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Abstract

In this paper we prove an energy estimate with no loss of derivatives for a strictly hyperbolic operator

with Zygmund continuous second order coe�cients both in time and in space. In particular, this estimate

implies the well-posedness for the related Cauchy problem. On the one hand, this result is quite surprising,

because it allows to consider coe�cients which are not Lipschitz continuous in time. On the other hand,

it holds true only in the very special case of initial data in H1/2 ×H−1/2. Paradi�erential calculus with

parameters is the main ingredient to the proof.

1 Introduction

This paper is devoted to the study of the Cauchy problem for a second order strictly hyperbolic
operator de�ned in a strip [0, T ] × R

N , for some T > 0 and N ≥ 1. Consider a second order
operator of the form

def:opdef:op (1) Lu := ∂2t u −
N∑

j,k=1

∂j (ajk(t, x) ∂ku)

(with ajk = akj for all j, k) and assume that L is strictly hyperbolic with bounded coe�cients,
i.e. there exist two constants 0 < λ0 ≤ Λ0 such that

λ0 |ξ|
2 ≤

N∑

j,k=1

ajk(t, x) ξj ξk ≤ Λ0 |ξ|
2

for all (t, x) ∈ [0, T ]× R
N and all ξ ∈ R

N .
It is well-known (see e.g. [10] or [14]) that, if the coe�cients ajk are Lipschitz continuous with

respect to t and only measurable in x, then the Cauchy problem for L is well-posed in H1 × L2.
If the ajk's are Lipschitz continuous with respect to t and C∞

b (i.e. C∞ and bounded with all their
derivatives) with respect to the space variables, one can recover the well-posedness in Hs×Hs−1

for all s ∈ R. Moreover, in the latter case, one gets, for all s ∈ R and for a constant Cs depending
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only on it, the following energy estimate:

sup
0≤t≤T

(
‖u(t, ·)‖Hs+1 + ‖∂tu(t, ·)‖Hs

)
≤est:no-loss (2)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt

)

for all u ∈ C([0, T ];Hs+1(RN )) ∩ C1([0, T ];Hs(RN )) such that Lu ∈ L1([0, T ];Hs(RN )). Let us
explicitly remark that the previous inequality involves no loss of regularity for the function u:
estimate (2) holds for every u ∈ C2([0, T ];H∞(RN )) and the Cauchy problem for L is well-posed
in H∞ with no loss of derivatives.

If the Lipschitz continuity (in time) hypothesis is not ful�lled, then (2) is no more true,
in general. Nevertheless, one can still try to recover H∞ well-posedness, with a �nite loss of

derivatives in the energy estimate.
The �rst case to consider is the case of the coe�cients ajk depending only on t:

Lu = ∂2t u −
N∑

j,k=1

ajk(t) ∂j∂ku .

In [5], Colombini, De Giorgi and Spagnolo assumed the coe�cients to satisfy an integral log-
Lipschitz condition:

hyp:int-LLhyp:int-LL (3)
∫ T−ε

0
|ajk(t+ ε) − ajk(t)| dt ≤ C ε log

(
1 +

1

ε

)
,

for some constant C > 0 and all ε ∈ ]0, T ]. More recently (see paper [15]), Tarama analysed
instead the problem when coe�cients satisfy an integral log-Zygmund condition: there exists a
constant C > 0 such that, for all j, k and all ε ∈ ]0, T/2[ , one has

hyp:int-LZhyp:int-LZ (4)
∫ T−ε

ε
|ajk(t+ ε) + ajk(t− ε) − 2 ajk(t)| dt ≤ C ε log

(
1 +

1

ε

)
.

On the one hand, this condition is somehow related, for a function a ∈ C2([0, T ]), to the pointwise
condition |a(t)|+ |t a′(t)|+ |t2 a′′(t)| ≤ C (considered in [16] by Yamazaki). On the other hand,
it's obvious that if the ajk's satisfy (3), then they satisfy also (4): so, a more general class of
functions is considered.
Both in [5] and [15], the authors proved an energy estimate with a �xed loss of derivatives: there
exists a constant δ > 0 such that, for all s ∈ R, the inequality

sup
0≤t≤T

(
‖u(t, ·)‖Hs+1−δ + ‖∂tu(t, ·)‖Hs−δ

)
≤est:c-loss (5)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt

)

holds true for all u ∈ C2([0, T ];H∞(RN )), for some constant Cs depending only on s.
Also the case of dependence of the ajk's both in time and space was deeply studied.

In paper [8], Colombini and Lerner assumed an isotropic pointwise log-Lipschitz condition, i.e.
there exists a constant C > 0 such that, for all ζ = (τ, ξ) ∈ R× R

N , ζ 6= 0, one has

sup
z=(t,x)∈R×RN

|ajk(z + ζ) − ajk(z)| ≤ C |ζ| log

(
1 +

1

|ζ|

)
.

Mixing up a Tarama-like hypothesis (concerning the dependence on time) with the previous one
of Colombini and Lerner was instead considered in [6] in the case of space dimension 1, and
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then in [7] in the more general situation of N ≥ 1. The authors supposed the coe�cients to be
log-Zygmund continuous in the time variable t, uniformly with respect to x, and log-Lipschitz
continuous in the space variables, uniformly with respect to t. This hypothesis reads as follow:
there exists a constant C such that, for all τ > 0 and all y ∈ R

N \{0}, one has

sup
(t,x)

|ajk(t+ τ, x) + ajk(t− τ, x)− 2ajk(t, x)| ≤ C τ log

(
1 +

1

τ

)

sup
(t,x)

|ajk(t, x+ y)− ajk(t, x)| ≤ C |y| log

(
1 +

1

|y|

)
.

In all these cases, one can prove an energy estimate with a loss of derivatives increasing in time:
for all s ∈ ]0, s0[ (the exact value of s0 changes from statement to statement), there exist positive
constants β and Cs and a time T ∗ ∈ ]0, T ] such that

sup
0≤t≤T ∗

(
‖u(t, ·)‖H−s+1−βt + ‖∂tu(t, ·)‖H−s−βt

)
≤est:t-loss (6)

≤ Cs

(
‖u(0, ·)‖H−s+1 + ‖∂tu(0, ·)‖H−s +

∫ T ∗

0
‖Lu(t, ·)‖H−s−βt dt

)

for all u ∈ C2([0, T ];H∞(RN )).
In particular, from both inequalities (5) and (6), if coe�cients ajk are C∞

b with respect to x,
one can still recover the H∞ well-posedness for the associated Cauchy problem, but, as already
pointed out, with a �nite loss of derivatives.

Such a loss, in a certain sense, cannot be avoided. As a matter of fact, Cicognani and Colombini
proved in [4] that, if the regularity of the coe�cients is measured by a modulus of continuity,
then any intermediate modulus of continuity between the Lipschitz and the log-Lipschitz ones
necessarily entails a loss of regularity, which however can be made arbitrarly small. Moreover,
they showed also that, in the log-Lipschitz instance, a loss of derivatives proportional to time, as
found in [8], actually has to occur.

Nevertheless, in the case of dependence of coe�cients only on time, a special fact happens.
In the above mentioned paper [15], Tarama considered also ajk's satisfying an integral Zygmund
condition: there exists a constant C > 0 such that, for all j, k and all ε ∈ ]0, T/2[ , one has

hyp:int-Zhyp:int-Z (7)
∫ T−ε

ε
|ajk(t+ ε) + ajk(t− ε) − 2 ajk(t)| dt ≤ C ε .

Under this assumption, he was able to prove an energy estimate which involves no loss of deriva-
tives, and so well-posedness in H1 ×L2 and, more in general, in Hs ×Hs−1 for all s ∈ R. To get
this result, he resorted to the main ideas of paper [5]: he smoothed out the coe�cients by use
of a convolution kernel, and he linked the approximation parameter (say) ε with the dual vari-
able, in order to perform di�erent regularizations in di�erent zones of the phase space. However,
the key to the proof was de�ning a new energy, which involves (by di�erentiation in time) also
second derivatives of the approximated coe�cients aε(t). In particular, his idea was to delete, in
di�erentiating energy in time, the terms presenting both the �rst derivative a′ε(t), which has bad
behaviour, and ∂tu, for which one cannot gain regularity.

