuming that commutators are equal or at least zero, see [START_REF] Blanes | Splitting Methods for Non-autonomous separable dynamical systems[END_REF] and [START_REF] Geiser | Consistency of Iterative Operator-Splitting Method: Theory and Applications[END_REF].

u 3 (t) = 1 

Exp-Approximations with Pade Approximations

In applications, we have to extend differential equations to systems of differential equations. Therefore, we have to apply matrix functions to our analytical tools.

To approximate matrix functions in the following section, we apply Pade approximations.

For the matrix exponential we apply:

I + 1 2 At 1 -1 2 At = exp(At) + O((At) 3 ) , (45) 
I + 2 3 (At) + 1 6 (At) 2 I -1 3 At = exp(At) + O((At) 4 ) , (46) 
where A ∈ IR n×n is the matrix.

Remark 5. The general formulation for different Pade approximations applied to exponential functions exp(At) is given in [START_REF] Baker | Pade approximants[END_REF].

In the next experiments, we apply the Pade approximations for m = n = 1, m = n = 2 and m = n = 3.

Numerical Experiments

In the following experiment, we start by presenting the enhancement of the multi-stage procedure to a standard Waveform relaxation method. Further, we present the improvement of the iterative splitting scheme to a classical splitting method.

First Example: Benchmark with 2 × 2 Matrix

In the first experiment, we deal with an ODE and separate the complex operator into two simpler operators.

We deal with the following equation :

∂u 1 ∂t = -λ 1 u 1 + λ 2 u 2 , ( 47 
)
∂u 2 ∂t = λ 1 u 1 -λ 2 u 2 , (48) 
u 1 (0) = u 10 , u 2 (0) = u 20 (initial conditions) , (49) 
where λ 1 , λ 2 ∈ IR + are the decay factors and u 10 , u 20 ∈ IR + . We have the time interval t ∈ [0, T ]. We rewrite equation (47) in operator notation, we concentrate on the following equations :

∂u ∂t = A(t)u + B(t)u , (50) (51) 
where u 1 (0) = u 10 = 1.0 , u 2 (0) = u 20 = 1.0 are the initial conditions, where we have λ 1 (t) = t and λ 2 (t) = t 2 . Our split operators are:

A = -λ 1 λ 2 0 0 , B = 0 0 λ 1 -λ 2 . ( 52 
)
The actual parameters for the experiments are given as:

λ 1 = 0.05 λ 2 = 0.01 T = 1.0 u 0 = (1, 1) t
We apply AB, Strang and 3rd order splitting and compare with the unsplit solutions:

1.) Unsplit :

u exact (t) = exp((A + B)t)u(t n ). ( 53 
) 2.) A-B splitting u 1 (t) = exp(Aτ ) exp(Bτ )u(t n ), (54) 
where we have a first order method, also known as an AB splitting method, see where the solution is derived from the iterative splitting methods. The L 1 -error is computed as:

err num = N k=1 |u exact (t k ) -u num (t k )|, ( 57 
)
where t k = k∆t, where t 0 , t 1 , . . . and ∆t = 0.1. 1. Numerical results for the first example with the iterative splitting method and 2nd-and 3rd-order method. Remark 6. Our numerical results are based on higher order iterative schemes in closed formulations. Table 1 presents the results in which the 3rd order methods can achieve more accurate results. The numerical results show that the splitting error decreases as long as the Pade approximations employed allow it. Therefore, we can say that more iterations are only sufficient when a higher order method is used. One can also see that the iterative operator-splitting method is of order i as long as the Pade approximation is also of order i.
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Second Experiment

In the second experiment, we deal with a time-dependent ODE and separate the complex operator into two simpler operators.

We deal with the following equation :

∂u 1 ∂t = -λ 1 (t)u 1 + λ 2 (t)u 2 , ( 58 
)
∂u 2 ∂t = λ 1 (t)u 1 -λ 2 (t)u 2 , ( 59 
)
u 1 (0) = u 10 , u 2 (0) = u 20 (initial conditions) , (60) 
where λ 1 (t) ∈ IR + and λ 2 (t) ∈ IR + are the decay factors and u 10 , u 20 ∈ IR + . We have the time-interval t ∈ [0, T ]. We rewrite the equation (58) in operator notation and concentrate on the following equations :

∂u ∂t = A(t)u + B(t)u , (61) (62) 
where u 1 (0) = u 10 = 1.0 , u 2 (0) = u 20 = 1.0 are the initial conditions, where we have λ 1 (t) = t and λ 2 (t) = t 2 . and our split operators are For equation (58), we could apply a higher order Pade approximation, e.g. 3rd order.

A(t) = -λ 1 (t) λ 2 (t) 0 0 , B(t) = 0 0 λ 1 (t) -λ 2 (t) . ( 63 
To start, we apply sequential splitting and the iterative operator-splitting, further we combine them by using pre-step methods to see the improvement in results.

