
HAL Id: hal-00733506
https://hal.science/hal-00733506

Submitted on 28 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Maintenance of XML Materialized Views
Tuyet-Tram Dang-Ngoc, Dominique Laurent, Virginie Sans

To cite this version:
Tuyet-Tram Dang-Ngoc, Dominique Laurent, Virginie Sans. On the Maintenance of XML Materialized
Views. 2ème Franco-Japanese Workshop on Information Search Integration and Personnalizzation
(ISIP), 2005, Lyon, France. pp.433–444. �hal-00733506�

https://hal.science/hal-00733506
https://hal.archives-ouvertes.fr

On the Maintenance of Materialized XML Views

Tuyet Tram Dang Ngoc, Dominique Laurent, Virginie Sans

LICP Laboratory, University of Cergy Pontoise
2 avenue Adolphe Chauvin

95302 Cergy Pontoise Cedex - France
{firstname.lastname}@dept-info.u-cergy.fr

Abstract. Providing services by integrating information available in
web resources is one of the main goals of a mediation architecture. In this
paper, we consider the standard wrapper-mediator architecture under
the following hypothesis: (i) the information exchanged between wrap-
pers and the mediator consists in XML documents, (ii) wrappers have
limited resources, and (iii) to answer queries even if sources are not
available, materialized XML views are stored at the mediator level. In
this setting, we focus on the problem of maintaining materialized XML
views, when the sources change. In our context, wrappers send the up-
dated document without providing any information about the type and
the localization of the update in the document. Then, the problems we
address are, first, identifying the updates, and, second, updating the view
in such a way that accesses to the sources are restricted. Our approach
is based on the XAlgebra, which allows to consider XQuery requests on
XML documents as relational tables. Moreover, our solution uses iden-
tifier annotations for XAlgebra and a diff function.

1 Introduction

The issue of integrating heterogeneous and distributed data has been adressed in
[11] by means of mediation architectures. Given heterogeneous and distributed
data sources to be integrated, a mediation architecture roughly consists of two
components: wrappers and a mediator.

Each wrapper is associated to a given data source and is in charge of (i)
extracting information from this source, (ii) transforming this information in
an appropriate format understandable by the mediator, and (iii) sending the
transformed information to the mediator.

On the other hand, the mediator integrates the information coming from
the wrappers and provides the result to the final application. In order to make
mediation architectures dealing with web sources efficient, the following issues
have to be investigated further:

1. Accessibility of the data. On the web, data may not be reachable, and thus
accessing the sources as few as possible is important. This is why, we propose
a mediation architecture in wich materialized views stored at the mediator
level are used. In this way, queries are addressed to the mediator (instead

of being addressed to the sources). However, this implies that the views be
mantained up to date, which is precisely one of the topics of the paper.

2. Querying the web sources. When querying a web source, the answer is the
whole content of the source. In other words, for such queries, there is no
query language allowing to answer sophiticated queries, as for instance, SQL
which allows to query a part of a database. As a consequence, we consider in
our approach that, for each access to a data source, we get the whole content
of that source.

3. Non cooperative mode. Since web sources are autonomous, they use a push
model to notify about their changes. This means that we can only assume
that a wrapper knows that its associated source has changed, without any
further information on the type or the localization of the change. In this
paper, we propose a method for update detection that computes the needed
information for the maintenance of materialized views.

Summing up the contributions of our work, we propose an approach to inte-
grate efficiently heterogeneous and distributed web sources under the following
assumptions: (i) the web sources are integrated through materialized XML views
that are defined by an XQuery request and stored at the mediator level, and (ii)
wrappers have limited computational resources, meaning in particular that data
sources cannot be duplicated at the wrapper level.