Now, what does it happen if we consider coe�cients depending also on the space variable? In
this case, the condition becomes the following: there exists a positive constant C such that, �xed
any 1 ≤ i, j ≤ N , for all τ ≥ 0 and all y ∈ R

N one has

hyp:point-Zhyp:point-Z (8) sup
(t,x)

∣∣∣∣ajk(t+ τ, x+ y) + ajk(t− τ, x− y) − 2 ajk(t, x)

∣∣∣∣ ≤ C

(
τ + |y|

)
.
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On the one hand, keeping in mind the strict embeddings

embemb (9) Lip →֒ Zyg →֒ log−Lip ,

the result of [4] implies that (a priori) a loss, even if arbitrarly small, always occur. On the
other hand, Zygmund regularity is a condition on second variation, hence it is not related to the
modulus of continuity and it runs o� the issue of Cicognani and Colombini. Moreover, Lipschitz
(in time) assumption is only a su�cient condition to get estimate (2), and Tarama's result seems
to suggest us that well-posedness in Hs × Hs−1 can be recovered also in this case, at least for
some special s.

In the present paper we give a partial answer to the previous question. We assume hypothesis
(8) on the ajk's, i.e. a pointwise Zygmund condition with respect to all the variables, and we get
an energy estimate without any loss of derivatives, but only in the space H1/2 ×H−1/2. In fact,
we are able to prove our result considering a complete second order operator: we take �rst order
coe�cients which are θ-Hölder continuous (for some θ > 1/2) with respect to the space variable,
and the coe�cients of the 0-th order term only bounded. Let us point out that from this issue
it immediately follows the H∞ well-posedness with no loss of derivatives for an operator whose
coe�cients are C∞

b with respect to x.
The �rst fundamental step to obtain the result is passing from Zygmund continuous functions to
more general symbols having such a regularity, and then analysing the properties of the related
paradi�erential operators. In doing this, we make a heavy use of the paradi�erential calculus with
parameters, as introduced and developed in [11] and [13]. In particular, it allows us to recover
positivity of the paradi�erential operator associated to a positive symbol: this is a crucial point
in our analysis.
The second key ingredient to our proof is de�ning a new energy. It is only a slight modi�cation of
the original one of Tarama: we change the weight-functions involved in it and we replace product
by them with action of the related paradi�erential operators.
The last basic step relies in approximating the operator L, de�ned in (1), with a paradi�erential
operator of order 2. The price to pay is a remainder term, which is however easy to control by
use of the energy.
All these operations have the e�ect to produce, in energy estimates, very special cancellations at
the level of principal and subprincipal parts of the operators involved in the computations. These
deletions allow us to get the result, but they seem to occur only in the H1/2 ×H−1/2 framework.

Therefore, considerations made before, under hypothesis (7), have not found an answer, yet,
and it is not clear at all if well-posedness in Hs × Hs−1, for s which varies in some interval
containing 1/2, holds true or not.

Before entering into the details of the problem, let us give an overview of the paper.
In the �rst section, we will present our work setting, giving the main de�nitions and stating

our results: a basic energy estimate for operator (1) under hypothesis (8), and a well-posedness
issue which immediately follows from it.

The next section is devoted to the tools we need to handle our problem. They are mostly
based on Littlewood-Paley Theory and classical Paradi�erential Calculus, introduced �rst by J.-
M. Bony in [2]. Here we will follow the presentation given in [1]. Moreover, we need also to
introduce new classes of Sobolev spaces, of logarithmic type, already studied in [9]. Then we will
quote some basic properties of Zygmund continuous functions and we will study their convolution
with a smoothing kernel. A presentation of a new version of Paradi�erential Calculus, depending
on some parameter γ ≥ 1 (see papers [11] and [13]) will follow. This having been done, we
will make immediately use of the Paradi�erential Calculus with parameters to pass from such
functions to more general symbols, having Zygmund regularity with respect to time and space
and smooth in the ξ variable. Moreover, we will associate to them new paradi�erential operators,
for which we will develop also a symbolic calculus.
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In the end, we will be able to takle the proof of our energy estimate. The main e�orts are
de�ning a new energy and replacing the elliptic part of L with a suitable paradi�erential operator.
Then, the rest of the proof is classical: we will di�erentiate the energy with respect to time and
we will estimate this derivative in terms of the energy itself. Gronwall's Lemma will enable us to
get the thesis.

Finally, section 5 will be devoted to the well-posedness in the spaceH∞ of the Cauchy problem
related to L, when its coe�cients are assumed smooth enough. This result is a straightforward
consequence of the previous one, and can be recovered following the same steps of the proof.
Therefore, we will restrict ourselves to point out only the main di�erencies, without repeating the
complete argument.

2 Basic de�nitions and main result

This section is devoted to the presentation of our main result, i.e. an energy estimate for a
complete hyperbolic operator with Zygmund continuous second order coe�cients. First of all, let
us introduce a de�nition.

d:zyg De�nition 2.1. A function f ∈ L∞(RN ) belongs to the Zygmund space Z(RN ) if the quantity

|f |Z := sup
ζ∈RN ,|ζ|<1

sup
z∈RN

(
|f(z + ζ) + f(z − ζ) − 2 f(z)| · |ζ|−1

)
< +∞ .

Moreover we de�ne ‖f‖Z := ‖f‖L∞ + |f |Z .

Let us consider now the operator over [0, T ]× R
N (for some T > 0 and N ≥ 1) de�ned by

eq:opeq:op (10) Lu = ∂2t u −

N∑

i,j=1

∂i (aij(t, x) ∂ju) + b0(t, x) ∂tu +

N∑

j=1

bj(t, x) ∂ju + c(t, x)u ,

and let us suppose L to be strictly hyperbolic with bounded coe�cients, i.e. there exist two
positive constants 0 < λ0 ≤ Λ0 such that, for all (t, x) ∈ [0, T ]× R

N and all ξ ∈ R
N , one has

h:hyph:hyp (11) λ0 |ξ|
2 ≤

N∑

i,j=1

aij(t, x) ξi ξj ≤ Λ0 |ξ|
2 .

Moreover, we assume the coe�cients of the principal part of L to be isotropically Zygmund
continuous, uniformly over [0, T ]×R

N . In particular, there exists a constant K0 such that, �xed
any 1 ≤ i, j ≤ N , for all τ ≥ 0 and all y ∈ R

N , one has

h:Z_txh:Z_tx (12) sup
(t,x)

∣∣∣∣aij(t+ τ, x+ y) + aij(t− τ, x− y) − 2 aij(t, x)

∣∣∣∣ ≤ K0

(
τ + |y|

)
.

Finally, let us suppose also that, for some θ > 1/2, we have

h:lower-orderh:lower-order (13) bj ∈ L∞([0, T ]; Cθ(RN )) ∀ 0 ≤ j ≤ N and c ∈ L∞([0, T ]× R
N ) .

Under these hypothesis, one can prove the following result.

th:en_est Theorem 2.2. Let L be the operator de�ned by (10), and assume it is strictly hyperbolic with

bounded coe�cients, i.e. relation (11) holds true. Moreover, let us suppose the coe�cients aij to

ful�ll condition (12), and the bj's and c to verify hypothesis (13), for some θ > 1/2.
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Then there exist positive constants C, λ such that the inequality

sup
0≤t≤T

(
‖u(t, ·)‖H1/2 + ‖∂tu(t, ·)‖H−1/2

)
≤est:thesis (14)

≤ C eλT
(
‖u(0, ·)‖H1/2 + ‖∂tu(0, ·)‖H−1/2 +

∫ T

0
e−λt ‖Lu(t, ·)‖H−1/2 dt

)

holds true for all u ∈ C2([0, T ];H∞(RN )).

From the previous estimate, which involves no loss of derivatives, one can recover, in a standard
way, the well-posedness issue in the space H1/2 ×H−1/2.

c:wp Corollary 2.3. Let us consider the Cauchy problem

(CP )

{
Lu = f

u|t=0 = u0 , ∂tu|t=0 = u1 ,

where L is de�ned by conditions (10), (11), (12) and (13), and f ∈ L1([0, T ];H−1/2).
Then (CP ) is well-posed in the space H1/2 ×H−1/2, globally on the time interval [0, T ].

3 Tools

In this section we want to introduce the main tools, from Fourier Analysis, we will need to
prove Theorem 2.2. Most of them are the same we resorted to in the recent paper [7], where we
considered the case of coe�cients log-Zymung continuous with respect to time, and log-Lipschitz
continuous in space variables. Nevertheless, for a seek of completeness, we will give here the most
of the details.