For time-steps ∆t, we have ∆t = 1 for 1 time-partition and ∆t = 0.1 for 10 time-partitions. number of err1 (2nd order) err2 (2nd order) err1 (3rd order) err2 (3rd order) time partitions 1 4.5321e-002 3.6077e-003 4.5321e-002 3.6077e-003 10 4.6126e-004 3.6077e-003 4.6126e-004 3.6077e-003 Table 2. Numerical results for the second example with the iterative splitting method and 2nd and 3rd order method.

Third Experiment

We tackle the 2-dimensional advection-diffusion equation with periodic boundary conditions

∂ t u = -v∇u + D∆u, (64) 
= -v x ∂u ∂x -v y ∂u ∂y + D ∂ 2 u ∂x 2 + D ∂ 2 u ∂y 2 , (65) u 
(x, t 0 ) = u 0 (x), (66) 
with parameters

v x = v y = 1, (67) 
D = 0.01, (68) 
t 0 = 0.25. (69) 
The advection-diffusion problem has an analytical solution

u a (x, t) = 1 t exp -(x -vt) 2 4Dt , (70) 
which we will use as a convenient initial function:

u(x, t 0 ) = u a (x, t 0 ). (71) 
We apply dimensional splitting to our problem: where:

∂u ∂t = A x u + A y u, (72) 
A x = -v x ∂u ∂x + D ∂ 2 u ∂x 2 (73) 
A y = -v y ∂u ∂y + D ∂ 2 u ∂y 2 . ( 74 
)
We use a 1st order upwind scheme for ∂ ∂x and a 2nd order central difference scheme for ∂ 2 ∂x 2 . By introducing the artificial diffusion constant

D x = D -vx∆x 2 
we achieve a 2nd order finite difference scheme

L x u(x) = -v x u(x) -u(x -∆x) ∆x (75) 
+ D x u(x + ∆x) + u(x) + u(x -∆x) ∆x 2 ,
because the new diffusion constant eliminates the first order error (i.e. numerical viscosity) of the Taylor expansion of the upwind scheme. L y u is derived in the same way.

We apply a BDF5 method to gain 5th order accuracy in time:

1 L t u(t) = 1 ∆t 137 60 u(t + ∆t) -5u(t) + 5u(t -∆t) - 10 3 u(t -2∆t) + 5 4 u(t -3∆t) - 1 5 u(t -4∆t) . (76) 
Our aim is to compare the iterative splitting method with AB splitting (Lie-Trotter splitting, see [START_REF] Farago | Iterative Operator-Splitting Methods for Linear Problems[END_REF]). Since [A x , A y ] = 0 there is no splitting error for AB splitting and therefore we cannot expect to achieve better results with the iterative splitting in terms of general numerical accuracy. Instead, we will show that iterative splitting out-competes AB splitting in terms of computational effort and round-off errors. But first some remarks need to be made about the special behaviour of both methods when combined with high-order Runge-Kutta and BDF methods.

Splitting and Schemes of High Order in Time, Concerning AB-Splitting:

The principle of AB-splitting is well known and simple. The equation du dt = Au + Bu is broken up into:

du n+1/2 dt = Au n+1/2 , du n+1 dt = Bu n+1 ,
which are connected via u n+1 (t) = u n+1/2 (t + ∆t). This is pointed out in figure [START_REF] Baker | Pade approximants[END_REF]. AB splitting works very well for any given one-step method like the Crank- Nicholson-Scheme. Not taking into account the splitting error (which is an error in time) it is also compatible with high order schemes such as explicit/implicit Runge-Kutta-schemes.

Things look different if one tries to use a multi-step method like the implicit BDF or the explicit Adams method with AB splitting, as these cannot be properly applied as shown by the following example: Choose for instance a BDF2 method which, in the case of du/dt = f (u), has the scheme

3 2 u(t + ∆t) -2u(t) + 1 2 u(t -∆t) = ∆tf (u(t + ∆t)).
So, the first step of AB splitting looks like:

3 2 u n+1/2 (t + ∆t) -2u n+1/2 (t) + 1 2 u n+1/2 (t -∆t) = ∆tAu(t + ∆t)
Clearly, u n+1/2 (t) = u n (t) but what is u n+1/2 (t -∆t)? This is also shown in figure [START_REF] Baker | Pade approximants[END_REF] and it is obvious that we won't have knowledge about u n+1/2 (t -∆t) unless we compute it separately, which means additional computational effort. This overhead increases dramatically when we move to a multi-step method of higher order. The mentioned problems with AB splitting will not occur with a higher order Runge-Kutta method since only knowledge of u n (t) is needed. Remarks about iterative splitting: The BDF methods apply very well to iterative splitting. Let us recall at this point that this method, although being a real splitting scheme, always remains a combination of the operators A and B, so no steps have to be done in one direction only 2 .

