
HAL Id: hal-00733502
https://hal.science/hal-00733502

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating XQuery in a full-XML Mediation
architecture

Tuyet-Tram Dang-Ngoc, Georges Gardarin

To cite this version:
Tuyet-Tram Dang-Ngoc, Georges Gardarin. Evaluating XQuery in a full-XML Mediation architecture.
19ème conférence Bases de Données Avancées (BDA 2003), 2003, Lyon, France. �hal-00733502�

https://hal.science/hal-00733502
https://hal.archives-ouvertes.fr

Evaluating XQuery in a full-XML
Mediation architecture

Tuyet-Tram Dang-Ngoc* — Georges Gardarin**

PRiSM Laboratory
University of Versailles,
45, avenue des Etats-Unis
75035 Versailles CEDEX
France
*Tuyet-Tram.Dang-Ngoc@prism.uvsq.fr, ** Georges.Gardarin@prism.uvsq.fr

ABSTRACT: XML has emerged as the leading language for representing and exchanging data
not only on the Web, but also in general in the enterprise. XQuery is emerging as the
standard query language for XML. Thus, tools are required to mediate between XML queries
and heterogeneous data sources to integrate data in XML. This paper presents the XMedia
mediator, a unique tool for integrating and querying disparate heterogeneous information as
unified XML views. It describes the mediator architecture and focuses on the unique
distributed query processing technology implemented in this component. Query evaluation is
based on an original XML algebra simply extending classical operators to process tuples of
tree elements. Further, we present a set of performance evaluation on a relational
benchmark, which leads to discuss possible performance enhancements.

RÉSUMÉ : XML s'est imposé comme le méta-langage permettant de représenter et d'échanger
des données non seulement sur le web mais aussi de façon générale en entreprise. XQuery
s'impose comme le langage de requête standard pour XML. En conséquence, des outils sont
nécessaires pour interroger des sources de données hétérogènes avec XQuery, et ainsi
intégrer des données hétérogènes en temps réel sur demande. Cet article présente le
médiateur XMedia, un outil permettant d'intégrer et d'interroger des informations
hétérogènes distribuées sous la forme de vues XML unifiées. Il décrit l'architecture du
médiateur et se concentre sur la technique d'analyse de requêtes distribuées qui a été
implémentée dans ce composant. L'évaluation de requête est basée sur une algèbre XML
étendant simplement les opérateurs classiques de l'algèbre relationnelle à des traitements de
tuples d'éléments arborescents. Enfin, nous parlerons d'extensions que nous étudierons qui
permettrons d'améliorer les performances du médiateur.

KEYWORDS: Mediation Architecture, XML Algebra, XQuery Evaluation

MOTS-CLEFS : Architecture de médiation, Algèbre XML, Evaluation XQuery

2 Bases de Données Avancées (BDA 2003)

1. Introduction

In recent years, there have been many research projects focusing on
heterogeneous information integration. Typical information integration systems
have adopted a wrapper-mediator architecture (Wiederhold, 1993). In this
architecture, mediators provide a uniform user interface to query integrated views of
heterogeneous information sources. Wrappers provide local views of data sources in
a global data model. The local views can be queried in a limited way according to
wrapper capabilities. Although the local as view (LAV) approach has been
considered in some systems (Levy et al., 1996) (Manolescu et al., 2001), most
systems follow the global as views (GAV) approach, in which the integrated views
are designed in terms of the local views of sources. Well-known research projects
and prototypes based on this architecture include Garlic (Haas et al., 1997),
Tsimmis (Chawathe et al., 1994), IRO-DB (Fankhauser et al., 1998) and Yat (Cluet
et al., 1998). While in the 90's most studies were based on using the object model as
data integration model, the focus has come to XML as global model at the
beginning of the new century.

The advantages of XML as an exchange model, (i.e., it is rich, clear, extensible
and secure), makes it the best candidate for supporting the integrated data model. In
addition, using XML views for local data sources hides the local specificities of
each system. Furthermore, the richness of the XML schema model simplifies
wrapper mappings. Also, the emergence of XQuery as a powerful universal query
language for XML makes it possible to query XML global and local views in a
uniform way based on a standard interface. Thus, these advantages explain that
several research projects have emerged to query in a uniform way heterogeneous
data sources based on XML as exchange model, see for example (Christophides et
al., 2000)(Manolscu et al., 2001)(Shanmugasundaram et al., 2001).

e-XMLMedia is providing one of the first products based on XML to integrate
heterogeneous data sources, namely the e-XML mediator (see www.e-xmlmedia.fr).
It is the result of a technology transfer from the university of Versailles (PRiSM
Laboratory). This mediator with the associated wrappers provides the required
functionalities to query in a uniform way heterogeneous data sources. It is a
sophisticated component composed of several packages in charge of decomposing
queries into mono-source sub-queries, efficiently shipping local sub-queries to data
sources, getting results in XML through a SAX interface, processing and assembling
them. Queries as well as sub-queries are expressed in XQuery. In addition,
capabilities are associated to wrapper so that the mediator sends only supported
queries to wrappers. In summary, the mediator uses XML to represent disparate data
in a common format and create a unified view of that data. Using advanced
distributed query processing technology, the mediator provides an application with
the services it needs to integrate on demand heterogeneous information.

