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Abstract

The flow past a sphere rotating about an axis aligned with the streamwise direction is numerically inves-
tigated. The dynamics is governed by the incompressible Navier–Stokes equations and depends on two
control parameters: the Reynolds number Re and rotation rate Ω. The present investigation systematically
covers the range Re ≤ 350 and Ω ≤ 2. First, the axisymmetric steady base flow (whether stable or not)
is computed for all values of the control parameters. Then, after linearization of the equations about the
base flow, the growth rates and frequencies of the leading eigenmodes are obtained. Fully nonlinear direct
numerical simulations yield the detailed flow fields and hydrodynamic forces acting on the sphere. Different
wake modes (low-frequency periodic helical, quasiperiodic shedding and high-frequency periodic helical) are
identified and their characteristic frequencies precisely determined.
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1. Introduction

At moderate Reynolds numbers, our understanding of the wake dynamics for a fixed sphere in uniform
upstream flow is by now fairly complete. More complex scenarios prevail when additional effects are taken
into account, such as shear in the oncoming flow, the presence of a wall, rotation of the obstacle or non-
spherical shapes. Most of these configurations break the axisymmetry of the formulation. The purpose of
the present investigation is to shed new light on the dynamics prevailing in a situation governed by two
control parameters but preserving the axisymmetry of the problem: the wake of a sphere rotating about an
axis aligned with the incident flow.

The bifurcation scenario followed by the wake of a fixed sphere in uniform upstream flow is now fairly well
established, both experimentally and numerically (Nakamura, 1976; Sakamoto and Haniu, 1995; Johnson
and Patel, 1999; Ghidersa and Duček, 2000; Schouveiler and Provansal, 2002; Thompson et al., 2001): at low
Reynolds numbers a steady, axisymmetric flow prevails; beyond a first critical Reynolds number, Re1 ≃ 212,
the flow bifurcates and a steady non-axisymmetric wake with planar symmetry is selected; beyond a second
critical Reynolds number, Re2 ≃ 272, periodic shedding sets in, but conserves the symmetry plane. At still
larger Reynolds numbers, the planar symmetry is broken (Mittal, 1999), and the wake becomes progressively
disordered and turbulent (Ormières and Provansal, 1999; Tomboulides and Orszag, 2000; Constantinescu
and Squires, 2004). Careful measurements of the hydrodynamic forces (drag, lift, torque) acting on the
sphere allow characterization of these different flow régimes (Maxworthy, 1965; Benjamin, 1993; Bouchet
et al., 2006).

In many situations of practical interest, the incoming flow is not perfectly uniform. In the presence
of shear (Dandy and Dwyer, 1990; Kurose and Komori, 1999; Kim et al., 2005; Kim, 2006; Bagchi and
Balachandar, 2002a), strain (Bagchi and Balachandar, 2002b) or stratification (Hanazaki, 1988), the lack of
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axisymmetry modifies the bifurcation scenario and the hydrodynamic forces. If the obstacle is not fixed but
allowed to interact with the flow, it may rotate and rise or fall under the action of torque and gravity (Bagchi
and Balachandar, 2002a; Jenny et al., 2003; Jenny and Dušek, 2004; Jenny et al., 2004; Veldhuis et al., 2005;
Fernandes et al., 2007; Ern et al., 2012). Numerous studies have also addressed the wake of deformable
bodies such as bubbles or droplets (Legendre and Magnaudet, 1997; Kurose et al., 2001; Magnaudet et al.,
2003; Legendre et al., 2006; Sugioka and Komori, 2007; Rastello et al., 2009, 2011).

Of particular interest in the present context are the flows around axisymmetric but non-spherical bodies.
When the symmetry axis of disks or ellipsoids is aligned with the incident flow, the problem remains
axisymmetric and the wake dynamics depend not only on the Reynolds number but also on the aspect
ratio. For the extreme case of an infinitely thin disk, Fabre et al. (2008) have identified new vortex shedding
modes and introduced a symmetry-based model to explain this scenario and predict the evolution of the
lift force. For a thicker disk, yet more régimes have been found (Auguste et al., 2010). Meliga et al.
(2009) use the leading eigenmodes derived from global stability theory and develop a weakly nonlinear
model that accurately predicts the sequence of bifurcations for a thin disk. The efficiency of this model
relies, among other things, on the fact that the leading eigenmodes have very similar growth rates, favouring
(weak) nonlinear interactions which control the complex bifurcation scenario. Inspired by these findings, the
present investigation revisits the configuration used by Kim and Choi (2002): the wake of a sphere rotating
about a streamwise oriented axis. The rotation of the sphere introduces a chirality in the problem but
does not break the axisymmetry. The growth rates of the leading eigenmodes depend on two parameters,
Reynolds number and rotation rate, and competition between these is expected to lead to rich dynamics,
possibly amenable to weakly nonlinear interaction models.