In particular, we make a subdivision of our existing time-discretization t j = t 0 + j∆t into I parts. So we have sub-intervals t j,i = t j + i∆t/I, 0 ≤ i ≤ I on which we solve the following equations iteratively:

du i/I dt = Au i/I + Bu (i-1)/I (77) du (i+1)/I dt = Au i/I + Bu (i+1)/I (78) (79) 
u -1/I is either 0 or a reasonable approximation 3 while u 0 = u(t j ) and u 1 = u(t j + ∆t). The crucial point here is that we only know our approximations at given times which happen not to be the times at which a Runge-Kutta (RK) method needs to know them. Therefore, in the case of a RK method, the values of the approximations have to be interpolated with at least the accuracy one wishes to attain with the splitting and this means a lot of additional computational effort. We can now summarize our results in table 4.3 which shows which methods are practicable for each kind of splitting scheme. 

Numerical results

After resolving the technical aspects of this issue, we can now proceed to the actual computations. A question which arises is which of the 2 As we will see there is an exception to this. 3 In fact the order of the approximation is not of much importance if we fulfill a sufficient number of iterations. In the case of u -1/I = 0, we have the exception that a step in the A-direction is done while B is left out. The error of this step certainly vanishes after a few iterations, but mostly after only one iteration 4 Something in favour of the iterative splitting scheme is that it also takes into the account the fact that AB splitting may be used alongside the high order methods alluded to but cannot maintain the order if [A, B] = 0, while the iterative splitting scheme re-establishes the maximum order of the scheme after a sufficient number of iterations have been done. splitting methods requires the least computational effort since we can expect them to solve the problem with more or less the same accuracy if we use practicable methods with equal order, as [A x , B x ] = 0. We tested the dimensional splitting of the 2-dimensional advection-diffusion equation with AB splitting combined with a 5th order RK method after Dormand and Prince, and with iterative splitting in conjunction with a BDF5 scheme. We used 40x40 and 80x80 grids and completed n t time steps each subdivided into 10 smaller steps until we reached time t end = 0.6 which is sufficient to see the main effects. Iterative splitting was performed with 2 iterations which was already enough to attain the desired order. In tables 4 and 5, the errors at time t end and the computation times are shown. Remark 7. As we can see, the error in the iterative splitting scheme reaches the same value as the AB splitting error after a certain number of time steps and stays below it for all additional steps we accomplish. Of course, the error cannot drop below a certain value which is governed by the spatial discretization increments. It is to be noticed that, while the computation time used for iterative splitting is always about 20%-40% less than that of AB splitting 5 the accuracy is, with a sufficient number of time steps, slightly better than that of AB splitting. This is due to the roundoff error which is higher for the Runge-Kutta method A future task will be to introduce non-commuting operators in order to show the superiority of iterative splitting over AB splitting when the order in time is reduced due to the splitting error.

Conclusions and Discussions

We have presented an iterative operator-splitting method and analyzed the error bounds for linear operators. Under weak assumptions, we could prove the higher order error bounds. The benefit of higher accuracy and more computational efficiency with respect to the multi-stage scheme shows the importance of iterative splitting schemes. Numerical examples confirm the potential of applying our new scheme to differential equations. In the future, we will focus on the development of improved operator-splitting methods which are better adapted to applications involving nonlinear differential equations. 

Assumption 21

 21 The linear operators A + B, A, B generate C 0 semigroups on X, and the operators A, B satisfy in addition the bounds:|| exp(Aτ )|| ≤ exp(ω|t|) and || exp(Bτ )|| ≤ exp(ω|t|)[START_REF] Jiang | Periodic waveform relaxation of nonlinear dynamic systems by quasi-linearization[END_REF] 

6 (Remark 4 .

 64 exp(At) exp(Bt) exp(At) + exp(Bt) exp(At) exp(At) (44)+ exp(Bt) exp(Bt) exp(At) + exp(At) exp(At) exp(Bt) + exp(At) exp(Bt) exp(Bt) + exp(Bt) exp(At) exp(Bt))u(t n ),where we can reduce the operators by making assumptions about the commutators, e.g.[A, [A, B]] = [B, [A, A]]. Higher order iterative splitting methods involve at the very least the derivation of the remaining forms for all commutations between operators A and B.

Fig. 1 .

 1 Fig. 1. Principle of the AB-Splitting.

  greater amount of basic operations needed to compute the RK steps.

Table 3 .

 3 Practicability

	AB-splitting	X	X	-
	Iterative splitting	X	-	X

4 

low order s.s.m. high order s.s.m. m.s.m. of single-and multi-step methods (s.s.m: single-step methods, m.s.m. multi-step methods).

Table 4 .

 4 Number of steps Error AB Error It.spl. AB computation time It. spl. Errors and computation times of AB splitting and iterative splitting for a 40x40 grid. Number of steps Error AB Error It.spl. AB computation time It. spl.

	computation time

Table 5 .

 5 Errors and computation times of AB splitting and iterative splitting for a 80x80 grid.