Evaluating XQuery in a full-XML mediation architecture 3

This paper describes a version of the mediator called XMedia. This version
differs from the industrial version in some ways, notably it is based on an original
algebra for XML processing called the XAlgebra. The contributions of this paper
are three-fold. First we describe the modular system architecture of the XMedia
Mediator. Second, we describe the query processing algorithm, which is based on
query transformations and the algebra operating on tuples of XML trees. A critical
result is that the mediator is capable of processing most queries in pipeline on XML
event flows. Third, we report on a benchmark of the architecture showing the
weaknesses and strengths of the main system components, thus leading to new ideas
for query optimization. Some of them should be integrated in a future version of
XMedia.

The rest of this paper is organized as follows. The next section focuses on the
middleware objectives and architecture. Section 3 describes the XAlgebra, a simple
extension of relational algebra to process XML forests. Then, we give an overview
of the unique query processing technology embedded in the XMedia mediator
through a query example. Section 5 reports on some performance measurement
based on the TPC/R benchmark adapted to XML. In section 6, we discuss possible
extensions of the query processing engine. We conclude by summarizing the
contributions and discussing future developments.

2. System Overview and Architecture

2.1 Integrating and Querying XML Views

XMedia mediator is a data integration middleware managing XML views of
heterogeneous data sources. It follows the global as view approach. Global views
are defined by administrators through Queries referencing local collections of XML
documents. They are queried by users through a Java API extending JDBC to
XQuery, called XML/DBC. Data sources can be of various types, including
relational databases, XML files, XML databases, legacy applications, etc. Specific
wrappers delivering metadata through introspection and providing at least a subset
of XQuery on exported collections encapsulate them. Ideally, a wrapper can provide
mapping functionalities as XML views to achieve local mappings of data and
metadata at the source.

The mediator aims at supporting fully XML standards, including XML schema,
XQuery, DOM and SAX interfaces. XML schemas are used intensively for
metadata representation. In particular, schemas describe wrapped data sources and
views at any layer. XQueries are type-checked through schemas. We support
currently most XQuery use-cases. Finally, we internally process XML as SAX event
flows for efficiency reasons. Indeed, DOM is in general too costly to instantiate
XML documents during processing. However, the user can if required get DOM

4 Bases de Données Avancées (BDA 2003)

trees as results and we sometimes use DOM inside the mediator to keep XML
documents for latter processing.

Queries are decomposed in optimal mono-source sub-queries and global query
plans expressed in a specific algebra (the XAlgebra), extending the relational
algebra to process trees. Queries are optimized in a simple but efficient way. Simple
heuristics are supported in the current version, while cost-based query optimization
could be introduced in the future. Heuristics include the XML counter-part of
classical relational detachment of selections and semi-join transformations. Several
algorithms are implemented for processing XAlgebra operators.

To discover relevant sites for a query and decompose it, metadata are maintained
describing the sources. When a wrapper is registered to a mediator, metadata
describing the source are sent to the mediator through a configuration file. This file
contains an XML document containing a schema for each collection exposed by the
source wrapper. If the schema of a collection is not known, a schema by default is
generated, which describes the path set of the collection; it is a form of dataguide
(Goldman et al., 1997). Metadata schemas are kept in the mediator memory and
indexed by source, namespace, collection and path for fast access during query
processing.

2.2 A Recursive Dataflow-based Architecture

The mediator architecture is represented in Figure 1. The XML/DBC API is the
only interface with external components. Thus, notice that the mediator ships
requests to wrappers through XML/DBC and thus get results through it. This makes
possible for a mediator to see another mediator as a wrapper. Furthermore, results
are supplied in XML/DBC through SAX readers. Thus, flows of events are
transferred between mediators and wrappers, avoiding the overhead generated by
the allocation of intermediate memory structures. The recursive and data flow-based
architecture is interesting for applications that can perform data integration at
multiple stages without much performance degradation.

Figure 1. Overview of the mediator architecture

XML/DBC API

PARSER

CANONISER

DECOMPOSER

OPTIMIZER

METADATA

RECONSTRUCTOR

EXECUTOR

EVALUATOR XML Cache

executeQuery (XQuery)

Request

Canonical
Request

Atomic
Request

Query
Plan

XML

getXMetaData ()

XML/DBC

XML/DBC

Evaluating XQuery in a full-XML mediation architecture 5

The major sub-components are the XQuery parser, the metadata manager, the
query evaluator, the query decomposer, and the result reconstructor. All components
are briefly described below.

Parser: The parser parses the query and generates the query structure if the
query is syntactically and type correct. Otherwise, it returns a documented error.

Canoniser: The canoniser first normalizes the query and generates a query in
normal form. Normalization applies the transformation rules described in (Manolscu
et al., 2001). For example, let clauses are treated as temporary variable definitions
and eliminated. Expressions of the form FLWR(FLWR) are unnested when possible.
Second, the canoniser transforms normalized queries in simple queries plus a
reconstruction operator. A simple query is a query in which all return expressions
are simple path expressions. The reconstruction operator is a sequence of element
constructors whose tags and data are either constants or come from simple path
expressions.

