N

N

Evaluating XQuery in a full-XML Mediation
architecture
Tuyet-Tram Dang-Ngoc, Georges Gardarin

» To cite this version:

Tuyet-Tram Dang-Ngoc, Georges Gardarin. Evaluating XQuery in a full- XML Mediation architecture.
19éme conférence Bases de Données Avancées (BDA 2003), 2003, Lyon, France. hal-00733502

HAL Id: hal-00733502
https://hal.science/hal-00733502

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00733502
https://hal.archives-ouvertes.fr

Evaluating XQuery in a full-XML
Mediation architecture

*%

Tuyet-Tram Dang-Ngoc' — Georges Gardarin

PRiSM Laboratory

University of Versailles,

45, avenue des Etats-Unis

75035 Versailles CEDEX

France
“Tuyet-Tram.Dang-Ngoc@prism.uvsq-fGeorges.Gardarin@prism.uvsq.fr

ABSTRACT XML has emerged as the leading language for representing and exchatwa
not only on the Web, but also in general in the enterprise. XQsepmierging as the
standard query language for XML. Thus, tools are required to mediatede XML queries
and heterogeneous data sources to integrate data in XML. This pagsenps the XMedia
mediator, a unique tool for integrating and querying disparate heterogsneformation as
unified XML views. It describes the mediator architecture andises on the unique
distributed query processing technology implemented in this compd@neeity evaluation is
based on an original XML algebra simply extending classical operabopsocess tuples of
tree elements. Further, we present a set of performance eemluanh a relational
benchmark, which leads to discuss possible performance enhancements.

RESUME: XML s'est imposé comme le méta-langage permettant de représedt@changer
des données non seulement sur le web mais aussi de fagcon génémateeprise. XQuery
s'impose comme le langage de requéte standard pour XML. En conséaig=neatils sont
nécessaires pour interroger des sources de données hétérogénes aveg, XQuansi
intégrer des données hétérogénes en temps réel sur demande. €Clet pnésente le
médiateur XMedia, un outil permettant d'intégrer et d'interroger def®rmations
hétérogénes distribuées sous la forme de vues XML unifiéescrit Bgrchitecture du
médiateur et se concentre sur la technique d'analyse de requétebudiss qui a été
implémentée dans ce composant. L'évaluation de requéte est basdee salgebre XML
étendant simplement les opérateurs classiques de l'algébre reldiardes traitements de
tuples d'éléments arborescents. Enfin, nous parlerons d'extensions quétuiasons qui
permettrons d'améliorer les performances du médiateur.

KEYWORDS Mediation Architecture, XML Algebra, XQuery Evaluation
MOTS-CLEFS Architecture de médiation, Algébre XML, Evaluation XQuery

2 Bases de Données Avancées (BDA 2003)

1. Introduction

In recent years, there have been many research projects nfpcosi
heterogeneous information integration. Typical information integratigstems
have adopted a wrapper-mediator architecture (Wiederhold, 1993). $n thi
architecture, mediators provide a uniform user interface to quegraéel views of
heterogeneous information sources. Wrappers provide local views cfadeites in
a global data model. The local views can be queried in a mitey according to
wrapper capabilities. Although the local as view (LAV) approacls baen
considered in some systems (Leey al, 1996) (Manolescet al, 2001), most
systems follow the global as views (GAV) approach, in whichritegrated views
are designed in terms of the local views of sources. Well-kn@search projects
and prototypes based on this architecture include Garlic (ldaeaal, 1997),
Tsimmis (Chawathet al, 1994), IRO-DB (Fankhauset al, 1998) and Yat (Cluet
et al, 1998). While in the 90's most studies were based on using the objget as
data integration model, the focus has come to XML as global Immid¢he
beginning of the new century.

The advantages of XML as an exchange model, (i.e., it is riear,a@xtensible
and secure), makes it the best candidate for supporting the intbdett model. In
addition, using XML views for local data sources hides the lopatificities of
each system. Furthermore, the richness of the XML schema nsadelifies
wrapper mappings. Also, the emergence of XQuery as a powerful waligersy
language for XML makes it possible to query XML global and localvsién a
uniform way based on a standard interface. Thus, these advaetqgam that
several research projects have emerged to query in a unifayrheterogeneous
data sources based on XML as exchange model, see for examptqjitideset
al., 2000)(Manolscet al, 2001)(Shanmugasundaratal, 2001).