The paper is organized as follows. After formulating the problem and presenting the numerical methods
in §2, axisymmetric base flows and their linear stability properties are discussed in §3. The different finite-
amplitude vortex shedding régimes and associated hydrodynamic forces are presented in §4. Finally, §5
summarizes the results.

2. Problem formulation and numerical method

The study is carried out using the incompressible Navier–Stokes equations. The Reynolds number is
defined as Re = U∞D/ν, where U∞ is the free-stream velocity, D the sphere diameter and ν the kinematic
viscosity.

Throughout this investigation, cylindrical coordinates are used with r, θ and z (u, v and w) denoting
radial, azimuthal and axial coordinates (velocities) respectively. The z-axis is aligned with the free-stream
velocity and the origin is at the center of the sphere. For later use, a Cartesian (x, y, z)-frame is also defined.
Using non-dimensional variables based on U∞ and D, the total velocity and pressure fields are denoted by
u(r, θ, z, t) and p(r, θ, z, t) respectively and are governed by the momentum and continuity equations,

∂tu+ (u · ∇)u+∇p =
1

Re
∆u+ f , (1)

∇ · u = 0, (2)

with boundary conditions

u = v − Ωr = w = 0 for r2 + z2 = 1/4, (3)

u = v = w − 1 = 0 for r → ∞ or z → ±∞. (4)

Here Ω is the non-dimensional rotation rate (based on U∞ and D) of the sphere about the z-axis. The
dynamics of the rotating-sphere wake are then completely determined by two control parameters, Re and Ω.

The numerical method closely follows the technique successfully implemented for studying the non-
rotating sphere wake (Pier, 2008). An immersed boundary method (Fadlun et al., 2000; Mittal and Iaccarino,
2005; Zhang and Zheng, 2007) is used, whereby the presence of the sphere is enforced through the externally
applied volume force f in the momentum equation (1). Thus, the entire space is assumed to be filled
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Figure 1: Flow structure of the basic axisymmetric wake for (a) Re = 150 and Ω = 1, (b) Re = 250 and Ω = 1, (c) Re = 250
and Ω = 2. Solid (dashed) isolines correspond to positive (negative) values of azimuthal vorticity, spaced by 0.5.
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Figure 2: (a) Growth rate ωi and (b) frequency ωr of the leading eigenmode for axisymmetric basic wakes, computed for
Ω = 0.0, 0.2, . . . , 2.0 and Re = 100, 125, . . . , 400.

with fluid and the body force ensures that the boundary conditions (3) of a rotating sphere are met. All
flow fields are Fourier-expanded in the azimuthal coordinate θ, while the (r, z)-plane is discretized on a
Cartesian grid using finite-differences in z and Chebyshev collocation points in r. The time-marching
algorithm uses a second-order accurate predictor–corrector fractional-step method, similar to (Hugues and
Randriamampianina, 1998).

3. Axisymmetric base flows and linear stability

Axisymmetric wakes have been computed by retaining only the axisymmetric component in the azimuthal
Fourier expansions. For all Reynolds numbers and rotation rates considered in the present study, the sphere
wakes were found to approach a steady state when time-marching the governing equations (1,2).

The structure of the basic axisymmetric wake for different values of the control parameters is illustrated
in figure 1 by isolines of the azimuthal vorticity ωθ = ∂zu− ∂rw.