As mentioned above, in such a mediation architecture, querying the sources
amounts to querying the materialized views, thus avoiding to access the sources.
However, it is well known that the price to pay with such an approach is that
materialized views must be maintained up to date. Our approach to maintain the
materialized views up to date follows an incremental processing, as in [2], which
is based on the XAlgebra, introduced in [5]. The XAlgebra allows to represent
an XML document as a relational table, called XRelation, on which relational
operators, called XOperators, are applied. In this setting, a materialized view is
seen as an XRelation, on which updates are performed in response to updates
on the data sources.

On the other hand, as stated earlier (see item 3 above), the sources do not
provide complete information about their changes. Since this information is nec-
essary to maintain the views, we present an approach of update detection that
can be summarized as follows:

When the wrapper is informed that a source has been updated, it sends the
whole content of the source to the mediator. Since at the mediator level, the
definitions of the views are known, the part of the source used to compute
the view can be recovered as an XRelation, say X . Consequently, by apply-
ing a standard diff function on X and the new state of the source sent by
the wrapper, the mediator can identify the type and the localization of the
update.

It is important to note that, in our approach, we annotate components of the
tuples in XRelations with identifiers, that we call XTIDs. We also would like

to emphasize that, in our approach, the computation of the part of the source
used in the materialized view, allows for an efficient maintenance, since, except
in restricted cases, this information prevents from accessing the data sources.

The maintenance of materialized views in the case of relational databases
has been the subject of many research works these last decades, and regained
interest recently in the context of relational data warehouses, that are based on
a mediator/wrapper architecture (e.g. see [9]). However, although our approach
is based on a relational representation of XML documents, relational approaches
do not apply in the case of semi-structured data, because, for instance, multi-
valued attributes are considered in our case.

On the other hand, techniques specially designed for semi-structured data
have been introduced in the literature. For example, in [1], the maintenance
of materialized views is studied in the Object Embedded Model (OEM) and
in the context of the language Lorel, for views that are defined with selections,
projections and joins. However, the process in [1] is based on the fact that internal
Ids are available, which is not the case for autonomous web sources.

In the Rainbow project [7], the authors consider the query language XQuery
as we do, but their approach requires to know the exact position in the XML tree
where the update should be done. We recall that, in our approach, we assume
that this information is not provided by the source.

A closer approach to ours is given in [4]. This work gives a solution for
the maintenance of materialized views defined over non cooperative sources.
However, this work differs from ours, because in [4], wrappers are assumed to
store a complete copy of the source, whereas in our work, when the wrapper
detects a change, the complete source is sent to the mediator.

The paper is organized as follows. The next Section 2 introduces the main
concepts of the mediation architecture we consider in our work and the XAlgebra.
Section 3 presents our update detection mechanism, and Section 4 deals with
the view update processing. Finally, Section 5 concludes the paper.

2 Background

2.1 Mediation Architecture

According to [11], the major two components of a mediation architecture system
are: (i) a mediator and (ii) wrappers, each of which being associated with one
source. Among all the available platforms for mediation, we consider in our work,
the XLive architecture, first proposed in [5].

In its current state, the mediation architecture XLive does not support ma-
terialized XML views. To do so, the following components have to be added:

– A local XML database at the mediator level. The materialized XML views
we consider are stored at the mediator level in an XML database than can
support view materialization.

Mediator

Web Wrapper Wrapper Wrapper

View Maintainer

logger

Source
Source

XML-DB

Source
Web

Fig. 1. Our framework

– A view manager at the mediator level. This component is meant to allow the
mediator to partially reconstruct the sources, and to compute the XQuery
requests necessary to the maintenance of the views.

– A notification component at the wrapper level. Usually, a wrapper is simply
a translator, whereas, in our approach, a notification component, which we
call logger, is needed in order to detect updates in the source. We recall
in this respect that, upon changes on a source, the corresponding wrapper
sends the modified document to the mediator.

This architecture, that we are currently implementing, is shown in Figure 1.

2.2 XAlgebra

To query an XML document, many languages have been proposed such as Lorel
([3]), XML-QL ([6]) or XQuery ([10]). In our work, we consider the language
XQuery as this language provides more possibilities than the others.