e-XMLMedia is providing one of the first products based on XMlintegrate
heterogeneous data sources, namely the e-XML mediator (see wwimedimfr).
It is the result of a technology transfer from the universitywefsailles (PRiSM
Laboratory). This mediator with the associated wrappers provide required
functionalities to query in a uniform way heterogeneous data soultds a
sophisticated component composed of several packages in charge of déwgmpos
gueries into mono-source sub-queries, efficiently shipping local sebes to data
sources, getting results in XML through a SAX interface, processing andidisgpm
them. Queries as well as sub-queries are expressed in XQuergddition,
capabilities are associated to wrapper so that the mediatats only supported
queries to wrappers. In summary, the mediator uses XML to repmrdisparate data
in a common format and create a unified view of that datangUadvanced
distributed query processing technology, the mediator provides an &ippliadth
the services it needs to integrate on demand heterogeneous information.

Evaluating XQuery in a full-XML mediation architecture 3

This paper describes a version of the mediator called XMedis. viersion
differs from the industrial version in some ways, notably idsed on an original
algebra for XML processing called the XAlgebra. The contributiohnthis paper
are three-fold. First we describe the modular system artiniéeof the XMedia
Mediator. Second, we describe the query processing algorithm, vghidsed on
guery transformations and the algebra operating on tuples of X&ék.tA critical
result is that the mediator is capable of processing most quepgsline on XML
event flows. Third, we report on a benchmark of the architectuosving the
weaknesses and strengths of the main system components, thus eadingideas
for query optimization. Some of them should be integrated in aefutersion of
XMedia.

The rest of this paper is organized as follows. The next sefcituses on the
middleware objectives and architecture. Section 3 desctieeXAlgebra, a simple
extension of relational algebra to process XML forests. Thergiveean overview
of the unique query processing technology embedded in the XMedia mediator
through a query example. Section 5 reports on some performaraginer@ent
based on the TPC/R benchmark adapted to XML. In section @jseess possible
extensions of the query processing engine. We conclude by summariging th
contributions and discussing future developments.

2. System Overview and Architecture
2.1 Integrating and Querying XML Views

XMedia mediator is a data integration middleware managing Xfiéws of
heterogeneous data sources. It follows the global as view approatial @lews
are defined by administrators through Queries referencing dotlattions of XML
documents. They are queried by users through a Java API exteiHdBQ to
XQuery, called XML/DBC. Data sources can be of various typesiuding
relational databases, XML files, XML databases, legacy egmins, etc. Specific
wrappers delivering metadata through introspection and providingsitdesubset
of XQuery on exported collections encapsulate them. Ideally, a wraapgravide
mapping functionalities as XML views to achieve local mappings ¢4 @ad
metadata at the source.

The mediator aims at supporting fully XML standards, including X8¢hema,
XQuery, DOM and SAX interfaces. XML schemas are used iivelys for
metadata representation. In particular, schemas descrilppedalata sources and
views at any layer. XQueries are type-checked through schémassupport
currently most XQuery use-cases. Finally, we internally procesks X/SAX event
flows for efficiency reasons. Indeed, DOM is in general tostlgdo instantiate
XML documents during processing. However, the user can if reqgeedOM

4 Bases de Données Avancées (BDA 2003)

trees as results and we sometimes use DOM inside the orethakeep XML
documents for latter processing.

Queries are decomposed in optimal mono-source sub-queries and glolyal quer
plans expressed in a specific algebra (the XAlgebra), extentiegrelational
algebra to process trees. Queries are optimized in a shupkdficient way. Simple
heuristics are supported in the current version, while cost-lipssg optimization
could be introduced in the future. Heuristics include the XML coyvaer of
classical relational detachment of selections and semisansformations. Several
algorithms are implemented for processing XAlgebra operators.

To discover relevant sites for a query and decompose it, metadateaimtained
describing the sources. When a wrapper is registered to aatoredinetadata
describing the source are sent to the mediator through a conifigufie. This file
contains an XML document containing a schema for each collectiwsed by the
source wrapper. If the schema of a collection is not known, anschg default is
generated, which describes the path set of the collectiohaitform of dataguide
(Goldmanet al, 1997). Metadata schemas are kept in the mediator memory and
indexed by source, namespace, collection and path for fasssadeiring query
processing.