Decomposer: The decomposer decomposes each simple query in atomic
queries, i.e., query involving only one global collection. It also generates a join tree
(possibly empty) to keep track of the dependency between the atomic queries.
Nesting and unnesting operators may also be generated to restructure intermediate
results. Moreover, the decomposer identifies from the metadata the relevant data
sources and the collection localization. Based on this information, it translates the
atomic queries on a global collection in a union of queries on local collections. In
particular, it translates global paths with regular expressions in local paths replacing
jokers by the possible paths extracted from the metadata. Finally, it creates a first
execution plan for the query.

Optimizer: The execution plan is composed of operators of the XAlgebra. The
role of the optimizer is to transform and annotate it to get the best possible plan.
Simple optimizations of the query plan are performed in the current version, but
more complex ones are planned based on a cost model. For example, the optimizer
groups the operators that refer the same source in a single query for shipping once.
It also orders the global operators according to query heuristics and selects the best
processing method (parallel, sequence or pipeline) for global operators. It should
also choose the best algorithm for each algebra operator.

Executor: The executor is in charge of shipping the sub-queries to the wrappers
using XML/DBC and collecting the results in cache memory. In general, results are
not fully instantiated in main memory but SAX events are produced and directly
processed by the evaluator when possible. We represent each ordered collection of
XML tree shipped from a wrapper as an XTuple, i.e., a tuple of references to forest
of XML trees instantiated in cache.

Evaluator: Based on the query plan, the evaluator evaluates the remaining
global query and applies the algebraic operators in main memory. The XAlgebra
operators are able to perform XPath-based projection, restriction, product, join,

6 Bases de Données Avancées (BDA 2003)

nesting, sorting, union, intersection and difference of ordered collections of
XTuples. For each operator, we implement one or more specific algorithms. For
example, several global join algorithms are possible. The evaluator may work with
intermediate collections fully stored in main memory, but can also work on a SAX
flow of events, thus implementing pipelining and hash joins. Dependent join
algorithms requesting XTuple to one source and querying the other based on the
results are also possible.

Reconstructor: It applies the reconstruction operator to the intermediate results
represented as XTuples and generates the query answer. In other words, it nests and
tags the data so as to construct the final result. Finally it built the SAX event flow to
deliver the results to the user.

Metadata manager: This package manages the schemas of all registered
sources. Further, for each source, it maintains the collection names with the
associated queryable path set. The path set is a kind of dataguide giving an overview
of all paths instantiated in the source. If a path is missing, it will not be queried. The
path set has to be given by the wrapper when registering the source (on command
XDescribe).

3. Physical Algebra

As mentioned above, XQuery requests are translated in a physical algebra simple
enough to be amenable to optimization and implementation. Several algebras have
been recently proposed (Christophides et al., 2000)(Jagadish et al., 2001)
(Fernandez et al., 2000)(Galanis et al., 2001) for XML. Our goal is to be as close as
possible to some extended relational algebra (Zaniolo, 1985), but to be able to
manipulate trees and ordered collections of trees. We now introduce our extended
relational data model and its associated algebra for processing XML collections.

3.1 Data model

A relation is classically a subset of the Cartesian product of a list of domains.
With simple relations, domains are simple set of values; with object relations,
domains can be set of objects or values. We introduce XRelation, that can be
considered as a special case of object relations, domains being XML trees.
Classically, an XML tree is a set of labeled ordered rooted trees. In addition, cross-
tree hyperlinks can be supported as special edges.

With XRelation, domains are XML trees of given path set. Attributes are XPath
referencing nodes in the XML trees (see Figure 2). Each attribute can be multi-
valued, i.e., refers several sub-trees. XRelation are ordered collections of XTuples.
Thus, each XTuple is composed of XPath named attributes, values of which
reference subtrees in the collection of trees. As a result, the schema of an XRelation

Evaluating XQuery in a full-XML mediation architecture 7

is of type R(XPath+, [Path+]), where XPath's are defining the attributes and Path's
compose the path set of the XML trees.

Figure 2 shows an example of an XRelation composed of four XTuples. The
schema of the XRelation is Example (person/fname, person/address,
person/address/street, person, book/title, book/author/lname, book/date
[person/fname, person/lname, person/address, person/address/street,
person/address/town, book/title, book/author, book/author/lname,
book/date]). An XTuple refers to nodes and can be perceived as an index of XML
trees. Processing through references computed once is much more efficient than
processing the trees through direct navigation.

Figure 2. Example of an XRelation

3.2 XAlgebra Operators

The XAlgebra includes both relational operations to process the tables of
references and navigation in the XML trees. The algebra is a physical algebra in the
sense that algebraic expressions are used to process XML flows and that algorithms
are directly implementing them.

XML documents are sent to the mediator in the form of event flows (based on
SAX). XTuples are created "on the fly" when XML documents of known schemas
are received from the wrappers. Non-blocking operators work in pipeline on the
event flows. Blocking operators require the full instantiation of an input flow in
cache memory. Non-blocking N-ary operators works in general in parallel on the
input flows.