Moreover, in [5], it has been shown that an XQuery request can be associated
with an expression from an algebra, called the XAlgebra, which is based on
relational operators designed for XML. In [5], this algebra has been used to
construct execution plans for the evaluation of XQuery requests. In our work,
we consider the XAlgebra for the maintenance of materialized XML views.

Roughly speaking, the XAlgebra is a set of operators, called XOperators,
inspired by those from the standard relational algebra, that operate on “tabular”
structures called XRelations. In what follows, we recall the basics of XRelations
and of the XAlgebra.

XRelations An XRelation is composed of two distinct parts called the XAt-

tributes Part and the Trees Part, respectively. In the Trees Part, the domain is a
set of XML trees of given path sets. In the XAttributes Part, attributes, called
XAttributes, are XPaths and their respective domains are sets of references to
XML trees.

name city car

color color number

John

person

Paris

red green 4242

person

name city car

number

Mary Berlin

3710

persons

age

39 19 12.34.56.78
age tel

Fig. 2. XML Tree

Contrary to standard relations, each XAttribute can be multi-valued (when
referencing several sub-trees), or empty (when referencing no subtree). Moreover,
XTuples in an XRelation are stored according to a specific ordering that reflects
the structure of the corresponding subtrees: if an XTuple x appears before an
XTuple y, then, in the XML tree, the subtree corresponding to x appears on the
left hand side of the subtree corresponding to y. Thus, XRelations are seen as
ordered collections of XTuples, where each XTuple is:

– an XML tree, say t, in its Trees Part, and
– a tuple of sets of reference to subtrees of t, in its XAttributes Part.

As a result, the schema of an XRelation R is of type (XPath+, [Path+]), where
XPaths are the XAttributes and Paths compose the path set of the correspond-
ing XML tree.

Figure 3 shows an XRelation with two XTuples that have been obtained from
the XML tree of Figure 2. We note that the second XAttribute is multivalued
in the first XTuple, whereas this XAttribute is empty in the second XTuple.

person/name person/car/color person/car/number

name city car

color color number

person

name city car

number

John

person

Paris

red green 4242

Mary Berlin

3710

person/city

XAttributes Part Trees Part

X
T

uple
X

T
uple

Fig. 3. XRelation

For the sake of lisibility, we simply write XTuples as ordered sets of values,
ignoring references. It is important to note that this simplification implies that
we consider the values in the leaves of trees.

XOperators The subset of relational XOperators from the XAlgebra considered
in this paper is limited to the following ones: union, intersection, projection,
restriction, join, and cartesian product.

These operators are defined in a similar way as in the relational algebra, we
refer to [5] for more details. However, it is important to note that, the above
simplification implies that we consider duplicates in XRelations.

Furthermore, the XAlgebra contains two specific operators, called XSource

and XConstruct, that work as follows, respectively:

– Given an XML document, the operator XSource transforms the content of
the source into an XRelation.

– Given an Xrelation, the operator XConstruct transforms the XRelation into
an XML document.

Now, given a view V defined as an XQuery request over data sources, V can be
seen as an expression of the XAlgebra, using XOperators. As a consequence, the
answer to V , which is an XML document, can be seen as an XRelation.

In Figure 4, the computations of this XRelation and of the answer to V are
represented in the particular case where V is defined over one single source (the
case of more than one source is similar). Moreover, in this figure, the star associ-
ated with the grey box represents the fact that more than one XOperator can be
used in the computations. The process of these computations works according
to the following steps:

1. All sources involved in the XQuery defining V are transformed into XRela-
tions, using the XSource operator.

2. The analysis of the XQuery request defining V allows to define an expression
of the XAlgebra involving only XOperators among union, intersection, pro-
jection, restriction, join and cartesian product. This expression is computed
against the XRelations obtained at the previous step.

