
HAL Id: hal-00733504
https://hal.science/hal-00733504v1

Submitted on 28 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Heterogeneous Data Sources with XML and
XQuery.

Georges Gardarin, A. Mensch, Tuyet-Tram Dang-Ngoc, L. Smit

To cite this version:
Georges Gardarin, A. Mensch, Tuyet-Tram Dang-Ngoc, L. Smit. Integrating Heterogeneous Data
Sources with XML and XQuery.. Second International Workshop on Electronicy Business Hubs -
WEBH (DEXA Workshop), 2002, Aix-en-Provence, France. pp.1-7. �hal-00733504�

https://hal.science/hal-00733504v1
https://hal.archives-ouvertes.fr

Integrating Heterogeneous Data Sources

with XML and XQuery

G. Gardarin, A. Mensch, T. Tuyet Dang-Ngoc, L. Smit
e-XMLMedia, 31 Avenue du Général Leclerc

92340 BOURG LA REINE, France
georges.gardarin@e-xmlmedia.fr

Abstract

XML has emerged as the leading language for
representing and exchanging data not only on the Web,
but also in general in the enterprise. XQuery is emerging
as the standard query language for XML. Thus, tools are
required to mediate between XML queries and
heterogeneous data sources to integrate data in XML.
This paper presents the e-XMLMedia mediator, a unique
tool for integrating and querying disparate heterogeneous
information as unified XML views. It describes the
mediator architecture and focuses on the unique
distributed query processing technology implemented in
this component. Further, we evoke the various
applications that are currently being experimented with
the e-XMLMedia Mediator.

1. Introduction

In recent years, there have been many
research projects focusing on heterogeneous
information integration. Typical information
integration systems have adopted a wrapper-
mediator architecture [1]. In this architecture,
mediators provide a uniform user interface to
query integrated views of heterogeneous
information sources. Wrappers provide local
views of data sources in a uniform data model.
The local views can be queried in a limited way
according to wrapper capabilities. Well-known
research projects and prototypes based on this
architecture include Garlic [2], Tsimmis [3],
IRO-DB [4] and Yat [5]. While in the 90's most

studies were based on using the object model as
data integration model, the focus has come to
XML as pivot model at the beginning of the
new century.

The advantages of XML as an exchange
model, (i.e., it is rich, clear, extensible and
secure), makes it the best candidate for
supporting the integrated data model. In
addition, using XML views for local data
sources hides the local specificities of each
system. Furthermore, the richness of the XML
schema model simplifies wrapper mappings.
Also, the emergence of XQuery as a powerful
universal query language for XML makes it
possible to query XML global and local views
in a uniform way based on a standard interface.
Thus, these advantages explain that several
research projects have emerged to query in a
uniform way heterogeneous data sources based
on XML as exchange model, see for example
[6, 7, 8].

e-XMLMedia is providing one of the first
products based on XML to integrate
heterogeneous data sources, namely the e-XML
Mediator. The mediator (with the associated
wrappers) provides the required functionalities
to query in a uniform way heterogeneous data
sources. It is a sophisticated component
composed of several packages in charge of
decomposing queries into mono-source sub-
queries, efficiently shipping local sub-queries to

data sources, getting results in XML through a
SAX interface, processing and assembling
them. Queries as well as sub-queries are
expressed in XQuery. In addition, capabilities
are associated to wrapper so that the mediator
sends only supported queries to wrappers. In
summary, the mediator uses XML to represent
disparate data in a common format and create a
unified view of that data. Using advanced
distributed query processing technology, the
mediator provides an application with the
services it needs to integrate on demand
heterogeneous information.

This paper gives an overview of the e-XML
Mediator. The next section focuses on the
middleware objectives. Then, we briefly
describe the system architecture. In section 4,
we give an overview of the unique query
processing technology embedded in the
component. In conclusion, we focus on typical
applications for the mediator.

2. Mediator Functional Objectives

The mediator is a data integration middleware
receiving XQueries from user applications and
returning XML. Internally, XML is managed as
event flows using SAX. In an effort to broaden
the interoperability of products in this market
segment, e-XMLMedia has defined a standard
XML XQuery API for the access to XML based
data products, called XML/DBC. The
XML/DBC API consists of two closely related
APIs. The Java API is a JDBC extension to
query XML collections using XQuery. The
Web Services API is based on SOAP and is
designed to provide a SOAP style server
interface to clients. Thus, the mediator as well
as other e-XMLMedia products, receives
queries through its XML/DBC API either from
SOAP client or from Java clients.

The mediator objectives are summarized in
the following sections.