The linear stability of these axisymmetric wakes is probed by computing the response to a non-axisym-
metric perturbation. Here only a single non-axisymmetric azimuthal Fourier component is retained in the
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Figure 3: Temporal evolution of energy E1 (arbitrary units) contained in first azimuthal harmonic for Ω = 0.0, 0.4, . . . , 2.0
and Re = 250 (a), Re = 325 (b).

expansions of the flow fields, and the Navier–Stokes equations are linearized around the previously computed
basic flow. Growth rates and frequencies of the most unstable modes are then derived from the time-series
of selected flow components, recorded at a fixed spatial location. Such a flow component f is expected to
evolve as f ∝ exp(−iωt), where ω is the complex eigenvalue associated with the mode. The growth rate
ωi is then obtained by a linear fit of log |f |, while the frequency ωr is obtained by spectral analysis of the
compensated f exp(−ωit). Thus, the growth rates ωi and frequencies ωr are obtained for the most unstable
mode at each setting of the control parameters Re and Ω. These values are shown in figure 2. It is observed
that two distinct mode types lead to instability, depending on the control parameters: at moderate rotation
rates and low Reynolds numbers, the instability is dominated by a “slow” mode, the frequency of which
scales nearly linearly with the sphere rotation rate Ω. In contrast, at higher parameter values, a “fast”
mode dominates, whose frequency is approximately independent of Ω. Similar behaviour is observed for the
nonlinear dynamics, as discussed below.

4. Nonlinear dynamics

To investigate the nonlinear dynamics, a finite number of azimuthal Fourier harmonics are retained and
the direct numerical simulations take into account the nonlinear coupling between all these modes. When
starting integration, the initial condition is chosen as the previously computed axisymmetric base flow with
a small non-axisymmetric perturbation. In situations where this axisymmetric flow is unstable, the non-
axisymmetric perturbation starts to grow exponentially in time. After a transient growth phase, nonlinear
effects come into play that limit the amplitude growth. At large times, the system is found to approach a
periodic or quasiperiodic régime, or to display irregular behaviour.

Monitoring the temporal evolution of the energy E1 contained in the first azimuthal harmonic illustrates
the development of non-axisymmetric components in the sphere wake. In Figure 3, the energy content E1

is plotted for 0 ≤ Ω ≤ 2 and Re = 250 and 325. For the wakes corresponding to these plots, after entering
a finite-amplitude régime, the energy E1 is seen to reach either a constant value or to converge towards a
state of periodic oscillations. At larger values of the Reynolds number, irregular oscillations may also be
found to persist indefinitely.

To further characterize the flow dynamics, the hydrodynamic forces acting on the sphere have been
computed. These forces are obtained by spatial integration of the volume force used in the immersed
boundary method; there is no need to evaluate components of the stress tensor at the sphere surface. The
drag coefficient Cz measures, in non-dimensional units, the component of the force acting in the z-direction
aligned with the outer flow. The lift coefficients Cx and Cy are obtained by projection onto the x- and

y-axes respectively, while the lateral force coefficient Cl is defined as Cl =
√

C2
x + C2

y .
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Figure 4: Temporal evolution of hydrodynamic forces for Re = 225 and Ω = 1. Cz : drag; Cx and Cy : lift forces; Cl: transverse
force. Initial condition consists up of the axisymmetric base flow with a small-amplitude non-axisymmetric perturbation.
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Figure 5: Snapshot of vorticity fields in the helical régime at Re = 225 and Ω = 1. Isolines of azimuthal vorticity in two
orthogonal planes.

For axisymmetric wakes, all coefficients vanish except the drag Cz . In configurations where the axisym-
metric base flow is unstable, the development of finite non-axisymmetric flow components is accompanied
by a similar development of transverse forces, characterized by Cx and Cy (and Cl). The constant, periodic,
quasiperiodic or irregular values taken by these hydrodynamic force coefficients characterize the associated
wake dynamics.

4.1. Helical régime

The wake behaviour observed for Re = 225 and Ω = 1 is typical of the dynamics prevailing after
the first destabilization of the axisymmetric flow. Figure 4 illustrates the temporal evolution of the force
coefficients, starting from the slightly perturbed (and unstable) axisymmetric base flow. After a transient
régime characterized by growth of transverse force components, the wake is seen to approach a state of
constant drag, slightly higher than for the base flow (figure 4a). Lift coefficients Cx and Cy display harmonic
oscillations, out of phase by a quarter-period, while the magnitude of the lateral force Cl is observed to tend
to a constant value (figure 4b). This is further illustrated by the time-trace in the (Cx, Cy)-plane (figure 4c):
beyond the transient phase, a perfect circle is described at a constant angular speed.