3. The XRelation output at the previous step is transformed into an XML
document, using the XConstruct operator.

XSource

XConstruct

XML

XML
View

Source

XRelation

XRelation

XOperation

*

Fig. 4. Steps of the computation of an XQuery request

2.3 Mandatory, Optional and Hidden Paths

The XQuery syntax allows us to distinguish three kinds of paths, namely the
mandatory paths, the optional paths, and the hidden paths. Given a view V

defined by an XQuery request Q, these kinds of paths are defined as follows:

– Every path appearing in the return clause of Q is said to be optional.
– Every path appearing in the where clause of Q is said to be mandatory.
– Every path that is mandatory but not optional is said to be hidden.

Intuitively, hidden paths are those that are necessary to compute the answer to
Q but that do not appear in the answer. It is important to note that hidden paths
are necessary in our method for maintaining materialized views. Therefore, in our
approach, hidden paths are stored but not displayed when the view is queried.

As an example, let us compute the following XQuery request Q on the XML
document represented in Figure 2.

FOR $i in ("persons.xml")/persons

WHERE $i/person/city=Berlin

RETURN

<result>

{$i/person/name}

{$i/person/car/color}

{$i/person/car/number}

</result>

In this case, the XPath persons/person/city is mandatory, whereas the
XPaths persons/person/name and persons/person/lastname are optional.
Since person/city is mandatory but not optional, this path is hidden. In Fig-
ure 3, the corresponding column is displayed as a grey colomn.

3 Update Detection and Reconstruction

As mentioned earlier in the paper, we consider autonomous data sources associ-
ated with light wrappers that just send the updated document to the mediator,
without providing any further information about the type and localization of
the update in the document. In this case, in order to maintain materialized
views, we have to identify the update. We note in this respect that the approach
of [4] does not meet our restriction that wrappers have limited computational
resources, since in [4], sources are duplicated at the wrapper level.

In our approach, the logger component of the wrapper is in charge of checking
whether the source has changed. This can be done by computing a checksum on
the source and comparing the value with a previous computed checksum. If the
two values are different, then the source has been modified, and in this case, the
content of the source is sent to the mediator.

Next, we show how the mediator can precisely determine which update has
been performed on the source. Our method is based on the facts that (i) we
associate XTuples from the sources with identifiers, called XTIDs, and (ii) the
parts of the sources that have been used in the computation of the view can
be reconstructed, based on XTIDs and on the expression of the XAlgebra that
defines the view.

3.1 XTID Identifiers

Let X be an XRelation associated to an XQuery request Q. We associate each
set of pointers in any XTuple in X with a set of identifiers called XTIDs. The
role of XTIDs associated to a set S of pointers is to identify the sources and the
tuples in these sources pointers in S come from.

An XTID is a pair (s, id), where s is a source identifier and id the XTuple
identifier from source s. Let x = (x1, . . . , xp) be an XTuple in X , and let P k

be the XPath associated to xk, for k = 1, . . . , p. Assume that x is obtained as
a combination of x1, . . . , xn where, for every j = 1, . . . , n, xj is an XTuple from
the XRelation Xj associated to source j. Then, for every k = 1, . . . , p, xp is
associated with a set of TIDs as follows:

For every k = 1, . . . , p such that P k occurs in the XPaths that define xj , the
XTID (j, id) is inserted into the set of XTIDs associated to xk.

It is important to note that id is a unique identifier associated with xj , which im-
plies that duplicate XTuples have distinct XTIDs. On the other hand, recalling
that an XRelation is an ordered collection of XTuples, the assignment of XTIDs
from a given source is done in such a way that their ordering matches the stor-
age ordering in the XRelation. In other words if, for a given source, XTuple x

appears before the XTuple y in the corresponding XRelation, then the identifer
assigned to x is smaller than the identifier assigned to y. Moreover, once such
XTID is fixed for each XAttribute of each XTuple, it cannot be changed by any
computation applied to the XRelation.