The �rst part is devoted to the classical Littlewood-Paley Theory and to the presentation of
new Sobolev spaces, of logarithmic type, introduced �rst in [9].
Then we will analyse some properties of the Zygmund continuous functions. We will consider also
convolution in time with a smoothing kernel.
In the next subsection we will present the Littlewood-Paley Theory depending on a parameter
γ ≥ 1: this modi�cation permits a more re�ned study of our problem. In particular, we will
introduce the new class of low regularity symbols we will deal with, and we will show how one can
associate to them a paradi�erential operator. As pointed out in the introduction, passing from
multiplication by functions to action by operators is just the fundamental step which allows us to
improve the result of Tarama. A wide analysis of symbolic calculus in this new class will end the
present section.

3.1 Littlewood-Paley decomposition
ss:L-P

Let us �rst de�ne the so called �Littlewood-Paley decomposition�, based on a non-homogeneous
dyadic partition of unity with respect to the Fourier variable. We refer to [1], [2] and [12] for the
details.

So, �x a smooth radial function χ supported in the ball B(0, 2), equal to 1 in a neighborhood
of B(0, 1) and such that r 7→ χ(r e) is nonincreasing over R+ for all unitary vectors e ∈ R

N . Set
also ϕ (ξ) = χ (ξ)− χ (2ξ) .

The dyadic blocks (∆j)j∈Z are de�ned by1

∆j := 0 if j ≤ −1, ∆0 := χ(D) and ∆j := ϕ(2−jD) if j ≥ 1.

1Throughout we agree that f(D) stands for the pseudo-di�erential operator u 7→ F
−1(f Fu).
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We also introduce the following low frequency cut-o�:

Sju := χ(2−jD) =
∑

k≤j

∆k for j ≥ 0.

The following classical properties will be used freely throughout the paper:

• for any u ∈ S ′, the equality u =
∑

j ∆ju holds true in S ′;

• for all u and v in S ′, the sequence (Sj−3u ∆jv)j∈N is spectrally supported in dyadic annuli.

Let us also mention a fundamental result, which explains, by the so-called Bernstein's inequal-

ities, the way derivatives act on spectrally localized functions.

l:bern Lemma 3.1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any

couple (p, q) in [1,+∞]2 with p ≤ q and any function u ∈ Lp, we have, for all λ > 0,

supp û ⊂ B(0, λR) =⇒ ‖∇ku‖Lq ≤ Ck+1 λ
k+N

(
1
p
− 1

q

)

‖u‖Lp ;

supp û ⊂ {ξ ∈ R
N | rλ ≤ |ξ| ≤ Rλ} =⇒ C−k−1 λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1 λk‖u‖Lp .

Let us recall the characterization of (classical) Sobolev spaces via dyadic decomposition: for
all s ∈ R there exists a constant Cs > 0 such that

est:dyad-Sobest:dyad-Sob (15)
1

Cs

+∞∑

ν=0

22νs ‖uν‖
2
L2 ≤ ‖u‖2Hs ≤ Cs

+∞∑

ν=0

22νs ‖uν‖
2
L2 ,

where we have set uν := ∆νu.
So, the Hs norm of a tempered distribution is the same as the ℓ2 norm of the sequence

(2sν ‖∆νu‖L2)ν∈N. Now, one may ask what we get if, in the sequence, we put weights di�erent to
the exponential term 2sν . Before answering this question, we introduce some de�nitions. For the
details of the presentiation, we refer also to [9].

Let us set Π(D) := log(2 + |D|), i.e. its symbol is π(ξ) := log(2 + |ξ|).

d:log-H^s De�nition 3.2. For all α ∈ R, we de�ne the space Hs+α log as the space Π−αHs, i.e.

f ∈ Hs+α log ⇐⇒ Παf ∈ Hs ⇐⇒ πα(ξ)
(
1 + |ξ|2

)s/2
f̂(ξ) ∈ L2 .

From the de�nition, it's obvious that the following inclusions hold for s1 > s2, α1 ≥ α2 ≥ 0:

Hs1+α1 log →֒ Hs1+α2 log →֒ Hs1 →֒ Hs1−α2 log →֒ Hs1−α1 log →֒ Hs2 .

We have the following dyadic characterization of these spaces (see [12, Prop. 4.1.11]).

p:log-H Proposition 3.3. Let s, α ∈ R. A tempered distribution u belongs to the space Hs+α log if and

only if:

(i) for all k ∈ N, ∆ku ∈ L2(RN );

(ii) set δk := 2ks (1 + k)α ‖∆ku‖L2 for all k ∈ N, the sequence (δk)k belongs to ℓ2(N).

Moreover, ‖u‖Hs+α log ∼ ‖(δk)k‖ℓ2 .

Hence, this proposition generalizes property (15).
Even if energy estimate (14) involves no loss of derivatives, in our analysis we will need this

new spaces, which are intermediate between the classical ones. As a matter of fact, action of
operators associated to Zygmund symbols �often� entails a logarithmic loss of derivatives. We
will formally justify in a while what we have just said; �rst of all, let us recall some properties of
Zygmund continuous functions.
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3.2 Zygmund continuous functions
ss:Zyg

We have already introduced the space Z(RN ) in de�nition 2.1. Let us now analyse some of its
properties.

Let us recall that this class of functions coincides (see e.g. [3] for the proof) with the Besov
space C1

∗ ≡ B1
∞,∞, which is characterized by the condition

est:Zest:Z (16) sup
ν≥0

( 2ν ‖∆νf‖L∞) < +∞ .

Moreover, we have (see e.g. [1, Ch. 2] for the proof) the continuous embedding Z →֒ LL,
where we denote with LL the space of log-Lipschitz functions. As a matter of fact, for all f ∈ Z
there exists a constant C > 0 such that, for any 0 < |y| < 1,

est:Z->LLest:Z->LL (17) sup
x∈RN

|f(x+ y) − f(x)| ≤ C |y| log

(
1 + γ +

1

|y|

)
,

where γ ≥ 1 is a �xed real parameter.

r:gamma Remark 3.4. Let us point out that the classical result gives us inequality (17) with γ = 1; by
monotonicity of the logarithmic function, however, we could write it for any γ ≥ 1. In what
follows, we will make a broad use of paradi�erential calculus with parameters (see subsection
3.3), which will come into play in a crucial way in our computations. So, we prefer performing
immediately such a change.

Now, given a f ∈ Z, we can regularize it by convolution. As, in the sequel, we are interested
in smoothing out coe�cients of our hyperbolic operator only with respect to the time variable,
let us immediately focus on the 1-dimensional case.

So, �x a f ∈ Z(R). Take an even function ρ ∈ C∞
0 (R), 0 ≤ ρ ≤ 1, whose support is contained

in the interval [−1, 1] and such that
∫
ρ(t) dt = 1, and de�ne the molli�er kernel

ρε(t) :=
1

ε
ρ

(
t

ε

)
∀ ε ∈ ]0, 1] .

Then, for all ε ∈ ]0, 1] we set

eq:f_eeq:f_e (18) fε(t) := (ρε ∗ f) (t) =

∫

Rs

ρε(t− s) f(s) ds .

Let us state some properties about the family of functions we obtain in this way. The most
important one is that we can't expect to control the �rst derivative uniformly on ε: our starting
function is not Lipschitz. Nevertheless, second derivative behaves well again.

p:Z-approx Proposition 3.5. Let f be a Zygmund continuous function such that 0 < λ0 ≤ f ≤ Λ0, for

some positive real numbers λ0 and Λ0.

Then there exists a constant C > 0, depending only on the Zygmund seminorm of f , i.e. |f |Z ,
such that the following facts hold true for all ε ∈ ]0, 1]:

0 < λ0 ≤ fε ≤ Λ0est:ell (19)

|fε(t) − f(t)| ≤ C εest:f_e-f (20)

|∂tfε(t)| ≤ C log

(
1 + γ +

1

ε

)
est:d_t-f (21)

∣∣∂2t fε(t)
∣∣ ≤ C

1

ε
.est:d_tt-f (22)
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Proof. (19) is obvious. Using the fact that ρ is even and has unitary integral, we can write

fε(t) − f(t) =
1

2 ε

∫
ρ
(s
ε

)
(f(t+ s) + f(t− s) − 2f(t)) ds ,

and inequality (20) immediately follows. For (22) we can argue in the same way, recalling that
ρ′′ is even and that

∫
ρ′′ = 0.