8 Bases de Données Avancées (BDA 2003)

All operators of the XAlgebra receive a collection of XTuples as input and
return a collection of XTuples as output. In general, we modify directly the
XRelation in memory. Operators also have specific parameters; we only give the
some logical ones in the sequel.

The evaluation process of each operator is composed of two steps: a preparation
step and an execution one. The preparation step analyzes the input XRelation(s) and
the parameters associated to the operator to determine what will be the exact
operation to do when the XTuples will flow in. For example, for an operation that
requires merging trees, the preparation step determines to which reference node the
new sub-tree will have to be linked and which paths will be in common. Thus, the
execution step is efficient, as the major part of processing has already been done.

Xsource: XSource is the starting operation to process an XML data source.
XSource takes a particular XRelation of schema (Root, [P1, … Pn]) representing a
data source as input and generates an XRelation of given schema (a, b, c,… [P1,…
Pn]), where a, b, c, … are XPaths over P1, …, Pn. In practice, XSource ships a
query to a data source and returns the result as an XRelation. For that, it parses the
SAX flow result "on the fly" and generates the collection of XTuples by
constructing the trees and identifying the nodes that must be referenced in the
references part of the XTuples. XSource preserves the order of the source
documents. It is a non-blocking operator, which can construct XTuples as soon as
the SAX reader has began to send events.

XRestrict: The XRestrict operator filters each XTuple of an XRelation on a
predicate logical expression, each elementary predicate comparing an attribute to
constants or checking range constraints over an attribute. If the condition is true, the
XTuple is kept. Otherwise, it is removed with its associated XML trees. XRestrict is
order-preserving and non-blocking.

Figure 3. An example of XProject operation

Evaluating XQuery in a full-XML mediation architecture 9

XProject: XProject generalizes the classical projection to XRelations. It takes an
XRelation as input and returns an XRelation with only the selected XAttributes in
table; non-referenced sub-trees are also removed. In practice, it processes the
reference part of the XTuples to determine if the XAttribute must be kept. If not, it
deletes the reference and suppresses non-referenced paths in the tree part. Figure 3
illustrates an example of XProject. As well as XSource, XProject is order-preserving
and non-blocking.

XSort, XNest, Xunnest: XSort is a simple operator sorting an XRelation on a
given list of XPath, by ascending or descending order.

XNest applies a grouping operator to an XRelation. It groups XTuples that have
the same values on a set of attributes (i.e., XPath's) by merging their common
subtrees and inserting the non common branches in a unique composed tree. Multi-
valued references are in general created. This is a costly operator that first applies an
XSort and then a merging of trees with similar path set.

XUnnest is the reverse of XNest: it decomposes multi-valued sub-trees of similar
path set in the XRelation by replicating common sub-trees in the reference part and
creating as mono-valued trees as needed in the tree part.

Xproduct, Xjoin: The XProduct operation takes two collections as input and
computes the Cartesian product of them. Moreover, the trees of each XTuple are
merged if their path set overlaps from the roots. In general, the Cartesian product
can be pipelined but order is then non-preserved. It is possible to preserve the order
of one input relation using a nested-loop algorithm, but then the operator is
blocking. In general, these parameters depend on the implementation algorithm as
well as for relational algebra.

XJoin is the generalization of a relational join. It is an XProduct combined with
an XRestrict. The XJoin is a core operator of the physical algebra. Several
algorithms have been implemented for the XJoin including nested loops, sort-merge
and "query one source with the other". While the nested loop can be pipelined,
others cannot. Only non-pipelined nested loops are order-preserving, but sort-merge
can produce an interesting order.

Xaggregate: As with extended relational algebra, the purpose of aggregation is
to apply a MIN, MAX, COUNT, AVG or SUM function to a collection of values.
The collection is simply given by an XPath attribute of the XRelation. Except with
COUNT that counts directly the number of references, the functions apply to the
values referred by the attributes, which have to be correctly typed (numeric with
classical functions). XAggregate is a blocking operation non order-preserving.

XReconstruct: Reconstruction is in general the final operation in an algebraic
tree to publish the final SAX event flow as result. It takes as input parameters an
XRelation and an XML document in which values are replaced by attributes of the
XRelation (i.e., XPaths). The effect is to produce one result instance per XTuple.
The operation is order-preserving and non-blocking.

10 Bases de Données Avancées (BDA 2003)

XUnion, XDifference, XIntersection: They are classical set operations applied
to set of XTuples.

4. XQuery Processing Example

As introduced in the architecture section, the construction of an execution plan
follows the following steps: (1) Normalization and canonization (2) Atomization
and join extraction (3) Source identification (4) Execution plan creation (5)
Execution plan optimization.

We are now going to illustrate these steps with a simple example. For our
experiments, we adapted the TPC-R benchmark to a scenario suitable for a federated
and semi-structured system. We basically grouped some tables together to obtain
hierarchical data. Figure 4 describes the schema and distribution of data extracted
from the TPC-R benchmark.