2.2 A Recursive Dataflow-based Architecture

The mediator architecture is represented in Figure 1. The RBIC/API is the
only interface with external components. Thus, notice that the amoedships
requests to wrappers through XML/DBC and thus get results throubhis makes
possible for a mediator to see another mediator as a wrapp#rerffuore, results
are supplied in XML/DBC through SAX readers. Thus, flows ofnéveare
transferred between mediators and wrappers, avoiding the ovegbaathted by
the allocation of intermediate memory structures. The recuasidedata flow-based
architecture is interesting for applications that can perforta dategration at
multiple stages without much performance degradation.

! XML/DBC

‘ XML/DBC API ‘
executeQuery (XQuery) getXMetaData|()

METADATA
PARSER L

Request

RECONSTRUCTO

CANONISER
Canonical | EvALUATOR |
Request [: XML Cachg

Atomic
Request| OPTIMIZER

ML/DBC

EXECUTOR

Figure 1. Overview of the mediator architecture

Evaluating XQuery in a full-XML mediation architecture 5

The major sub-components are the XQuery parser, the metadata mahage
query evaluator, the query decomposer, and the result reconstructor. All comsponent
are briefly described below.

Parser: The parser parses the query and generates the query strudiuee if
query is syntactically and type correct. Otherwise, it returns a docusinemie.

Canoniser: The canoniser first normalizes the query and generates a query i
normal form. Normalization applies the transformation rules desgiin (Manolscu
et al, 2001). For example, let clauses are treated as tempongapleadefinitions
and eliminated. Expressions of the form FLWR(FLWR) are unnested when possibl
Second, the canoniser transforms normalized queries in simpleegjydts a
reconstruction operator. A simple query is a query in whiche#lirn expressions
are simple path expressions. The reconstruction operator is ansedpfeelement
constructors whose tags and data are either constants or comsirnpha path
expressions.

Decomposer: The decomposer decomposes each simple query in atomic
queries, i.e., query involving only one global collection. It also gee®i@join tree
(possibly empty) to keep track of the dependency between thecatpraries.
Nesting and unnesting operators may also be generated to trgstrimtermediate
results. Moreover, the decomposer identifies from the metadateeltheant data
sources and the collection localization. Based on this infoomati translates the
atomic queries on a global collection in a union of queries on tmdiections. In
particular, it translates global paths with regular expressioloeal paths replacing
jokers by the possible paths extracted from the metadata.\finalreates a first
execution plan for the query.

Optimizer: The execution plan is composed of operators of the XAlgebra. The
role of the optimizer is to transform and annotate it to getdst possible plan.
Simple optimizations of the query plan are performed in theeouwersion, but
more complex ones are planned based on a cost model. For exdvamptimizer
groups the operators that refer the same source in a singiefqushipping once.

It also orders the global operators according to query heuristicsedects the best
processing method (parallel, sequence or pipeline) for global oper#tahould
also choose the best algorithm for each algebra operator.

Executor: The executor is in charge of shipping the sub-queries to the wsapper
using XML/DBC and collecting the results in cache memorygdneral, results are
not fully instantiated in main memory but SAX events are preduand directly
processed by the evaluator when possible. We represent eackdocdbection of
XML tree shipped from a wrapper as an XTuple, i.e., a tupkefefences to forest
of XML trees instantiated in cache.

Evaluator: Based on the query plan, the evaluator evaluates the remaining
global query and applies the algebraic operators in main memoryXAlgebra
operators are able to perform XPath-based projection, testrigproduct, join,

6 Bases de Données Avancées (BDA 2003)

nesting, sorting, union, intersection and difference of orderecectiolhs of
XTuples. For each operator, we implement one or more spedificithims. For
example, several global join algorithms are possible. The evalmaty work with
intermediate collections fully stored in main memory, but aan work on a SAX
flow of events, thus implementing pipelining and hash joins. Dependémt j
algorithms requesting XTuple to one source and querying the other bashe
results are also possible.

Reconstructor: It applies the reconstruction operator to the intermediatetsesul
represented as XTuples and generates the query answer. Iwothsy it nests and
tags the data so as to construct the final result. Findllyilitthe SAX event flow to
deliver the results to the user.

Metadata manager: This package manages the schemas of all registered
sources. Further, for each source, it maintains the collectames with the
associated queryable path set. The path set is a kind of dataguide giving amovervie
of all paths instantiated in the source. If a path is mis#ingll not be queried. The
path set has to be given by the wrapper when registering thees@ur command
XDescribe).