We have to pay attention to the estimate of the �rst derivative. As
∫
ρ′ ≡ 0, one has

∂tfε(t) =
1

ε

∫

|s|≤ε
ρ′
(s
ε

)
(f(t− s)− f(t)) ds .

Keeping in mind (17) and noticing that the function σ 7→ σ log(1 + γ +1/σ) is increasing, we get
inequality (21). The proposition is now completely proved.

3.3 Paradi�erential calculus with parameters
ss:pd_param

Let us present here the paradi�erential calculus depending on some parameter γ. One can �nd a
complete and detailed treatement in [13] (see also [11]).

Fix γ ≥ 1 and take a cut-o� function ψ ∈ C∞(RN×R
N ) which veri�es the following properties:

• there exist 0 < ε1 < ε2 < 1 such that

ψ(η, ξ) =

{
1 for |η| ≤ ε1 (γ + |ξ|)

0 for |η| ≥ ε2 (γ + |ξ|) ;

• for all (β, α) ∈ N
N × N

N , there exists a constant Cβ,α such that

∣∣∣∂βη ∂αξ ψ(η, ξ)
∣∣∣ ≤ Cβ,α (γ + |ξ|)−|α|−|β| .

We will call such a function an �admissible cut-o��.
For instance, if γ = 1, one can take

ψ(η, ξ) ≡ ψ−3(η, ξ) :=

+∞∑

k=0

χk−3(η)ϕk(ξ) ,

where χ and ϕ are the localization (in phase space) functions associated to a Littlewood-Paley
decomposition, see [12, Ex. 5.1.5]. Similarly, if γ > 1 it is possible to �nd a suitable integer µ ≥ 0
such that

pd_eq:pp_symbpd_eq:pp_symb (23) ψµ(η, ξ) := χµ(η)χµ+2(ξ) +
+∞∑

k=µ+3

χk−3(η)ϕk(ξ)

is an admissible cut-o� function.

r:gamma-dyad Remark 3.6. Let us immediately point out that we can also de�ne a dyadic decomposition
depending on the parameter γ. First of all, we set

def:Lambdadef:Lambda (24) Λ(ξ, γ) :=
(
γ2 + |ξ|2

)1/2
.

Then, taken the usual smooth function χ associated to a Littlewood-Paley decomposition, we
de�ne

χν(ξ, γ) := χ
(
2−νΛ(ξ, γ)

)
, Sγν := χν(Dx, γ) , ∆γ

ν := Sγν+1 − Sγν .
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The usual properties of the support of the localization functions still hold, and for all �xed γ ≥ 1
and all tempered distributions u, we have

u =
+∞∑

ν=0

∆γ
ν u in S ′ .

Moreover, we can introduce logarithmic Besov spaces using the new localization operators Sγν , ∆
γ
ν .

For the details see section 2.1 of [13]. What is important to retain is that, once we �x γ ≥ 1, the
previous construction is equivalent to the classical one, and one can still recover previous results.
For instance, if we de�ne the space Hs+α log

γ as the set of tempered distributions for which

eq:gH-defeq:gH-def (25) ‖u‖2
Hs+α log

γ
:=

∫

RN
ξ

Λ2s(ξ, γ) log2α(1 + γ + |ξ|) |û(ξ)|2 dξ < +∞ ,

for every �xed γ ≥ 1 it coincides with Hs+α log, the respective norms are equivalent and the
characterization given by proposition 3.3 still holds true.

Let us come back to the admissible cut-o� function ψ introduced above. Thanks to it, we
can de�ne more general paradi�erential operators, associated to low regularity functions: let us
explain how.

De�ne the function Gψ as the inverse Fourier transform of ψ with respect to the variable η:

Gψ(x, ξ) :=
(
F−1
η ψ

)
(x, ξ) .

The following properties hold true.

l:G Lemma 3.7. For all (β, α) ∈ N
N × N

N ,
∥∥∥∂βx∂αξ Gψ(·, ξ)

∥∥∥
L1(RN

x )
≤ Cβ,α (γ + |ξ|)−|α|+|β| ,pd_est:G_1 (26)

∥∥∥∥| · | log
(
2 +

1

| · |

)
∂βx∂

α
ξ G

ψ(·, ξ)

∥∥∥∥
L1(RN

x )

≤ Cβ,α (γ + |ξ|)−|α|+|β|−1 log(1 + γ + |ξ|).pd_est:G_2 (27)

Proof. See [12, Lemma 5.1.7].

Thanks to G, we can smooth out a symbol a in the x variable and then de�ne the parad-
i�erential operator associated to a as the classical pseudodi�erential operator associated to this
smooth function.

First of all, let us de�ne the new class of symbols we are dealing with.

d:symbols De�nition 3.8. Let m and δ be two given real numbers.

(i) We denote with Z(m,δ) the space of functions a(t, x, ξ, γ) which are locally bounded over
[0, T0]×R

N×R
N×[1,+∞[ and of class C∞ with respect to ξ, and which satisfy the following

properties:

� for all α ∈ N
N , there exists a Cα > 0 such that, for all (t, x, ξ, γ),

est:g-symbest:g-symb (28)
∣∣∂αξ a(t, x, ξ, γ)

∣∣ ≤ Cα (γ + |ξ|)m−|α| logδ(1 + γ + |ξ|) ;

� there exists a constant K > 0 such that, for any τ ≥ 0 and y ∈ R
N , one has, for all

ξ ∈ R
N and γ ∈ [1,+∞[ ,

sup
(t,x)

∣∣∣∣a(t+ τ, x+ y, ξ, γ) + a(t− τ, x− y, ξ, γ)− 2a(t, x, ξ, γ)

∣∣∣∣ ≤est:Z_symb (29)

≤ K
(
τ + |y|

)
(γ + |ξ|)m logδ (1 + γ + |ξ|) .
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(ii) Σ(m,δ) is the space of symbols σ of Z(m,δ) for which there exists a 0 < ǫ < 1 such that, for all
(t, ξ, γ) ∈ [0, T ]×R

N×[1,+∞[ , the spectrum (i.e. the support of the Fourier transform with
respect to x) of the function x 7→ σ(t, x, ξ, γ) is contained in the ball {|η| ≤ ǫ (γ + |ξ|)}.

In a quite natural way, we can equip Z(m,δ) with the seminorms

|a|(m,δ,k) := sup
|α|≤k

sup
RN
ξ ×[1,+∞[

(
(γ + |ξ|)−m+|α| log−δ(1 + γ + |ξ|)

∥∥∂αξ a(·, ·, ξ, γ)
∥∥
L∞

(t,x)

)
,eq:seminorms (30)

∣∣a
∣∣
Z

:= inf

{
K > 0

∣∣∣∣ relation (29) holds true

}
.eq:Z_sem (31)

Moreover, by spectral localization and Paley-Wiener Theorem, a symbol σ ∈ Σ(m,δ) is smooth
also in the x variable. So, we can de�ne the subspaces Σ

(m,δ)
(µ,̺) (for µ and ̺ ∈ R) of symbols σ

which verify (28) and also, for all β > 0,

est:g-s_xest:g-s_x (32)
∥∥∥∂βx∂αξ σ(·, ·, ξ, γ)

∥∥∥
L∞

(t,x)

≤ Cβ,α (γ + |ξ|)m−|α|+|β|+µ logδ+̺(1 + γ + |ξ|) .

Now, given a symbol a ∈ Z(m,δ), we can de�ne

eq:symb-defeq:symb-def (33) σψa (t, x, ξ, γ) := (ψ(Dx, ξ) a ) (t, x, ξ, γ) =
(
Gψ(·, ξ) ∗x a(t, ·, ξ, γ)

)
(x) .

p:par-op Proposition 3.9. (i) For all m, δ ∈ R, the smoothing operator

R : a(t, x, ξ, γ) 7→ σψa (t, x, ξ, γ)

is bounded from Z(m,δ) to Σ(m,δ).

(ii) The di�erence a − σψa ∈ Z(m−1,δ+1).

(iii) In particular, if ψ1 and ψ2 are two admissible cut-o� functions, then the di�erence of the

two smoothed symbols, σψ1
a − σψ2

a , belongs to Σ(m−1,δ+1).

r:psi-ind Remark 3.10. As we will see in a while, part (ii) of previous proposition says that the di�erence
between the original symbol and the classical one associated to it is more regular. Part (iii),
instead, infers that the whole construction is independent of the cut-o� function �xed at the
beginning.