Figure 4. Schema and distribution of data

Evaluating XQuery in a full-XML mediation architecture 11

Relational tables PARTSUPP and CUSTOMER, LINEITEM, ORDERS are
managed by wrappers A1, A2 and A3 on top of a relational DBMS. Tree-structured
XML collections SUPPLIER, PART, NATION and REGION are stored in an XML
DBMS. SUPPLIER is partitioned on wrappers A4 and A6 while PART is managed
by wrapper A5. NATION and REGION are managed by wrapper A6.

To illustrate the query processing steps described above, we assume the
following query: “Display for each nation having iron in comment, the list of
suppliers (name and phone) located there with nested partsup (partkey and
supplycost) having an available quantity greater than 45.” The formal query can be
written in XQuery as follows:

for $n in Collection("*")/nation

where contains ($n/comment, "iron")

return

 <nation>

 <name>{$n/name}</name>

 <suppliers>

 for $s in Collection ("*")/supplier, $ps in Collection ("*")/partsupp

 where $s/id/suppkey = $ps/suppkey and $ps/availqty > 45

 and $s//nationkey = $n/nationkey

 return

 <supplier>$s/name</supplier>

 <phone>$s/contact/phone</phone>

 <partsupp>

 <partkey>{$ps/partkey}</partkey>

 <supplycost>{$ps/supplycost}</supplycost>

 </partsupp>

 </suppliers>

 </nation>

As there is not any LET clause in the example, the query is directly unnested.
Applying rules similar to that defined in (Manolescu et al., 2001), we unnest sub-
queries from the request and purge them of all reconstruction tagging. We call them
elementary queries. Then, the canonization phase generates the reconstruction query
(XReconstruct operator) plus the elementary query. The reconstruction query is
simply the returned document with XPath expressions in place of constants.

Canonized request

Elementary query 1

let t1 ::= for $n in Collection("*")/nation

where contains ($n/comment, "iron")

return ($n/nationkey, $n/name)

Elementary query 2

12 Bases de Données Avancées (BDA 2003)

let t2 := for $t in $t1; $s in Collection ("*")/supplier, $ps in Collection ("*")/partsupp

where $ps/availqty > 45

return($s/contact/localisation/nationkey,$s/id/suppkey,$s/name,$s/contact/phone,

($ps/suppkey , $ps/partkey, $ps/supplycost))

Reconstruction query

<nation>

 <name>{$t1/name}</name>

 <suppliers>

 <supplier>{$s/name}</supplier>

 <phone>{$s/contact/phone}</phone>

 <partsupp>

 <partkey>{$ps/partkey}</partkey>

 <supplycost>{$ps/supplycost}</supplycost>

 </partsupp>

 </suppliers>

</nation>

Next, the atomization step extracts from the elementary query the maximum sub-
queries for each logical collection with associated restrictions and other unary
operators as sort or aggregate. It also generates the final join conditions possibly
followed by aggregate, sort and a final nest operator to get the resulting XTuple's
correctly nested for reconstructing the final XML documents. In our simple case
with only restrictions and joins, we obtain three atomic queries and two joins
followed by a nest. They can be expressed as follows in XQuery-like syntax.

Decomposed Request

- Atomic Request t1

let t1 ::= for $n in Collection("*")/nation

where contains ($n/comment, "iron")

return ($n/nationkey, $n/name)

- Atomic Request t2

let t2 := for $s in Collection ("*")/supplier

return($s/contact/localisation/nationkey,$s/id/suppkey,$s/name, $s/contact/phone)

- Atomic Request t3

let t3 := for $ps in Collection ("*")/partsupp

where $ps/availqty > 45

return ($ps/suppkey , $ps/partkey, $ps/supplycost)

- Global Request

for $n in t1, $s in t2, $ps in t3

where $s/id/suppkey = $ps/suppkey and $s/ /nationkey = $n/nationkey

return($n/name,($s/name,$s/contact/phone, ($ps/partkey, $ps/supplycost)))

The request is then analyzed further to identify the data sources that may
contribute to the result. The metadata describing each registered source are used
both to determine source relevance and to complete XPath's with jokers. Notice that

Evaluating XQuery in a full-XML mediation architecture 13

a source can handle several collections and that a collection can be found on several
sources. For atomic queries t1, t2 and t3, we obtain:

Atomic request Relevant path sets sources

t1 Collection("NATION")/nation/comment

Collection("NATION")/nation/nationkey

Collection("NATION")/nation/name

A6

t2 Collection("SUPPLIER")/

supplier/contact/localisation/nationkey Collection

("SUPPLIER")/supplier/id/suppkey Collection("SUPPLIER")/

supplier/id/name Collection("SUPPLIER")/

supplier/contact/phone

A4, A6

t3 Collection("PARTSUPP")/availqty

Collection("PARTSUPP")/suppkey

Collection("PARTSUPP")/partkey

Collection("PARTSUPP")/supplycost

A1

The execution plan can now be constructed in terms of XAlgebra operator. For
each atomic request, an XSource operator is created. Its role is to ship the request to
the wrapper and get the result under the form of XTuple's. The global request is
used to compose the join tree and the nest operator. Finally, the XReconstruct
operator is added to generate the correct XML result. The proposed execution plan
for the example request is represented in Figure 5. Of course, this one should be
further optimized.