Figure 5 shows the annotation with XTIDs for the XRelation of Figure 3.
For instance, with the source 1 and the first fragment, the XTuple is associated
to XTID (1, 11).

John Parisred

green

4242

Mary Berlin3710

(1, 11) (1, 11)

(1, 11)

(1, 11) (1, 11)

(1, 12) (1, 12) (1, 12)

person/name person/car/color person/cityperson/car/number

Fig. 5. Annotating an XRelation with XTIDs

3.2 Reconstruction

Let Q be an XQuery over sources S1, S2, ..., Sn, and let V be the corresponding
expression of the XAlgebra. Let us denote by X1, X2, ..., Xn the XRelations gen-
erated by the application of the operator XSource to S1, S2, ..., Sn, repectively,
and let X be the XRelation associated to V .

In what follows, we consider V as a mapping, denoted by v, that associates
n XRelations to one XRelation. Thus, using our notation, we have

v(X1, X2, ..., Xn) = X.

As shown below, our reconstruction method is based on the inverse of v.

For a given integer σ in {1, . . . , n} identifying a data source involved in the
computation of V , let us denote by v−1

σ (X) the set
⋃

x∈X v−1
σ (x).

Intuitively, v−1
σ (X) is the part of the original XRelation associated to the

source σ, that has been used in the processing of the view. In the remainder of
the paper, v−1

σ (X) is called the useful part of the XRelation Xσ.

Let us consider an XTuple x = (x1, . . . , xm) in the XRelation X . Then, for
every k = 1, . . . , m, xj is of the form cXTID where c is the content value, and
XTID = {xtid1, xtid2, ..., xtidp} is the set of XTIDs associated to c.

For every k = 1, . . . , m, xtidk can be written as xtidk = (sk, ik), where sk

is a source identifier and ik an XTID associated with an XTuple in sk. The
XRelation v−1

σ (X) can be computed from the XRelation X , using the following
rules:

– Rule 1. If XTID contains a pair (σ, i), then c belongs to a tuple in v−1
σ (X).

– Rule 2. For all k, l in {1, . . . , m}, if XTIDk ∩ XTIDl contains a pair (σ, i),
then ck and cl belong to the same XTuple in v−1

σ (X).
– Rule 3. For every k in {1, . . . , m}, every sk appearing in the set XTID asso-

ciated to ck
XTID, the column number of the corresponding tuple containing

ck in the source sk can be retrieved by comparing the positions of the XPaths
occurring in the for and return clauses of the XQuery request Q that defines
the view.

– Rule 4. Given a source σ and an XTuple x = (c1
XTID1

, . . . , cmσ

XTIDmσ

) com-

puted by rules 1-3 above, if there exist i and j such that (σ, i) ∈ ck
XTIDk

and

(σ, j) ∈ cl
XITDl

, then i = j. This value is denoted by row(x, σ).
If x and x′ are two XTuples such that row(x, σ) ≤ row(x′, σ), then x is
inserted in v−1

σ (X) before x′.

Figure 6 shows an example of the previous rules applied on two data sources
S1 and S2 and the following XQuery request:

for $n in document ("note.xml")/note

for $p in document ("person.xml")/person

where $n/name = $p/name and $age >= 18

return <result> {/p/age} {/p/name} {/n/note} </result>

The view computation box shows the computation of the view from the
XRelations generated by XSource applied to S1 and to S2. On the other hand,
the source reconstruction box shows the four steps for reconstructing the useful
part of source S1.

– Rule 1: Only values concerned by source S1 are kept.