3. Physical Algebra

As mentioned above, XQuery requests are translated in a physical algebea simpl
enough to be amenable to optimization and implementation. Selgediras have
been recently proposed (Christophides al, 2000)(Jagadishet al, 2001)
(Fernandezt al, 2000)(Galani®t al, 2001) for XML. Our goal is to be as close as
possible to some extended relational algebra (Zaniolo, 1985), but &bléeo
manipulate trees and ordered collections of trees. We now intraduwcextended
relational data model and its associated algebra for processing XMtticolke

3.1 Data mode

A relation is classically a subset of the Cartesian prodtiet list of domains.
With simple relations, domains are simple set of values; wiifect relations,
domains can be set of objects or values. We introduce XRelatiancahabe
considered as a special case of object relations, domains béitg tdées.
Classically, an XML tree is a set of labeled orderedemdtees. In addition, cross-
tree hyperlinks can be supported as special edges.

With XRelation, domains are XML trees of given path setrilfites are XPath
referencing nodes in the XML trees (see Figure 2). Eaclibwt# can be multi-
valued, i.e., refers several sub-trees. XRelation are ordetkxttions of XTuples.
Thus, each XTuple is composed of XPath named attributes, vafuggich
reference subtrees in the collection of trees. As a rekalschema of an XRelation

Evaluating XQuery in a full-XML mediation architecture

is of type R(XPath+, [Path+]), where XPath's are defining thitbates and Path's
compose the path set of the XML trees.

Figure 2 shows an example of an XRelation composed of four XTufihes.
schema of the XRelation isExample (person/fname, person/address,
person/address/street, person, book/title, book/author/lname, book/date
[person/fname, person/iname, person/address, person/address/street,
person/address/town, book/title, book/author, book/author/Iname,
book/date]). An XTuple refers to nodes and can be perceived as an afd&L
trees. Processing through references computed once is much fficientethan
processing the trees through direct navigation.

XAttributes

g | & 3

| v | £ g

AR NI R 8

g g g g 8 2 2 Forest

________ _ oo ___. petson book
% - - frame lnammress Rcﬂé{mm
£l %] e | s Lo, 7t NGRS, 2sllloes
" | 4 - o7 stfeet down ¢ (owee fsame 4
- Bt i Atk S ittt --- 17 Metropolis” /
N N T A Fl
7 i 1 I dd ti g
| e o i s o R
. .7 stieet fown /. lname
””” bl il el e Feurs Versailles 5
st--—A----------1 .
9 .
Ex [o
>0 I e ™ S O
73 L 3
Figure 2. Example of an XRelation
3.2 XAlgebra Operators

The XAlgebra includes both relational operations to process thestalble
references and navigation in the XML trees. The algebralwg/sical algebra in the
sense that algebraic expressions are used to process XMLafholntbat algorithms
are directly implementing them.

XML documents are sent to the mediator in the form of event fltsased on
SAX). XTuples are created "on the fly" when XML documents of km@ehemas
are received from the wrappers. Non-blocking operators work inimpépeh the
event flows. Blocking operators require the full instantiatioraofinput flow in
cache memory. Non-blocking N-ary operators works in general inlglaoal the
input flows.

7

8 Bases de Données Avancées (BDA 2003)

All operators of the XAlgebra receive a collection of XTuplesirgait and
return a collection of XTuples as output. In general, we modifgctly the
XRelation in memory. Operators also have specific parameteronly give the
some logical ones in the sequel.

The evaluation process of each operator is composed of two atppeparation
step and an execution one. The preparation step analyzeptheRelation(s) and
the parameters associated to the operator to determine vihdiewthe exact
operation to do when the XTuples will flow in. For example,doroperation that
requires merging trees, the preparation step determines ¢tb vdierence node the
new sub-tree will have to be linked and which paths will beomraon. Thus, the
execution step is efficient, as the major part of processing has alresdydiee.

Xsource: XSource is the starting operation to process an XML datecesour
XSource takes a particular XRelation of schema (Root, [P1n]).rBpresenting a
data source as input and generates an XRelation of given s¢aemae,... [P1,...
Pn]), where a, b, c, ... are XPaths over P1, ..., Pn. In peackiSource ships a
query to a data source and returns the result as an XRelatiothat, it parses the
SAX flow result "on the fly" and generates the collection of ugles by
constructing the trees and identifying the nodes that must be meferen the
references part of the XTuples. XSource preserves the ordeheofsdurce
documents. It is a non-blocking operator, which can construct XTuplesan as
the SAX reader has began to send events.