The spatial structure of the wake flow is illustrated in figure 5, where isolines of the azimuthal vorticity
are plotted for two orthogonal (x, z)- and (y, z)-planes.

Temporal spectral analysis of the force coefficients (as well as of any other flow components) demonstrates
that this régime is characterized by a single frequency. For Re = 225 and Ω = 1, the periodicity of the lift
coefficients is obtained as ωx = ωy = 0.31. In fact, it can be shown that the entire wake is in a helical state,
characterized by “solid-body” rotation of the flow field about the z-axis at constant angular speed. This
means that the flow is steady in a frame of reference rotating about the z-axis at ωx (= ωy). Note that the
angular speed ωx = ωy is well below the sphere rotation rate Ω = 1.

4.2. Quasi-periodic vortex shedding

For Re = 275 and Ω = 0.8, a different behaviour is obtained. Again, the development of non-axisymmetric
components is accompanied by an increase in drag. But here, no steady state is reached: the drag coefficient
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Figure 6: Temporal evolution of hydrodynamic forces for Re = 275 and Ω = 0.8.
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Figure 7: Snapshot of vorticity fields in the quasiperiodic régime at Re = 275 and Ω = 0.8.

continues to oscillate (figure 6a). Lift coefficients Cx and Cy display quasiperiodic oscillations while the
lateral force Cl fluctuates with the same periodicity as the drag (figure 6b). This behaviour leads to a more
complex pattern in the (Cx, Cy)-plane, see figure 6(c). Temporal spectral analyses show that these signals
are characterized by two distinct (and incommensurate) frequencies: ωx = ωy = 0.21 and ωz = ωl = 0.62.
Indeed, Cz and Cl are periodic (with same frequency ωz = ωl) while Cx and Cy are quasiperiodic (displaying
a combination of ωz and ωx).

A snapshot of the spatial structure of the associated vorticity fields is given in figure 7. This dynamics
can be interpreted as a quasiperiodic vortex shedding régime, corresponding to the combination of a helical
mode (“solid-body rotation” about the z-axis at ωx) and vortex shedding waves travelling axially downstream
(frequency ωz).

4.3. High-frequency helical régime

For Re = 300 and Ω = 1 a further wake behaviour is observed, representative of a third class of flow
dynamics. Afer a relatively long transient, the system approaches a (single-frequency) periodic state. The
drag Cz and the lateral force Cl reach constant values, while the lift coefficients Cx and Cy display harmonic
oscillations in quadrature, leading to a circular time-trace in the (Cx, Cy)-plane (figure 8). This régime is
again of periodic helical vortex shedding type, characterized by a single frequency ωx = ωy = 0.90. Note
that the frequency of this “solid-body” rotation is quite closer to the sphere rotation rate Ω. Hence, this
régime could be termed “high-frequency helical vortex shedding”.

The corresponding vorticity fields are illustrated for two orthogonal planes in figure 9. Although this
régime is periodic and the flow fields would be steady in a frame rotating at ωx around the z-axis, these
vorticity fields closely resemble those prevailing in the quasiperiodic régime (see figure 7) and are rather
different from those of the low-frequency helical régime (see figure 5). It is as if the axial vortex shedding
and the helical “solid-body” rotation were locked together, or “frozen” (Kim and Choi, 2002).

4.4. Characteristic frequencies

For each Reynolds number and sphere rotation rate, the characteristic frequencies have been determined
via temporal Fourier analyses of long time series of the force coefficients. The helical frequencies ωx (= ωy)
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Figure 8: Temporal evolution of hydrodynamic forces for Re = 300 and Ω = 1.
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Figure 9: Snapshot of vorticity fields in the high-frequency helical régime at Re = 300 and Ω = 1.
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Figure 10: Characteristic frequencies prevailing in the rotating-sphere wake. (a) Frequencies ωx = ωy dominating the fluc-
tuations of the lift coefficients Cx and Cy . (b) Frequencies ωz = ωl governing the oscillations of the drag and lateral force
coefficients Cz and Cl. Solid curves correspond to low- or high-frequency helical régimes. Dashed curves indicate quasiperiodic
vortex-shedding (or disordered) régimes.
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Figure 11: Map of the different régimes as a function of the control parameters.