Recomputation

Computation

View

7,1(1,1)
pierre (1,1) (2,6)

8,5(1,2)paul (1,2) (2,3)

9,2
(1,4)

martin
(1,4) (2,4)

23(2,6)

18
(2,3)

pierre (1,1) (2,6)

paul (1,2) (2,3)

21
(2,5)

18
(2,4)

martin
(1,4) (2,4)

jean (1,5) (2,5)

7,1(1,1)

8,5(1,2)

9,2
(1,4)

9,2
(1,5)

18
(2,4)

18
(2,3)

21
(2,5)

21
(2,5)

18
(2,4)

18
(2,3)

23(2,6)

9,2
(1,4)

martin
(1,4) (2,4)

9,2
(1,5)

jean (1,5) (2,5)

8,5(1,2)paul (1,2) (2,3)

name score

7,1(1,1)
pierre (1,1) (2,6)

7,1(1,1)

9,2
(1,4)

9,2
(1,5)

8,5(1,2)

7,1(1,1)

9,2
(1,4)

9,2
(1,5)

8,5(1,2)

martin
(1,4) (2,4)

paul (1,2) (2,3)

jean (1,5) (2,5)

jean (1,5) (2,5)

martin
(1,4) (2,4)

paul (1,2) (2,3)

pierre (1,1) (2,6)

9,2
(1,5)

23(2,6)

21
(2,5)

17
(2,1)

18
(2,4)

18
(2,3)

23(2,6) pierre (1,1) (2,6)

group name

pierre

score

paul

jacques

jean

martin

a

b

b

a

a

7,1

8,5

8,5

9,2

9,2

(1,1)

(1,2)

(1,3)

(1,4)

(1,5) (1,5) (1,5)

(1,4) (1,4)

(1,3) (1,3)

(1,2) (1,2)

(1,1) (1,1)

23(2,6)

21
(2,5)

18
(2,4)

18
(2,3)

22
(2,2)

17
(2,1)

jacques
sophie

(2,1)

(2,2)

(2,3)
paul

martin

jean
(2,5)

(2,4)

pierre
(2,6)

name age

Rule 1 (S1)

Rule 2 (S1)

Rule 3 (S1)

name

age >= 18

group name

a

b
(1,1)

(1,2)

agescore

a

a
(1,4)

(1,5)

(1,3)

age

order−by (name)

age

(score, age, name)

name score

jean (1,5) (2,5)

martin
(1,4) (2,4)

pierre (1,1) (2,6)

paul (1,2) (2,3)

score

9,2
(1,4)

7,1(1,1)

8,5(1,2)

9,2
(1,5)

score

9,2
(1,5)

8,5(1,2)

7,1(1,1)

9,2
(1,4)

name

name

jean (1,5) (2,5)

martin
(1,4) (2,4)

pierre (1,1) (2,6)

paul (1,2) (2,3)

jean (1,5) (2,5)

name

group

a

b

b

a

a

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

pierre (1,1)

paul (1,2)

jacques(1,3)

martin
(1,4)

jean (1,5)

(2,6)

(2,5)

(2,4)

(2,1)

(2,3)

agescore

7,1

8,5

8,5

9,2

9,2
(1,5)

(1,4)

(1,3)

(1,2)

(1,1)

name

score name

score

Final View

S1 recomputed

S1
S2

Rule 4 (S1)

Fig. 6. Computing a view and reconstructing a source from the view

– Rule 2: Values are grouped according to their tuple identifiers (in this ex-
ample, this step does not change the output of Rule 1 above).

– Rule 3: Columns are permuted to match their original position.

– Rule 4: XTuples are ordered according their tuple ids.

Finally, the useful part of S1 has been reconstructed.

3.3 Update Detection

In this subsection, we use the same notation as in the previous sections, and we
suppose that the wrapper associated to the source σ detects a change in σ.

As explained earlier, the wrapper sends the updated content of σ, without
any further information. Consequently, the XSource operator is applied and then,
based on the XAlgebra expression V , an XRelation Yσ associated to this new
version of the data source can be computed.

In order to detect which updates have to be performed on the XRelation X ,
v−1

σ (X) is computed using the previous reconstruction rules. Then, we use the
diff operator on v−1

σ (X) and Yσ to identify the differences between these two
XRelations.