Figure 5. Proposed execution plan for the request

The algebraic tree can be optimized using traditional rules of the nested
relational algebra: perform restriction at first, push project and nest operator up the

14 Bases de Données Avancées (BDA 2003)

tree, order joins, select the best algorithm for each operator. This last optimization
requires either user hints or a cost model. We shall discuss that further in the sequel.

5. Performance Measurement

To further understand the system bottlenecks and determine useful
optimizations, we experiment with a beta version of the industrial system. In this
section, we describe some results of our experiments that try to capture the overhead
induced by each component of the architecture.

5.1 Evaluated Architecture

We use client-server architecture with two servers. The client processor is a
Celeron 600 MHz with 64 Mb RAM, while the servers are both Pentium 4 1.6 GHz
with 256 Mb RAM. The network is 10 Mbits/second. All systems are running
Linux. 2.4

Figure 6. The compared mediation architecture

To compare various architectures, we use different arrangements of mediators
and wrappers, as shown in Figure 6. M0, M1, M2, M3 and M4 are mediators. They
are all run on the client computer. A1, A2, A3 are wrappers on top of a relational
databases. A4, A5, A6 are wrappers on top of a semi-structured database (this is
indeed the e-XML Repository of e-XMLMedia). A7 is a wrapper on top of a
relational database that contains exactly all the data of A1, A2 and A3. M1 is
connected to mediators while all others are connected to wrappers. This is possible
as mediators and wrappers have the same interfaces.

5.3 Time per step

The processing of a request follows the steps below:

1. Request parsing that transforms the XQuery request into an internal
form.

2. Algebra tree construction that normalizes, canonizes, atomizes the
request and finally constructs the algebraic tree.

Evaluating XQuery in a full-XML mediation architecture 15

3. Execution initialization establishing the connection to the wrappers and
getting the first XTuple.

4. Local execution of the request on the wrapper including sending the
request to the wrapper, getting the result by XML/DBC in the SAX
format and transforming the SAX flow in XTuple.

5. Global execution of the request and reconstruction, i.e., processing the
XTuples through the algebraic tree to return the result.

Steps 1, 2 and 3 compose the initialization phase of request processing.

The time spent for the initialization phase, for steps 4, 5, and for complete
processing are depicted on Figure 7. The initialization step is almost insignificant
with regards to other times. The total time is still approximately the double of the
wrapper time. The evaluation on the wrapper consists of: (1) Transforming the
request into SQL (2) Executing the request on the database (Oracle) (3) Getting the
tuples and changing them into XML document.

As the results are measured with a hot database, the tuples are in cache and SQL
requests are executed in main memory. This confirms that the dominant time is
XML construction and shipping.

Figure 7. Execution time for each step Figure 8. Execution time of init steps

16 Bases de Données Avancées (BDA 2003)

In Figure 8, we detail the initialization time between time to parse the query,
time to generate the execution plan and time to get the first result. All these times
are small. Request parsing is very short (< 10 ms). Generating the execution plan
takes a little more time (< 15 ms). Getting the first result requires a little more time,
showing again that exchange time is dominant.

5.2 Mediation Cost Overhead

To evaluate the costs of the mediator overhead, we consider a set of queries of
the modified TPC/R benchmark introduced above. The following simple query

for $O in collection("ORDERS")

where $O/orderkey < N

return <result> <O>$O/comment</O></result>

is executed successively on mediator M0, mediator M4 and wrapper A3. N
varies from 1 to 3000 to get different result size. In this way, we can compare the
overhead cost of a mediator on another mediator, and of a mediator on a wrapper.
To compare with a direct access to wrapper A3, all orders are managed by wrapper
A3. Figure 9 hows the execution time depending on the number of resulting
documents for each type of execution.

Figure 9. Execution time on M0, M1, A3
Figure 10. Execution time on M2 and M4

The Figure 9 shows that the execution time of the query on M1 accessing M2
then A3 differs by less than 10% from the execution time of M0 accessing directly
A3. This demonstrates the value of our recursive architecture and in general the
small overhead induced by the mediator for simple queries. Notice that running the
query directly on the wrapper takes approximately half time. This is due to the time
required for transferring and converting the data in XML.

5.4 Intersite join

We now submit a set of requests that perform a join between two tables. The
request is as follows:

Evaluating XQuery in a full-XML mediation architecture 17

for $L in collection("LINEITEM"), $O in collection("ORDERS")

where $O/orderkey = $L/orderkey and $L/orderkey < N

return

<result>

 <lcom>$L/comment</lcom>

 <ocom>$O/comment</ocom>

 </result>

As previously, N varies from 1 to 3000 to change selectivity. We first evaluate
the request on the mediator M4 and then on the mediator M2. In the first case, the
join is executed by the data source (Oracle) in the server memory, in the second
case, the join is performed on the mediator and XML tuples are transferred on the
network. Again, the result (see Figure 10) shows that the transfer time is dominant.
It also shows that intersite joins are costing operations that should be pushed to the
wrapper when possible.