3.3.1 General paradi�erential operators

As already mentioned, we can now de�ne the paradi�erential operator associated to a using the
classical symbol corresponding to it:

eq:T-defeq:T-def (34) Tψa u(t, x) :=
(
σψa (t, · , Dx, γ)u

)
(x) =

1

(2π)N

∫

RN
ξ

eix·ξ σψa (t, x, ξ, γ) û(ξ) dξ .

Note that Tψa u still depends on the parameter γ ≥ 1.
For instance, if a = a(x) ∈ L∞ and if we take the cut-o� function ψ−3, then T

ψ
a is actually

the usual paraproduct operator. If we take ψµ as de�ned in (23), instead, we get a paraproduct
operator which starts from high enough frequencies, which will be indicated with Tµa (see section
3.3 of [9]).

Let us now study the action of general paradi�erential operators on the class of logarithmic
Sobolev spaces. First of all, a de�nition is in order.

11



d:op_order De�nition 3.11. We say that an operator P is of order m + δ log if, for every (s, α) ∈ R
2 and

every γ ≥ 1, P maps Hs+α log
γ into H(s−m)+(α−δ) log

γ continuously.

With slight modi�cations to the proof of Proposition 2.9 of [13], stated for the calssical Sobolev
class, we get the next fundamental result.

l:action Lemma 3.12. For all σ ∈ Σ(m,δ), the corresponding operator σ( · , Dx) is of order m+ δ log.

Lemma 3.12 immediately implies the following theorem, which describes the action of the new
class of paradi�erential operators.

t:action Theorem 3.13. Given a symbol a ∈ Z(m,δ), for any admissible cut-o� function ψ, the operator

Tψa is of order m+ δ log.

As already remarked, the construction does not depends on the cut-o� function ψ used at the
beginning. Next result says that main features of a paradi�erential operator depend only on its
symbol.

p:act-psi Proposition 3.14. If ψ1 and ψ2 are two admissible cut-o� functions and a ∈ Z(m,δ), then the

di�erence Tψ1
a − Tψ2

a is of order (m− 1) + (δ + 1) log.

Therefore, changing the cut-o� function ψ doesn't change the paradi�erential operator asso-
ciated to a, up to lower order terms. So, in what follows we will miss out the dependence of σa
and Ta on ψ.

3.3.2 Symbolic calculus in the Zygmund class Z(m,δ)

For convenience, in what follows we will temporarily consider δ = 0: the geneeral case δ 6= 0 easily
follows with slight modi�cations.

So, let us now take a Zygmund symbol a ∈ Z(m,0) (for some m ∈ R). Assume moreover that it
satis�es a strictly ellipticity condition: there exists a constant λ0 > 0 such that, for all (t, x, ξ, γ),

a(t, x, ξ, γ) ≥ λ0 (γ + |ξ|)m .

Finally, let us smooth a out with respect to the �rst variable, as we have seen in paragraph 3.2,
and let us denote by aε the result of the convolution. Obviously, also the aε's satisfy the ellipticity
condition with the same λ0 (by relation (19)), so in particular independent of ε. In addition, next
estimates hold true.

l:symb Lemma 3.15. The classical symbol associated to aε, which we will denote by σa (we drop the

dependence on ε to simplify notations), satisfy the following inequalities:
∣∣∂αξ σa

∣∣ ≤ C (γ + |ξ|)m−|α|

∣∣∣∂βx∂αξ σa
∣∣∣ ≤ C (γ + |ξ|)m−|α|+|β|−1 log (1 + γ + |ξ|) if |β| = 1

∣∣∣∂βx∂αξ σa
∣∣∣ ≤ C (γ + |ξ|)m−|α|+|β|−1 if |β| ≥ 2 .

Moreover, the classical symbol associated to ∂taε coincides with ∂tσa and veri�es, instead,

∣∣∂αξ σ∂ta
∣∣ ≤ C (γ + ξ)m−|α| log

(
1 + γ +

1

ε

)

∣∣∣∂βx∂αξ σ∂ta
∣∣∣ ≤ C (γ + |ξ|)m−|α|+|β| +

C

ε
(γ + |ξ|)m−|α|+|β|−1 .

Finally, σ∂2t a ≡ ∂2t σa and one has

∣∣∣∂αξ σ∂2t a
∣∣∣ ≤

C

ε
(γ + |ξ|)m−|α|

∣∣∣∂βx∂αξ σ∂2t a
∣∣∣ ≤

C

ε
(γ + |ξ|)m−|α|+|β| .
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Proof. The �rst inequality is obvious by the chain rule and the properties of aε, Gψ.
For second and third ones, we have to observe that
∫
∂iG(x− y, ξ)dx =

∫
∂iG(z, ξ)dz =

∫
F−1
η (ηi ψ(η, ξ)) dz = (ηi ψ(η, ξ))|η=0 = 0 ,

and the same still holds if we keep di�erenciating with respect to x. Hence if we di�erentiate only
once with respect to the space variable, what we get is the following:

∂iσa =

∫
∂iG(x− y) aε(y) dy =

∫
∂iG(y)

∫
ρε(t− s) (a(s, x− y, ξ)− a(s, x, ξ)) ds dy ,

and the embedding Z →֒ LL implies second inequality. For second derivatives we can use also
the parity of G and write

∂i∂jσa =
1

2

∫
∂i∂jG(y)

∫
ρε(t− s) (a(s, x+ y, ξ) + a(s, x− y, ξ)− 2a(s, x, ξ)) ds dy ,

and the thesis immediately follows. Recalling the spectral localization, the estimate for higher
order derivatives follows from the just proved one, combined with Bernstein's inequalities.

Now, let us consider the �rst time derivative. Former inequality concerning ∂ta is obvious: as∫
ρ′ = 0, we have

σ∂ta =

∫
G(x− y)

1

ε2

∫
ρ′ (s/ε) (a(t− s, y, ξ)− a(t, y, ξ)) ds dy .

If we di�erentiate the classical symbol also in space, instead, the behaviour is better: both ∂iG
and ρ′ are odd, hence

∂iσ∂ta =
1

4

∫
∂iG(y)

1

ε2

∫
ρ′(s/ε) (a(t+ s, x+ y, ξ)− a(t+ s, x− y, ξ)−

−a(t− s, x+ y, ξ) + a(t− s, x− y, ξ)) ds dy .

Now, adding and subtracting the quantity 2 a(t, x, ξ) and taking advantage of the Zygmund reg-
ularity condition, we have

|∂iσ∂ta| ≤ C

∫
|∂iG|

1

ε2

∫ ∣∣∣ρ′
(s
ε

)∣∣∣ (|s|+ |y|) ds dy ,

and so we get the expected control. Let us remark that the two terms in the right-hand side of
the inequality are the same once we set ε = (γ + |ξ|)−1.

Finally, arguing as before, the last two inequalities can be easily deduced from the fact that
ρ′′ is even and has null integral.

r:symb Remark 3.16. It goes without saying that, with obvious changes, an analogous statement holds
true also for symbols of class Z(m,δ), for any δ ∈ R.

From Lemma 3.15, properties of paradi�erential operators associated to aε and its time deriva-
tives immediately follow, keeping in mind Theorem 3.13.

Now, we want to state an accurate result on composition and adjoint operators associated to
symbols in the Zygmund class Z(m,δ). As a matter of fact, the proof of our energy estimate is
based on very special cancellations at the level of principal and subprincipal parts of the involved
operators: hence, we need to understand the action of the terms up to the next order.

With a little abuse of notation, for a symbol a we will write ∂xa meaning that the space
derivative actually acts on the classical symbol associated to a.
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t:symb_calc Theorem 3.17. (i) Let us take two symbols a ∈ Z(m,δ) and b ∈ Z(n,̺) and denote by Ta, Tb
the respective associated paradi�erential operators. Then

eq:comp_opeq:comp_op (35) Ta ◦ Tb = Ta b − i T∂ξa ∂xb + R◦ .

The principal part Ta b is of order (m+ n) + (δ + ̺) log.
The subprincipal part T∂ξa ∂xb has order (m+ n− 1) + (δ + ̺+ 1) log.
The remainder operator R◦, instead, has order (m+ n− 1) + (δ + ̺) log.

(ii) Let a ∈ Z(m,δ). The adjoint operator (over L2) of Ta is given by the formula

eq:adj_opeq:adj_op (36) (Ta)
∗ = Ta − i T∂ξ∂xa + R∗ .