The diff operator, introduced in [8], is an algorithm that has been initially
designed for comparing lines of two files. In our setting, the result of the algorithm
is a set of update instructions, that an have one of the following three forms:

delete(pos), insert(pos, new) or replace(pos, new),

where pos is a row number indicating the row that has to be deleted, inserted or
modified, respectively, and where new is the new tuple to be taken into account
for the insertion or the modification.

The next section describes for each type of update and for every relational
XOperator (projection, restriction, join, union, intersection), how to update the
view.

In Figure 7, we show how, starting from the XRelation X , and applying
the reconstruction rules as explained in the previous subsection (also shown in
Figure 6), we can get the update notification by using the diff operator. Then,
by applying these updates to the XRelation X as described in next section, we
get the updated view.

4 Computation of the XQuery Update Request

Let X be the XRelation associated to the view defined by an XAlgebra expres-
sion V , and let us assume a change on source σ, specified as indicated in the
previous section. In this section, we show how to update X , for each type of
update (deletion, insertion or modification), and in the case where only one of
the operators of projection, restriction, join, union or intersection appears in V .

We note that, in the case of insertion or modification, if in the XPaths that
define the XTuple new, at least one mandatory XPath is missing, then no update
has to be performed in X . Intuitively speaking, this is so because values over non
mandatory XPaths have no impact in the computation of X . In what follows,
we assume that all mandatory XPaths have a corresponding value in the XTuple
new involved in the insertion or modification.

22
(2,2)

jean (1,5) (2,5)

9,2
(1,4)

martin
(1,4) (2,4)

9,2
(1,5)

jean (1,5) (2,5)

name score

7,1(1,1)
pierre (1,1) (2,6)

8,5(1,2)paul (1,2) (2,3)

name score

18
(2,3)

23(2,6) pierre (1,1) (2,6)

paul (1,2) (2,3)

7,1(1,1)

(1,2)6,5

18
(2,4)(1,4)

6,5 sophie
(1, 1.1)(2,2)

21
(2,5)

18
(2,4)

18
(2,3)

23(2,6)

jean (1,5) (2,5)

martin
(1,4) (2,4)

paul (1,2) (2,3)

pierre (1,1) (2,6)

agescore

9,2
(1,5)

8,5(1,2)

7,1(1,1)

9,2
(1,4)

name

diff

insert (1, {"sophie", "6,5"})
replace (1, {"Paul", "6,5"})
delete (3)

Y

Apply Update

agescore

9,2
(1,5)

name

S1 recomputed

jean 9,2

paul 6,5

pierre 7,1
sophie 6,5

After update

Before update

Fig. 7. Update notification and applying updates

4.1 The Case of a Deletion: delete(pos)

In this case, let yXTID be the XTuple in v−1
σ (X) such that row(y, σ) = pos, and

let i be such that xtid = (σ, i) belongs to XTID.
Then, in the final XRelation view X , all XTuples for which xtid appears

among their associated XTIDs must be deleted from X . In other words, all
XTuples

x = (c1
XTID1

...ck
XTIDk

) where (σ, i) ∈ XTID1 ∪ ... ∪ XTIDk

are deleted from X , and this applies for any of the XOperators projection, re-
striction, join, union and intersection.

4.2 The Case of an Insertion: insert(pos, new)

In this case, the XTuple new must be inserted at row pos in v−1
σ (X) and a

new XTID of the form xtidnew = (σ, l) is generated. Notice that, as ordering is
important for future reconstruction (see Rule 4), the identifier l must be chosen

so as it reflects the order of the XTuples in Yσ. Then, considering the XTuple new

whose components are annotated by (σ, l), the following insertions are performed
in X , according to which XOperator occurs in V .

Projection In the case of a projection, the projection of new over the XPaths in
X is inserted into X .

Restriction In the case of a restriction, if new satisfies the restriction predicate
then new is inserted into X , otherwise X remains unchanged.