6. Possible Improvements

The results of the experiments, some being reported above, demonstrate the high
communication cost to exchange XML documents between wrappers and mediators.
Thus, this is the first point to improve. We propose several improvements that
should reduce this cost drastically.

6.1 XML Compression and Bulk Transfers

Transferring XML documents between wrappers and mediators appears to be
costly. Each XTuple is encoded in an XML message and sent over the network. The
XML message is then parsed on the client and transformed internally in an XTuple
descriptor and XML trees as event flows. Thus, the number of messages is
important and the processing time is high. One may argue that our network is slow
(10 M bits), but this is not sufficient to explain the results.

To save in number of messages, we could use bulk transfer, and send several
messages in one block. The number of messages per block should be tuned such that
the pipeline on the client continues to proceed smoothly. Nevertheless, this does not
save parsing and unparsing of lengthy messages. This is somehow inherent to XML
and may degrade performances forever.

One solution is to use a compressed format for transferring XTuples. Schemas of
XTuples are known both by the client and the server under the form of a list of
paths. The types of values (leaves of XML trees) are also known through XML
schemas. Thus, an obvious compression mechanism consists in sending an XTuple
as a sequence of path identifiers (16 bits is sufficient) followed by the leaf value
encoded according to its type. Parsing will then be an obvious task. However, we
may loose the purity of XML and the generality of the communication mechanism.

18 Bases de Données Avancées (BDA 2003)

Although it is a bit contrary to XML principles, we believe that a compression
device saving parsing time is crucial.

6.2 Operator Algorithms

The benchmarked version of the mediator uses a simple join algorithm
(optimized nested loops). It is obvious that other algorithms should be considered
for joins notably, but for other operators as well (e.g., nest is quite complex).
Implementing dependent joins, i.e., join by reading an XRelation and querying the
other with the read value, could be helpful to save in number of messages in case of
small answers. Merge join and hash join could also be useful. Thus, we are currently
integrating a library of algorithms for each XAlgebra operator. The problem is then
how to select the best plan. A possible answer is to develop a cost model.

6.3 Cost Model

The classical solution for choosing the best execution plan is to compare plan
costs using a cost model. We propose a cost model somehow inspired from DISCO
(Tomasic et al., 1996). The mediator has a generic cost model derived from a
relational cost model extended with tree manipulation. Then each wrapper can
export specifics statistics and formulas to the mediator. The generic cost model is
generally used with the exported statistics (to evaluate cardinalities), but specific
formulas exported by a wrapper can override generic formulas. This approach gives
a framework to compute the global cost of a query plan integrating local
information on sources.

To communicate their cost model to the mediator, a wrapper uses a cost model
language. In an XML environment, the cost language has to be defined in XML. As
formulas and statistics definitions use a lot of mathematics notations, we based our
cost language on MathML. MathML is a specification of the W3C for coding in
XML the representation or the structure of a mathematical object. Only the semantic
information about a mathematical object is interesting for our purpose. The
advantages of using MathML for describing cost formulas are three-fold: it is full
XML, it supports general formulas, and calculation software can be used to compute
formulas.

Parameters used for evaluation of a cost model are statistics relative to the
system (system statistics) and statistics relative to the data (data statistics). For semi-
structured data, some other system parameters should be defined, such as
comparison between two typed values, comparison between two trees, navigation in
a tree (pointer chasing). Data statistics depends on data and collections of data
contained in the source. Classical data statistics used are: cardinality of a collection,
distribution of an attribute in a collection, minimum and maximum values taken by
an attribute. For semi-structured data, one must add some parameters such as
average depth and width of trees in a collection. Such information could be derived
from XML schemas.

Evaluating XQuery in a full-XML mediation architecture 19

A mediation cost model depends on its system parameters and its data
parameters. One or more formulas are defined in order to calculate the evaluation
cost of a request in this system (large granularity) or a predicate in a particular
operator (thin granularity). Formulas for the thinner granularity are specifics to the
sources and can be expressed with specific parameters. Formulas for the larger
granularity consist of cardinality, total cost and execution cost.

In summary, developing a complete generic cost model with overloading per
wrapper is possible in an XML mediator. Cost formulas can be exchanged in XML.
A cost model is required to select the best execution plans, based on estimators of
communication costs and processing costs.

6.4 Wrapper Capabilities

In the described version of the mediator, source capabilities are taken into
account by classes. We support three classes of sources: XQuery source, SQL
source, XML file. Basically we push XQuery queries to our XQuery source, basic
SQL to the SQL sources, and just selection to files wrapped by a filter. This is nice
but insufficient for distinguishing detailed functionalities of sources. To go further
and take into account detailed functionalities of sources at the mediator level, a
precise description of source capabilities is required. This can be done globally for a
source by sending an XML file associated to the metadata detailing what XML
operator is allowed globally on all collections or specifically on one collection, the
specific prevailing.