2.1. Querying heterogeneous data sources

The mediator provides views of sources
containing collections of XML documents that
can be queried through XQuery, the W3C
emerging standard. It takes into account the
capabilities of the data source, to avoid sending
not executable sub-queries to a source. Each
data source is encapsulated within a wrapper
that supports at least a subset of XQuery.
Ideally, a wrapper can provide mapping
functionalities as XML views to achieve local
mappings of data and metadata.

2.2. Querying distributed data sources

The data sources can be distributed on various
sites interconnected through intranets or the
Internet. Various interconnection protocols can
be supported, including HTTP, IIOP and, at a
higher level, RMI and SOAP. A mediator can
appear itself as a data source, thus allowing
several layers of mediation.

2.3. Composing data from distributed sources

Each wrapper and the mediator itself support
XQuery and provide XML results. The data
from the sources can be combined using various
operations such as union, cross product, join,
fusion, reordering, nesting and arranged to
comply with the requested output defined in the
return clause of the XQuery.

2.4. Processing queries in an efficient way

Queries are decomposed in optimal mono-
source sub-queries and global query plans are
optimized in a simple but efficient way. Simple
heuristics are supported in a version 1, while
cost-based query optimization should be
introduced in the future. Heuristics include the

XML counter-part of classical relational
detachment of selections and semi-join
transformations.

2.5. Efficiently caching metadata

To discover relevant sites for a query and
decompose it, metadata are maintained
describing the sources. At mediator start, only
first level metadata are brought in main
memory. These metadata are given to the
mediator through a configuration file. Further
metadata are searched on demand through a
wrapper interface and kept in cache on a last
recently used basis.

2.6. Supporting efficiently multiple users

Multiple users are able to process queries in
parallel with little overhead due to query
processing sharing and multi-threading. The
mediator is multi-threaded and manages
multiple connections to data sources.

3. Mediator architecture

The mediator architecture is represented in
Figure 1. The XML/DBC API is the only
interface with external components. Thus,
notice that the mediator ships requests to
wrappers through XML/DBC and thus get
results through it. This makes possible for a
mediator to see another mediator as a wrapper.
Futhermore, results are supplied in XML/DBC
through SAX readers. Thus, flows of events are
transferred between mediators and wrappers,
avoiding the overhead generated by the
allocation of intermediate memory structures.

The major sub-components are the XQuery
parser, the metadata manager, the query

evaluator, the query decomposer, and the result
reconstructor. They are briefly described below.

3.1. XML/DBC API

This is a common API for both the mediator
and the wrapper to receive external queries and
ship XML results. This interface provides
functions to manage components (start and stop
a connection) and to retrieve data or meta-data.

PARSER

Request

XML/DBC API

CANONISER

Canonical
Request

DECOMPOSER

Atomic
Request

METADATA

XQuery() XDescribe()

EVALUATOR
XML

Cache

XML/DBC

XML/DBC

RECONSTRUCTOR

XML

OPTIMIZER Query
Plan

EXECUTOR

Figure 1 – Overview of the mediator

architecture

3.2. Parser

The parser parses the query and generates the
query structure if the query is syntactically
correct. Otherwise, it returns a documented
error.

3.3. Canoniser

The canoniser normalizes the query and
generates a query in canonical form.
Canonization consists in extracting simple

queries from the external query and in building
the encapsulating global query, which is
composed of a tagging operator and may
include specific nesting and aggregation
operators.
3.4. Decomposer

The decomposer decomposes each simple
query in atomic queries, according to the data
localization, which is extracted from the meta-
data. In general, the decomposition moves
further operators in the global query.

3.5. Optimizer

The optimizer identifies the relevant data
sources based on metadata and create an
execution plan for the query. The execution plan
is composed of operators of a specific algebra
designed for XML. Simple optimizations of the
query plan are performed in the current version,
but more complex ones are planned based on a
cost model. For example, the optimizer groups
the operators which refers the same source in a
single query for shipping once. It also orders the
global operators according to query heuristics
and finally selects the best processing method
(parallel, sequence or pipeline) for global
operators.

3.6. Executor

The executor is in charge of shipping the sub-
queries to the wrappers using XML/DBC and
collecting the results in cache memory. In
general, results are not fully instantiated in main
memory but SAX events are produced and
directly processed by the evaluator when
possible. We represent each ordered collection
of XML tree shipped from a wrapper as an
Xtuple, i.e., a tuple of references to forest of
XML trees instanciated in cache.