The order of Ta is still m+ δ log.
The order of T∂ξ∂xa is instead (m− 1) + (δ + 1) log.
Finally, the remainder term R∗ has order (m− 1) + δ log.

This theorem immediately follows from Lemma 3.15.

r:Z_norm Remark 3.18. Let us stress this fundamental fact: the operator norms of all the subprincipal
part terms in the previous theorem (i.e. T∂ξa ∂xb and T∂ξ∂xa) depend only on the seminorms |a|Z
and |b|Z , and not on γ.

Let us end this subsection stating a basic positivity estimate.

p:pos Proposition 3.19. Let a(t, x, ξ, γ) be a real-valued symbol in Z(2m,0), such that

a(t, x, ξ, γ) ≥ λ0 (γ + |ξ|)2m .

Then, there exists a constant λ1, depending only on the seminorm |a|Z and on λ0, such that,

for γ large enough, one has

Re (Tau, u)L2 ≥ λ1 ‖u‖
2
Hm

γ
.

Proof. Let us set a = b2: we note that b ∈ Z(m,0). Thanks to symbolic calculus, we can write:

Re (Tau, u)L2 = Re (TbTbu, u)L2 + Re
(
R′u, u

)
L2

= Re (Tbu, (Tb)
∗u)L2 + Re

(
R′u, u

)
L2

= Re (Tbu, Tbu)L2 + Re
(
R′u, u

)
L2 + Re

(
R′′u, u

)
L2 ,

where the remainder operators R′ and R′′ have principal symbols respectively equal to ∂ξb ∂xb
and ∂ξ∂xb. Hence they have order (2m− 1)+ log and (m− 1)+ log respectively. Therefore, using
also Lemma 3.15, we get (for all γ ≥ 1)

Re (Tau, u)L2 ≥ ‖u‖2Hm
γ

−
∥∥R′u

∥∥
H

−(2m−1)/2−(1/2) log
γ

‖u‖
H

(2m−1)/2+(1/2) log
γ

−

−
∥∥R′′u

∥∥
H

−(m−1)/2−(1/2) log
γ

‖u‖
H

(m−1)/2+(1/2) log
γ

≥ ‖u‖2Hm
γ

− ‖u‖2
H

(2m−1)/2+(1/2) log
γ

− ‖u‖2
H

(m−1)/2+(1/2) log
γ

.

Now, by de�nition of Hs+α log
γ norms, it's easy to see that the second and third terms in the last

line can be absorbed by the �rst one, for γ large enough.

r:pos Remark 3.20. Let us expressly point out the following fact. If the positive symbol a has low
regularity in time and we smooth it out by convolution with respect to this variable, we obtain a
family (aε)ε of positive symbols, with same constant λ0. Now, all the paradi�erential operators
associated to these symbols will be positive operators, uniformly in ε: i.e. the constant λ1 of
previous inequality can be choosen independently of ε.
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Previous proposition allows us to recover positivity of paradi�erential operators associated to
positive symbols. This fact will be fundamental in energy estimates.

Proposition 3.19, together with Theorem 3.17, implies the following corollary.

c:pos Corollary 3.21. Let a be a positive symbol in the class Z(1,0).

Then there exists γ ≥ 1, depending only on |a|Z , such that

‖Tau‖L2 ∼ ‖∇u‖L2

for all u ∈ H1(RN ).

4 Proof of the energy estimate
s:proof

Let us now tackle the proof of Theorem 2.2. It relies on de�ning a suitable energy associated to
u and on splitting operator L into a principal part, given by a paradi�erential operator, and a
remainder term, which is easy to control by the energy.

The rest is classical: we will control the time derivative of the energy by the energy itself, and
we will get inequality (14) by use of Gronwall's Lemma.

4.1 Energy

Let us smooth out the coe�cients of the operator L with respect to the time variable, as done in
(18), and let us de�ne the second order symbol

eq:aeq:a (37) αε(t, x, ξ) :=
∑

j,k

ajk,ε(t, x) ξj ξk + γ2 .

By analogy with what done in [5] (see also [8], [6] and [7] for the case of localized energy), we
immediately link the approximation parameter ε with the dual variable ξ, setting

eq:parameq:param (38) ε =
(
γ2 + |ξ|2

)−1/2
.

For notation convenience, in the sequel we will miss out the index ε.
Now, by use of Corollary 3.21, let us �x a positive γ, which will depend only on λ0 and on

supj,k |ajk|Zx
, such that the operators Tα−1/4 and Tα1/4 are positive, i.e. for all w ∈ H∞ one has

‖Tα−1/4w‖L2 ≥
λ0
2

‖w‖H−1/2 , ‖Tα1/4w‖L2 ≥
λ0
2

‖w‖H1/2 .

r:pos-eps Remark 4.1. Keeping in mind Remark 3.20, it's easy to see that the �xed γ doesn't depend on
the approximation parameter ε.

This having been done, let us take a u ∈ H∞, solution of (10). Let us de�ne

v(t, x) := Tα−1/4∂tu − T∂t(α−1/4)u

w(t, x) := Tα1/4u

and the �Tarama's energy� associated to u:

eq:Eeq:E (39) E(t) := ‖v(t)‖2L2 + ‖w(t)‖2L2 .

Using positivity of involved operators, it's easy to see that ‖w(t)‖L2 ∼ ‖u(t)‖H1/2 and that

‖v(t)‖L2 ≤ C (‖∂tu(t)‖H−1/2 + ‖u(t)‖H1/2)

‖∂tu(t)‖H−1/2 ≤ C
(
‖v(t)‖L2 +

∥∥∥T∂t(α−1/4)u
∥∥∥
L2

)
≤ C (E(t))1/2 .

So, we gather that there exists a constant C for which

(E(0))1/2 ≤ C (‖∂tu(0)‖H−1/2 + ‖u(0)‖H1/2)est:E_0 (40)

(E(t))1/2 ≥ C−1 (‖∂tu(t)‖H−1/2 + ‖u(t)‖H1/2) .est:E_t (41)
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4.2 Changing the operator

The aim of this subsection is to show that, roughly speaking, we can approximate our striclty
hyperbolic operator L with a paradi�erential operator, up to a remainder term of order 1. The
latter can be immediately bounded by the energy, while the former represents the principal part
of L, but it is easier to deal with.

For convenience, let us de�ne another second order symbol:

eq:a-tildeeq:a-tilde (42) α̃(t, x, ξ) :=
∑

j,k

ajk(t, x) ξj ξk ,

i.e. α̃ is analogous to α, but functions ajk are not regularized in time.

l:L->T Lemma 4.2. Let us de�ne the operator R in the following way:

Ru :=
∑

j,k

∂j (ajk(t, x) ∂ku) + ReTα̃u .

Then R maps continuously Hs into Hs−1, for all 0 < s < 1.

Proof. Given u ∈ Hs, �rst of all we want to prove that the di�erence

ajk ∂ku − Tajk∂ku = ajk ∂ku − i Tajkξku =
∑

ν≥µ

Sν+2∂ku ∆νajk =
∑

ν≥µ

Rν

is still in Hs. As each Rν is spectrally supported in a ball of radius proportional to 2ν , and as
s > 0, we can apply Lemma 2.84 of [1]. So, it's enough to estimate the L2 norm of each term Rν .
Using also characterization (16), we have

‖Rν‖L2 ≤ ‖Sν+2∂ku‖L2 ‖∆νajk‖L∞ ≤ C ‖Sν+2∂ku‖L2 2−ν .

Let us note that the constant C depends on the Zygmund seminorm of ajk. As ∇u ∈ Hs−1, with
s < 1, Proposition 2.79 of [1] applies, and it �nally gives us

‖Rν‖L2 ≤ C ‖∇u‖Hs−1 2−sν cν ,

for a sequence (cν)ν ∈ ℓ2(N) of unitary norm. So, the above mentioned Lemma 2.84 implies that
ajk ∂ku − i Tajkξku ∈ Hs, as claimed. Therefore,

∑

j,k

∂j (ajk∂ku) − i ∂jTajkξku ∈ Hs−1 .

Now, some computations are needed. With a little abuse of notation, we will write ∂jα̃
meaning that the space derivative actually acts on the classical symbol associated to α̃.