6.5 Semantic Cache

Another way to save messaging is implementing a semantic cache at the
mediator level. XTuples answering a given query run by the mediator could be kept
in cache. XML format will not be appropriate as too large; we would rather use the
compressed format introduced above. Thus a table of queries ordered by execution
time with associated results should be kept in cache and used to answer new queries.
Of course, update on source data will not be taken into account. Thus, semantic
caching is only possible for certain collections of XML documents not updated
frequently. It is very valuable in the case of slow sources, e.g., Web sources.

With semantic caching, a new request should be first checked against the cache
to determine if it can answer the request or a part of it. If yes, the request is split in
two parts (one part can be null): a local request that can be answered by the cache
and a source request that must be answered by the distant sources. The two results
have to be correctly assembled. This can be done by comparing the algebraic trees
in canonical form of the request with the one of each cached request. If one
computes a subset of the other, the cache can be used to process part of the request.
The request algebraic tree has to be pruned to replace the common part by a call to
the XRelation in the cache. Using an XML semantic cache for XQuery is a complex
subjects that has to be further worked out.

20 Bases de Données Avancées (BDA 2003)

7. Conclusion

We have presented the XMedia system for querying integrated views of
heterogeneous data. A first version of the system has been developed at the
university at the end of the 90's, and then transferred to the industry from 2000 to
2002 where it was completely redesigned. Currently, a new research project is
planned to develop an improved mediator, which should take into account lessons
from the past. The second version is commercialized and has several ongoing
applications and planned ones, notably on tourism data, health data, and chemistry
data.

The version described in this paper has unique features. XQueries are compiled
in execution plans expressed in an extended relational algebra capable of processing
in pipeline XML trees. Query processing is clearly divided in steps. We isolated the
query rewrite step from the decomposition step that generates algebraic trees
processing localized data sources. Localization of collections is performed using
metadata under the form of XML schemas. The optimization step requires a cost
model to be fully efficient. Hints have been introduced in the industrial version.

Performance measurement demonstrates the validity of the approach but the cost
of transferring XML files from wrappers to mediators appears to be excessive.
Several possible improvements that should be partly implemented in XMedia have
been suggested. We would like also to develop a more efficient X-machine to
process XAlgebra expressions on XML flows.

References

Chawathe S., Garcia-Molina H., Hammer J., Ireland K., Papakonstantinou Y., Ullman J., and
Widom J.: "The TSIMMIS Project: Integration of Heterogeneous Information Sources",
IPSJ Conf, Tokyo, Japan, October 1994, p. 7-18.

Christophides V., Cluet S., Siméon J.: "On Wrapping Query Languages and Efficient XML
Integration", ACM SIGMOD 2000, Dallas, USA, p.141-152.

Cluet S., Delobel C., Siméon J., Smaga K.: "Your Mediators Need Data Conversion", ACM
SIGMOD Intl. Conf. on Management of Data, Seattle, USA, 1998, p.177-188.

Fankhauser P., Gardarin G., Lopez M., Muñoz J., Tomasic A.: "Experiences in Federated
Databases: From IRO-DB to MIRO-Web", 24rd Intl Conf VLDB, New York City, USA,
1998, p.655-658.

Fernandez M., Simeon J., Wadler P.. "An Algebra for XML Query", In Foundations of
Software Technology and Theoretical Computer Science, New Delhi, December 2000.

Galanis L., Viglas E., DeWitt D.J., Naughton J.F., Maier D. "Following the Paths of XML:
an Algebraic Framework for XML Query Evaluation", Technical Report, 2001

Goldman R, Widom J. "'DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases", Proc 7th VLDB, Athens, 1997.

Evaluating XQuery in a full-XML mediation architecture 21

Haas L., Kossman D., Wimmers E., Yang J., "Optimizing Queries across Diverse Data
Sources", 23rd Intl Conf VLDB, Athens, Greece, 1997.

Jagadish H.V., Lakshmanan L.V.S., Srivastava D., Thompson K "TAX: A Tree Algebra for
XML", Proc Of DBPL Conf., Roma Italy, Sept 2001.

Levy A., Rajaraman A., Ordille J. "Querying Heterogeneous Information Sources Using
Source Descriptions", Intl. Conf. on VLDB, Bombay, 1996.

Manolescu I., Florescu D., Kossmann D.: "Answering XML Queries over Heterogeneous
Data Sources", 27th Intl Conf VLDB, Roma, Italy, 2001, p.241-250.

Shanmugasundaram J., Kiernan J., Shekita E., Fan C., Funderburk J.: "Querying XML Views
of Relational Data", Proc. Of the 27th Intl Conf VLDB, Roma, Italy,. 2001, p.261-270.

Tomasic A., Raschid L., Valduriez P. "Scaling Heterogeneous Databases and the Design of
DISCO", Intl Conf. on Distributed Computing Systems, Hong Kong, 1996.

Wiederhold G.: "Intelligent Integration of Information", ACM SIGMOD Conf. On
Management of data, Washington D.C., USA, May 1993, p. 434-437.

Zaniolo C. "The Representation and Deductive Retrieval of Complex Objects", Proc of the
11th Intl Conf VLDB, Stockholm, Aug., 1985.