3.7. Evaluator

Based on the query plan, the evaluator
evaluates the remaining global query and
applies the algebraic operators in main memory.
We use a specific algebra designed for
processing Xtuple. The operators are able to
perform XPath-based projection, restriction,
product, join, grouping, sorting, union,
intersection and difference of ordered
collections of Xtuples. For each operator, we
implement one or more specific algorithms. For
example, several global join algorithms are
possible. The evaluator may work with
intermediate collections fully stored in main
memory, but can also work on a SAX flow of
events, thus implementing pipelining and hash
joins. Dependent join algorithms requesting
Xtuple to one source and querying the other
based on the results are also possible.

3.8. Reconstructor

It applies the result generation part of the
global query to the intermediate results
generated by the evaluator and the sources to
construct the final result. Finally it tags the
results in the required way and built the SAX
event flow.

3.9. Metadata manager

This package manages the schemas of all
registered sources. Further, for each source, it
maintains the collection names with the
associated queryable path set. The path set is a
kind of data-guide giving an overview of all
path instantiated in the source. If a path is not
given, it will not be queried. The path set has to
be given by the wrapper when registering the
source (on command XDescribe).

4. Query processing

Globally, queries are normalized, i.e.,
transformation rules are applied to eliminate
nested queries and replace them by several
mono-bloc queries. Next, canonization is
applied, which transforms a query in sub-
queries nested in a reconstruction operator.
Each sub-query is in turn divided in atomic
query, one for each relevant source. Local sub-
queries are processed in one or multiple shots
according to wrapper capabilities and shipped to
local wrappers. Results are then post-processed
to compute the global answer based on our
XML algebra. Finally, a reconstruction process
applying a tagging operator completes the query
processing steps.

4.1. Canonical queries

There exist several forms of queries. External
queries are any queries that can be issued by a
user. Simple queries are the XML counterpart of
SPJ queries in relational systems, i.e., queries
performing selections and joins over collections
of XML trees, but returning tuples as results.
They are of the form:

for X1 in P1, X2 in P2, … Xn in Pn
where Condition(X1, X2, …Xn)
return Tuple(X1, X2, …Xn)

where the Xi's are variables, the Pi's are simple
path expressions, Condition a logical expression
constructed from the Xi's and usual comparison
operators, Tuple a simple constructor of Xi's
tuples. The result of such a query can be stored
in a temporary table of schema [X1, X2, …Xn].
Note that depending on the data sources and
path expressions, the Xi’s can range in
complexity from atomic values to complex
XML sub-trees.

Canonical queries are more complex and have
the same selection power of external queries,
but they are arranged as flat queries without
imbrications giving Xtuples as results. They are
more complex than simple queries as they can
include aggregates and functions. They are
nested in a global query that performs result
reconstructions. For distributed queries, the
global query may also include distributed joins
and aggregate computations and in general
algebraic operators. After completing the
distributed processing, the global query
processes the results of the nested queries to
perform result restructuring as derived from the
XQuery return clause.

4.2. Query rewriting

Atomic queries are queries involving a single
collection. Notice that atomic queries may refer
to several XPath expressions on the same
collection. Atomic queries are simple queries,
but simple queries are in general not atomic, as
they may involve several collections. They are
introduced for processing localization of data.

Internally, two data structures are
manipulated for representing queries: The
request structure is the result of parsing. It is a
parse tree representing the query, which is
supported by a complex main memory structure.
A query plan is a tree of algebraic operators
representing the query to be shipped to local
sources and a global query to evaluate locally.
The query plan could be enriched in the future
with annotations of operators, at least at the
level of the global query, e.g., to indicate
pipelined hash-join, dependant join, etc.

4.3. Query plan optimization

The query processing component is
composed of several packages in charge of
decomposing XQuery queries into mono-source

sub-queries, efficiently shipping local queries to
data sources, gathering results, processing and
assembling them. In particular this component
chooses an execution strategy for the query.

The Mediator makes three key decisions
during query processing. First the Mediator
determines the localization of the relevant
sources to process a query among those
accessible by the Mediator. Using the metadata
information on each data source, the location of
data that appears in a query is determined.
Second the Mediator determines the amount of
sequential or parallel execution that occurs
during execution. The mix between parallel and
sequential is determined by the binding
relationship between different data sources as
expressed by join predicates. Independent data
sources are contacted in parallel. Dependent
data sources are accessed in a pipelined fashion.
Third, the Mediator determines the amount of
query processing that can be offloaded onto the
data source. This determination is the result of
a comparison of the requirements of a particular
query and the query processing power available
to a data source.

Further, the mediator creates query plans that
are trees of XML algebra operators. It also
executes them. As explained above, these
operators process collections of Xtuples. They
can be re-ordered in query plans according to
equivalence rules derived from the relational
algebra and from specific navigation rules. Each
operator can have several implementations.
Thus, generating the best query plan for a
request is a complex problem. A cost-based
solution has been designed but only simple
heuristics are implemented so far.