Noting that
∑

j,k ajkξk = (∂ξj α̃)/2, we get

i
∑

j,k

∂jTajkξk = i
∑

j,k

Tajkξk∂j +
∑

j

1

2
T∂j∂ξj α̃ = −Tα̃ +

i

2

∑

j

T∂j∂ξj α̃ = −
1

2
(Tα̃ + (Tα̃)

∗) + R′ ,

where we have used also Theorem 3.17. The operator R′ has symbol ∂2x∂
2
ξ α̃, and so, by Lemma

3.15, it has order 1.
In the end, we have discovered that

∑

j,k

∂j (ajk∂k ) + ReTα̃ : Hs −→ Hs−1

is a continuous operator of order 1, provided that 0 < s < 1. The lemma is now proved.

16



In the same spirit of Lemma 4.2, we have also the next result.

l:b Lemma 4.3. Given a Hölder continuous function b ∈ Cθ(RN ), for some θ > 0, let us de�ne the

remainder operator

B̃ v := b v − Tb v .

Then, B̃ maps H−s(RN ) into Hθ−s(RN ) continuously for all s ∈ ]0, θ[ .

Proof. As just done, let us write

B̃ v =
∑

ν≥µ

Sν+2v∆νb =
∑

ν≥µ

Bν .

Hence, thanks to Lemma 2.84 of [1], it's enough to estimate le L2 norm of each Bν .
Using the dyadic characterization of Hölder spaces, we have

‖∆νb‖L∞ ≤ C ‖b‖Cθ 2−νθ ,

while, as s > 0, Proposition 2.79 of [1] gives

‖Sν+2v‖L2 ≤ C ‖v‖H−s 2νs dν ,

where the sequence (dν)ν belongs to the unitary sphere in ℓ2(N).
Therefore, we �nally gather

‖Bν‖L2 ≤ C ‖b‖Cθ ‖v‖H−s 2−ν(θ−s) dν ,

and this implies B̃v ∈ Hθ−s.

Thanks to Lemmas 4.2 and 4.3, equation (10) can be rewritten in the following way:

∂2t u = −ReTαu + Re (Tα − Tα̃)u + Ru +eq:op-change (43)

+Lu −
N∑

j=0

(
Tbj∂ju + B̃j∂ju

)
− c(t, x)u ,

with the notations ∂0 = ∂t and B̃j = bj − Tbj .

4.3 Energy estimates

Now we are �nally ready to compute the time derivative of the energy. Thanks to �Tarama's
cancellations� and identity (43), we have

d

dt
‖v(t)‖2L2 = 2Re

(
v(t) , Tα−1/4∂2t u

)
L2 − 2Re

(
v(t) , T∂2t (α−1/4)u

)
L2

eq:d_t-v (44)

= − 2Re
(
v(t) , T∂2t (α−1/4)u

)
L2

+ 2Re (v(t) , Tα−1/4Lu)L2 +

+2Re (v(t) , Tα−1/4Ru)L2 + 2Re (v(t) , Tα−1/4Re (Tα − Tα̃)u)L2 −

− 2Re


v(t) , Tα−1/4

N∑

j=0

(
Tbj∂ju + B̃j∂ju

)


L2

−

− 2Re (v(t) , Tα−1/4cu)L2 + 2Re (v(t) , −Tα−1/4ReTαu)L2 .

By use of Lemma 3.15, keeping in mind the choice of the parameter ε in (38), it's quite easy to
see that the following estimates hold true:

∣∣∣Re
(
v(t) , T∂2t (α−1/4)u

)
L2

∣∣∣ ≤ C ‖v(t)‖L2 ‖u(t)‖H1/2 ≤ C E(t)
∣∣Re (v(t) , Tα−1/4Lu)L2

∣∣ ≤ C (E(t))1/2 ‖Lu(t)‖H−1/2∣∣Re (v(t) , Tα−1/4Ru)L2

∣∣ ≤ C ‖v(t)‖L2 ‖u(t)‖H1/2 ≤ C E(t)∣∣Re (v(t) , Tα−1/4Re (Tα − Tα̃)u)L2

∣∣ ≤ C ‖v(t)‖L2 ‖u(t)‖H1/2 ≤ C E(t) ,

where, in the last inequality, we have used also relation (20).
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Let us now focus on the �rst order terms, and �x an index 0 ≤ j ≤ N . As bj ∈ Cθ(RN ), it
is in particular bouned. Therefore, the corresponding paraproduct operator has order 0 (see e.g.
Theorem 2.82 of [1]), and then

∣∣∣Re
(
v(t) , Tα−1/4Tbj∂ju

)
L2

∣∣∣ ≤ C ‖v(t)‖L2 ‖∂ju(t)‖H−1/2 ≤ C E(t) .

For the remainder operator, as θ > 1/2 we can apply Lemma 4.3, and we get
∣∣∣Re

(
v(t) , Tα−1/4B̃j∂ju

)
L2

∣∣∣ ≤ C ‖v(t)‖L2

∥∥∥B̃j∂ju
∥∥∥
H−1/2

≤ C ‖v(t)‖L2

∥∥∥B̃j∂ju
∥∥∥
Hθ−1/2

≤ C ‖v(t)‖L2 ‖∂ju(t)‖H−1/2 ≤ C E(t) .

The analysis of the term of order 0 is instead straightforward:
∣∣Re (v(t) , Tα−1/4cu)L2

∣∣ ≤ C ‖v(t)‖L2 ‖cu‖H−1/2 ≤ C ‖v(t)‖L2 ‖u(t)‖L2 ≤ C E(t) .

So, it remains us to handle only the last term of relation (44): this will be done in a while.
For the moment, let us di�erentiate the second part of the energy with respect to time:

eq:d_t-weq:d_t-w (45)
d

dt
‖w(t)‖2L2 = 2Re

(
w(t) , T∂t(α1/4)u

)
L2

+ 2Re (w(t) , Tα1/4∂tu)L2 .

We couple each term of this relation with the respective one coming from the last item of (44)
and, by use of symbolic calculus (recall in particular Theorem 3.17), we will try to control them.
Let us be more precise and make rigorous what we have just said.

First of all, we consider

T1 := 2Re
(
−T∂t(α−1/4)u , −Tα−1/4ReTαu

)
L2

+ 2Re
(
Tα1/4u , T∂t(α1/4)u

)
L2
.

Noticing that ∂t
(
α1/4

)
= −α1/2∂t

(
α−1/4

)
, we can write

2Re
(
Tα1/4u , T∂t(α1/4)u

)
L2

= 2Re
(
Tα1/4u , −Tα1/2T∂t(α−1/4)u

)
+ 2Re (Tα1/4u , Mu)L2 ,

where M has principal symbol equal to ∂ξ
(
α1/2

)
∂x∂t

(
α−1/4

)
. Therefore, we get

T1 = 2Re

(
T∂t(α−1/4)u ,

(
Tα−1/4ReTα − (Tα1/2)

∗ Tα1/4

)
u

)

L2

+ 2Re (Tα1/4u , Mu)L2 .

By Lemma 3.15, the remainder term can be controlled by the energy:
∣∣Re (Tα1/4u , Mu)L2

∣∣ ≤ C E(t) .

Let us now consider the operator

P := Tα−1/4ReTα − (Tα1/2)
∗ Tα1/4 .

A straightforward computation shows that the principal symbol of P is 0; moreover, as ReOp =
(Op+ (Op)∗)/2, from Theorem 3.17 we gather that its subprincipal symbol is given by

− i

(
∂ξ

(
α−1/4

)
∂xα +

1

2
α−1/4 ∂ξ∂xα + ∂ξ

(
α1/2

)
∂x

(
α1/4

)
+ ∂ξ∂x

(
α1/2

)
α1/4

)
,

and so it has order 1/2 + log. Therefore, we �nally get the control for T1:

|T1| ≤ C
(
E(t) +

∥∥∥T∂t(α−1/4)u
∥∥∥
Hlog

‖Pu‖H− log

)
≤ C

(
E(t) + ‖u‖2

H1/2

)
≤ C E(t) .
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Now, let us handle the term

T2 := 2Re (Tα1/4u , Tα1/4∂tu)L2 + 2Re (Tα−1/4∂tu , −Tα−1/4ReTαu)L2eq:T_2 (46)

= 2Re (∂tu , Qu)L2 ,

where we have de�ned the operator

Q := Q1 − Q2 = (Tα1/4)
∗ Tα1/4 − (Tα−1/4)

∗ Tα−1/4 ReTα .