Join In the case of a join between sources σ and σ′, in order to compute the
XTuples that have to be inserted into X , we calculate: v−1

σ (X) 1 new = Z.
If Z 6= ∅, then the XTuples of Z must be inserted into X . Otherwise, that is

if Z = ∅, then the source σ′ must be queried and joined with new to get the set
of XTuples to be inserted into X .

Union and Intersection Since we consider duplicates, the case of a union is
treated as a restriction where the restriction predicate is true. On the other
hand, the case of an intersection is treated as the case of a join.

Note In all cases above, the insertion into X is simply processed by appending
the new XTuple, without any ordering consideration, unless an order-by operator
appears in the definition of the view. In this case, the specified ordering is of
course taken into account for the insertion.

4.3 The Case of a Modification: replace(pos, new)

As for deletions, let yXTID be the XTuple in v−1
σ (X) such that row(y, σ) = pos,

and let i be such that xtid = (σ, i) belongs to XTID.
For every cXTID in y that is changed by the update, the column of the

corresponding tuple in X containing c can be retrieved by using the XTIDs
in XTID and by comparing the positions of the XPaths occurring in the for

and return clauses of the XQuery request Q. Then, the following updates are
performed, according to the operator in V .

Projection Since the XTuple and its columns to be modified are known, the
modification can be performed accordingly.

Restriction As above, in the case of restriction, the modification can easily be
performed, but only under the condition that the modified XTuple satisfies the
restriction predicate. Otherwise, the corresponding XTuple is deleted from X .

Join The case of a join can be treated through a deletion followed by an insertion,
that is we perform delete(pos) and then insert(pos, new).

Union and Intersection As for insertions, the case of a union is treated as a
restriction where the restriction predicate is true, and the case of an intersection
is treated as the case of a join.

Remark We would like to end this section by pointing out that, in our approach,
the maintenance of materialized XML views does not require to query the sources
except in specific cases of insertions or modifications in the presence of joins
or intersections. We recall in this respect that accessing the sources as few as
possible is an important issue, when dealing with the integration of web sources.

5 Conclusion and Future Works

We have presented an approach to maintain materialized XML views by means
of reconstruction of the sources, based on the content of the view only. The
reconstruction aims to detect the changes in the sources, in the case where they
cannot be duplicated at the wrapper level.

We are currently implementing of our method, focussing on the reconstruc-
tion module and on the management of XTIDs. Our future work will deal with
other XOperations of the XAlgebra such as nesting and unnesting, and then the
general case of any combinasion of XOperators will be addressed.

References

1. S. Abiteboul. On views and xml. In Proc. ACM Symp. on Principles of Database
System, pages 1–9, 1999.

2. S. Abiteboul and al. Incremental maintenance for materialized views over semi
structured data. In Proc. Int’l Conf. on VLDB, pages 38–49, 1998.

3. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query
Language for Semi-Structured Data. Journal of the Digital Library, 1 (1):68–88,
april 1997.

4. G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml documents.
Technical report, INRIA - Columbia University, 2001.

5. T.-T. Dang-Ngoc and G. Gardarin. Federating heterogeneous data sources. In in
proc. of IASTED International Conference on Information and Knowledge Sharing
(IKS 2003), pages 193–198, 2003.

6. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query
Language for XML, 1998.

7. M. EI-Sayed, L. Wang, L. Ding, and E.A. Rundsteiner. An algebraic approach for
incremental maintenance of materialized xquery views. In , in Proc. Of the 4TH
intI Workshop on WIDM02, 2002.

8. J.W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Tech-
nical report, Bell Laboratories, 1976.

9. D. Laurent, J. Lechtenborger, N. Spyratos, and G. Vossen. Monotonic complements
for independent data warehouses. VLDB, 10(4):295–315, 2001.

10. W3C. An XML Query Language (XQuery 1.0). Technical report, available at
http://www.w3.org/TR/xquery/, 2001.

11. G. Wiederhold. Mediators in the Architecture of Future Information Systems.
Computer, 25(3):38–49, March 1992.