are plotted in figure 10(a), while the axial frequencies ωz (= ωl) are shown in figure 10(b). In these plots,
solid curves correspond to low- and high-frequency modes while dashed curves indicate quasiperiodic (or
disordered) vortex shedding. Note that helical frequencies dominating the fluctuations of the lift coefficients
Cx and Cy are obtained for any non-axisymmetric flow, while the axial vortex-shedding frequencies governing
the oscillations of the drag and lateral force coefficients Cz and Cl are only relevent in the quasiperiodic
shedding régimes.

In figure 10(a), it is seen that ωx displays an almost linear dependence on Ω in the low-frequency helical
and quasiperiodic régimes. Transition from low-frequency helical to quasiperiodic vortex shedding hardly
affects these values. In the high-frequency helical régimes, however, order of magnitude larger values for
ωx are obtained. The axial frequencies ωz shown in 10(b), correspond more specifically to axially travelling
vortex shedding waves and display only weak dependence on the rotation rate Ω.

5. Conclusion and discussion

Direct numerical simulations have been carried out in order to systematically cover the governing pa-
rameter space for sphere rotation rates Ω ≤ 2 and Reynolds numbers up to Re = 350. Figure 11 presents
a map of the observed régimes characterized by the associated time-traces of the lift coefficients in the
(Cx, Cy)-plane.

At low Reynolds numbers, the axisymmetric wake is stable. When the Reynolds number is increased, a
low-frequency helical régime takes over, characterized by constant values of drag (Cz) and transverse force
(Cl). The flow field is found to rotate around the z-axis at constant frequency ωx = ωy without deformation.
Indeed, in such a rotating frame, the flow field would be time-independent. The rate ωx at which the wake
rotates around the axis is found to increase almost linearly with the sphere rotation rate Ω, and this régime
can be viewed as a continuous deformation, through axial rotation, of the well-documented steady planar
symmetric state for non-rotating spheres in the range Re1 < Re < Re2, with Re1 ≃ 212 and Re2 ≃ 272
(Johnson and Patel, 1999; Mittal, 1999; Ghidersa and Duček, 2000; Schouveiler and Provansal, 2002).

A second bifurcation occurs when the Reynolds number is increased, leading to a quasiperiodic state
which can be interpreted as a modulation (at a second incommensurate frequency ωz) of the previous helical
régime. A rotating frame in which the flow field would be steady no longer exists. Again, this régime can
be viewed as the continuation through axial rotation of the periodic vortex shedding régime that prevails
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for Re > Re2 ≃ 272 for a non-rotating sphere. In the non-rotating case, onset of vortex shedding occurs
through a Hopf bifurcation (Schouveiler and Provansal, 2002). Here, our results indicate that this remains
true along the entire boundary separating the low-frequency helical wakes from the quasiperiodic wakes.
However, many more computations would be necessary to prove that the amplitude of the second-frequency
component scales as the square-root of the distance to this critical boundary.

The third type of behaviour, termed the high-frequency helical régime, occurs at still larger Reynolds
numbers. This periodic régime does not have an analogue in the non-rotating Ω = 0 case. While the
transition from the low-frequency helical to the quasiperiodic régime is a continuous process, the switching
from quasiperiodic to high-frequency helical régimes is discontinuous in the control parameters. Indeed, the
dominant ωx-frequency prevailing in the wake abruptly increases while the amplitude of the transverse forces
(Cl) suddenly drops. The nature of the associated bifurcation remains unclear. Despite several attempts at
slowly modifying one of the control parameters, no hysteresis was found.

At yet larger Reynolds numbers, irregular states have been observed. No systematic survey of the
parameter space beyond Re = 350 has been attempted since this would require much finer spatial meshes
to obtain reliable results.

In future work, it would be interesting to address the nature of the bifurcations between the different
régimes in more detail and to test whether the theory of Meliga et al. (2009) can be adapted to the present
configuration.
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Jenny, M., Bouchet, G., Dušek, J., 2003. Nonvertical ascension or fall of a free sphere in a Newtonian fluid. Physics of Fluids

15, L9–L12.
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