To compute the order of Q, let us proceed with care and analyse the symbol of each of its terms.
Once again, by use of Theorem 3.17 one infers

Q1 = Tα1/2 − i
(
T∂ξ(α1/4)∂x(α1/4) + T∂ξ∂x(α1/4)α1/4

)
−eq:Q_1 (47)

−
(
T 1

2
∂2ξ(α1/4)∂2x(α1/4) + T∂2ξ∂x(α1/4)∂x(α1/4) + T 1

2
∂2ξ∂

2
x(α1/4)α1/4

)
+ l.o.t. .

In the same way, one gets also

Tα−1/4 ReTα = Tα3/4 − i

(
T∂ξ(α−1/4)∂xα +

1

2
Tα−1/4 ∂ξ∂xα

)
−

−
1

2

(
T∂2ξ(α−1/4)∂2xα

+ T∂ξ(α−1/4)∂ξ∂2xα
+ Tα−1/4∂2ξ∂

2
xα

)
+ l.o.t. ,

and so �nally we arrive to the formula

Q2 = Tα1/2 − i
(
T∂ξ(α−1/4)∂x(α3/4)+ ∂ξ∂x(α−1/4)α3/4 +α−1/4∂ξ(α−1/4)∂xα+ 1

2
α−1/2∂ξ∂xα

)
−eq:Q_2 (48)

−
(
T 1

2
∂2ξ(α−1/4)∂2x(α3/4)+ ∂2ξ∂x(α−1/4)∂x(α3/4)+ ∂ξ(α−1/4)∂x(∂ξ(α−1/4)∂xα) +

+T 1
2
∂ξ(α−1/4)∂x(α−1/4∂ξ∂xα)+ 1

2
∂2ξ∂

2
x(α−1/4)α3/4 + 1

2
α−1/4∂2ξ(α−1/4)∂2xα

+

+T 1
2
α−1/4∂ξ(α−1/4)∂ξ∂2xα+ 1

2
α−1/2∂2ξ∂

2
xα

+

+T∂ξ∂x(α−1/4)∂ξ(α−1/4)∂xα+ 1
2
∂ξ∂x(α−1/4)α−1/4∂ξ∂xα

)
+ l.o.t. .

Now, it's evident that Q has null principal symbol. Its subprincipal symbol, instead, has order
log; nevertheless, comparing equalities (47) and (48), we discover that it is identically 0, too.

r:new_en Remark 4.4. Let us stress again this point: requiring also the subprincipal part of the operator
Q to be null forces us to take the symbol α of order 1/2.

In particular, one can try to introduce a new energy, de�ning

ṽ(t, x) := Tβ∂tu − T∂tβu , w̃(t, x) := Tβα1/2u and Ẽ(t) := ‖ṽ(t)‖2L2 + ‖w̃(t)‖2L2 ,

where β is a generic symbol of order s (not necessarily s = 1/2). The presence of α1/2 in w̃ is due
to the fact that we want ‖w̃‖L2 ∼ ‖u‖Hs+1 .
Repeating the same computations as before, one can see that the following constraints appear:

• β has to be of the form β = α−1/4f , for some symbol f(x, ξ) of order s− 1/2;

• even in the simplest case, i.e. f = f(ξ), the subprincipal part of the operator Q is not
null, if f is not null, and its order is (2s+ 1) + log, which is not suitable for us, due to the
logarithmic loss.

Let us come back to the operator Q. Its sub-subprincipal part is not void, but, analysing one
term by one, we discover that it has order 0.
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r:order Remark 4.5. This fact can be seen also without all the previous complicated computations. Let
us compare the subprincipal symbol of Q, of order log, with the one of the next order part. The
latter presents one more derivative both in ξ and in x with respect to the former. The derivative
∂ξ makes the order decrease of 1; the space derivative, instead, acts as described in Lemma 3.15.
Therefore, two di�erent kinds of terms occur in the sub-subprincipal symbol:

(i) terms which present a product of the type ∂x (αµ) ∂x (αν): in this case, the order of these
terms increases of log;

(ii) terms which have a factor of the type ∂2x(α
µ): in this case, instead, the order increases of

1− log.

Therefore, �rst terms have total order equal to log−1 + log = 2 log−1, while the other ones are
of order log−1 + 1− log = 0. Hence, the sub-subprincipal part of Q is at most of order 0.

In any case, we �nally obtain the following control on T2:

|T2| ≤ C ‖∂tu‖H−1/2 ‖Qu‖H1/2 ≤ C E(t) .

4.4 Final estimates

Putting all the proved inequalities together, we get the estimate

d

dt
E(t) ≤ C1E(t) + C2 (E(t))1/2 ‖Lu(t)‖H−1/2 ,

for some positive constants C1, C2 depending only on λ0, Λ0 and on the Zygmund norms, both
in space and time, of the coe�cients ajk.

Applying Gronwall's inequality to previous estimate entails

est:E-finalest:E-final (49) (E(t))1/2 ≤ C eλ t
(
(E(0))1/2 +

∫ t

0
e−λ τ ‖Lu(τ)‖H−1/2 dτ

)
.

So, remembering inequalities (40) and (41), we manage to bound the norm of the solution in
H1/2 ×H−1/2 in terms of initial data and external force only: for all t ∈ [0, T ],

‖∂tu(t)‖H−1/2 + ‖u(t)‖H1/2 ≤ C eλ t
(
‖∂tu(0)‖H−1/2 + ‖u(0)‖H1/2 +est:sol-fin (50)

+

∫ t

0
e−λ τ ‖Lu(τ)‖H−1/2 dτ

)
,

which is actually the thesis of Theorem 2.2.
Moreover, this relation implies, in particular, well-posedness in the space H1/2 ×H−1/2.

5 On the H
∞ well-posedness

s:H^inf

The aim of this section is to prove the following result.

th:wp Theorem 5.1. Let L be the operator de�ned by (10), and assume it is strictly hyperbolic with

bounded coe�cients, i.e. relation (11) holds true.

Suppose that its coe�cients aij, bj and c are all of class C∞
b (RN ), and that, in addition, the aij's

are Zygmund continuous with respect to the time variable: for all τ ≥ 0 one has

sup
(t,x)

∣∣∣∣aij(t+ τ, x) + aij(t− τ, x) − 2 aij(t, x)

∣∣∣∣ ≤ K0 τ .

Then the related Cauchy problem is well-posed in the space H∞, globally in time.
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Proof. The proof is based on the computations performed in Section 4, so we will limit ourselves
to point out only the main di�erencies.

First of all, we set

v(t, x) := TΛσα−1/4∂tu − T∂t(Λσα−1/4)u and w(t, x) := TΛσα1/4u ,

where the symbol Λ(ξ, γ) was de�ned in (24). As before the energy associated to u is the quantity

E(t) := ‖v(t)‖2L2 + ‖w(t)‖2L2 .

At this point, one has to notice that, thanks to the additional regularity of the coe�cients,
the thesis of Lemmas 4.2 and 4.3 are true for any s > 0, and also the multiplication by c maps
Hs into itself for the same s.

Therefore, if we take a σ > −1/2, all the previous computations hold true, with no changes.
We have to pay attention only to the analysis of the term T2, de�ned by (46). The principal

symbol of Q is still 0, but the subprincipal one doesn't cancel anymore (recall also Remark 4.4).
Nevertheless, it's easy to see that this time its order is 2σ. As a matter of fact, also Lemma 3.15
still holds true, but in the second estimate (i.e. that one where |β| = 1) the logarithmic loss
disappears, due to the additional regularity of the aij 's.

So, we have

|T2| ≤ C ‖∂tu‖Hσ−1/2 ‖Qu‖H−σ+1/2 ≤ C ‖∂tu‖Hσ−1/2 ‖u‖Hσ+1/2 ≤ C E(t) .

In the end, we arrive to an inequality of the form

sup
0≤t≤T

(
‖u(t, ·)‖Hσ+1/2 + ‖∂tu(t, ·)‖Hσ−1/2

)
≤

≤ C eλT
(
‖u(0, ·)‖Hσ+1/2 + ‖∂tu(0, ·)‖Hσ−1/2 +

∫ T

0
e−λt ‖Lu(t, ·)‖Hσ−1/2 dt

)
,

which holds true for any σ > −1/2 and for positive constants λ and C depending only on σ and
on the norms of the coe�cients of L on the respective functional spaces.

From this relation we immediately gather the H∞ well-posedness of the Cauchy problem
related to L.
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