The Mediator also provides a way to structure
the result in an integrated XML document,
according to the RETURN clause of the query.
The three main facilities provided at this level
are the following:

- Renaming Tags;

- Changing the initial data structure;
- Composing results when coming from

multiple data sources.

4.4. Wrapping Data Sources

Data sources are managed through an XML
based configuration file. Data sources are
wrapped with a standard interface. They are
distinguished as wrapped relational data
sources, wrapped XML data sources not
supporting complex queries other than
selections, and XML Repositories supporting
XQuery via the XML/DBC interface. Wrappers
are available for SQL (object-relational DBMS
accessed through JDBC), XQuery (Repository
and Mediator), and HTML pages. Specific
wrappers can be added; they have to comply
with the XML/DBC interface and define their
capabilities as a class.

4.5. Metadata management

If the Mediator did not have knowledge about
where to find data relevant to a given query, it
would have to scan all the registered data
sources. This would not be acceptable in terms
of performance, as this scan should have to be
done each time a query is processed. The
solution to this problem is to maintain metadata
describing the sources. When a source is
registered with a mediator, the mediator asks for
the source metadata. The metadata must be
passed to the mediator as an XML document
containing the source schema. Metadata are
used to determine the location of data on the
sites, both to identify and ship every subpart of
the request to the appropriate gateway. They
are also used to retrieve for the user the
metadata structure available for requested
objects. If metadata are modified in a source,
the metadata associated with the source must be
refreshed.

5. Typical applications

Several applications are currently built using
the e-XML Mediator. A simple kind of
application is the publishing of relational data as
integrated data in XML. We packaged our
XML/DBC wrapper for object-relational
databases as a component marketed under the
name XMLizer, to transform any relational
source in an XML data source supporting
XQuery. For example, the XMLizer is a key
component in several database interchange,
XML EDI and XML portal applications. More
complex applications using the Mediator
include portals for querying multiple
heterogeneous databases. We have also
developed applications in cooperation with
European partners for a tourism Web site
federating multiple data sources, for a virtual
hospital federating patient dossiers constituted
from several pieces, and for an active document
publisher composing documents from several
sources including databases and reports. In
general, the mediator is ideal for extracting and
composing disparate information as unique
XML documents. Coupled with the other
products of e-XMLMedia, XML Repository and
XForms Engine (XFE), the Mediator and
XMLizer are ideal to develop gateways between
existing information systems and new XML
consuming applications.

6. References

[1] Wiederhold G.: "Intelligent Integration of Information",
ACM SIGMOD Conf. On Management of data, pp. 434-437,
Washington D.C., USA, May 1993.
[2] Haas L., Kossman D., Wimmers E., Yang J.: "Optimizing
Queries across Diverse Data Sources", 23rd Very Large Data
Bases, August 1998, Athens, Greece, 1997.
[3] Chawathe S., Garcia-Molina H., Hammer J., Ireland K.,
Papakonstantinou Y., Ullman J., and Widom J.: "The TSIMMIS
Project : Integration of Heterogeneous Information Sources",
IPSJ Conference, pp. 7-18, Tokyo, Japan, October 1994.

[4] Fankhauser P., Gardarin G., Lopez M., Muñoz J., Tomasic
A.: "Experiences in Federated Databases: From IRO-DB to
MIRO-Web", 24rd Very Large Data Bases, pp. 655-658,
August 24-27, 1998, New York City, New York, USA, 1998
[5] Cluet S., Delobel C., Siméon J., Smaga K.: "Your Mediators
Need Data Conversion", ACM SIGMOD Intl. Conf. on
Management of Data, pp. 177-188, Seattle, Washington, USA,
1998.
[6] Christophides V., Cluet S., Siméon J.: "On Wrapping Query
Languages and Efficient XML Integration", ACM SIGMOD
2000, pp. 141-152, May 16-18, 2000, Dallas, Texas, USA.
SIGMOD Record 29(2) ACM 2000.
[7] Manolescu I., Florescu D., Kossmann D.: "Answering XML
Queries over Heterogeneous Data Sources", 27th Very Large
Data Bases, pp. 241-250, Roma, Italy, Sept. 2001.
[8] Shanmugasundaram J., Kiernan J., Shekita E., Fan C.,
Funderburk J.: "Querying XML Views of Relational Data",
Proc. Of the 27th International Conference on Very Large Data
Bases, pp. 261-270, Roma, Ital., Sept. 2001.