XRestrict: The XRestrict operator filters each XTuple of an XRefaton a
predicate logical expression, each elementary predicate compami attribute to
constants or checking range constraints over an attribute. If thetiooriditrue, the
XTuple is kept. Otherwise, it is removed with its assodia¢®IL trees. XRestrict is
order-preserving and non-blocking.

person/iname
personiaddress

person/addressitown

person/iname
personinane

person

XProjection (

© | ,inarne Ipame Jname * address person/fnarme, [- tiame T ddress

o| Clark . Kent,"Superman VAN person/address) ' AT Clark
SERIo - P4 street fown -
oo 42 _ ¥ Merropalis

street town
42 Metropalis

person person

=1 tnome Inaie Iname * sddres 1 = address
o[e e0|” - 7 fname
N - Peter B Iﬂar.lcc‘&_rdcmrm: \ =" Peter
R e fown - town
R AManhattan Manhartan

Figure 3. An example of XProject operation

Evaluating XQuery in a full-XML mediation architecture 9

XProject: XProject generalizes the classical projection to XRelationkdstan
XRelation as input and returns an XRelation with only thectet XAttributes in
table; non-referenced sub-trees are also removed. In praitipepcesses the
reference part of the XTuples to determine if the XAttributestnbe kept. If not, it
deletes the reference and suppresses non-referenced pathsrée thart. Figure 3
illustrates an example of XProject. As well as XSource, XPrggearder-preserving
and non-blocking.

XSort, XNest, Xunnest: XSort is a simple operator sorting an XRelation on a
given list of XPath, by ascending or descending order.

XNest applies a grouping operator to an XRelation. It groups X$upkg have
the same values on a set of attributes (i.e., XPath's) by mettgiirgcommon
subtrees and inserting the non common branches in a uniqgue compesdduiti-
valued references are in general created. This is a costiytop#rat first applies an
XSort and then a merging of trees with similar path set.

XUnnest is the reverse of XNest: it decomposes multi-valued sub-treisilair
path set in the XRelation by replicating common sub-tre¢iseénmeference part and
creating as mono-valued trees as needed in the tree part.

Xproduct, Xjoin: The XProduct operation takes two collections as input and
computes the Cartesian product of them. Moreover, the trees lofX8aple are
merged if their path set overlaps from the roots. In gendralCartesian product
can be pipelined but order is then non-preserved. It is possiptegerve the order
of one input relation using a nested-loop algorithm, but then the opdgat
blocking. In general, these parameters depend on the implemerdkfmithm as
well as for relational algebra.

XJoin is the generalization of a relational join. It is aAréduct combined with
an XRestrict. The XJoin is a core operator of the physitgébsa. Several
algorithms have been implemented for the XJoin including nested, Isopsnerge
and "query one source with the other". While the nested loopbeapipelined,
others cannot. Only non-pipelined nested loops are order-preserving, thuespe
can produce an interesting order.

Xaggregate: As with extended relational algebra, the purpose of aggregation
to apply a MIN, MAX, COUNT, AVG or SUM function to a celition of values.
The collection is simply given by an XPath attribute of theeddRon. Except with
COUNT that counts directly the number of references, the funcipply to the
values referred by the attributes, which have to be corrégtlyd (numeric with
classical functions). XAggregate is a blocking operation non order-preserving.

XReconstruct: Reconstruction is in general the final operation in an algebra
tree to publish the final SAX event flow as result. It t&akes input parameters an
XRelation and an XML document in which values are replacedttojputes of the
XRelation (i.e., XPaths). The effect is to produce one ressiance per XTuple.
The operation is order-preserving and non-blocking.

10 Bases de Données Avancées (BDA 2003)

XUnion, XDifference, XIntersection: They are classical set operations applied
to set of XTuples.

4. XQuery Processing Example

As introduced in the architecture section, the construction @&xanution plan
follows the following steps: (1) Normalization and canonizatf@h Atomization
and join extraction (3) Source identification (4) Execution plaeation (5)
Execution plan optimization.

We are now going to illustrate these steps with a simple geankor our
experiments, we adapted the TPC-R benchmark to a scenario suitablederaadd
and semi-structured system. We basically grouped some talglether to obtain
hierarchical data. Figure 4 describes the schema and distrilmitideta extracted
from the TPC-R benchmark.

e LINEITEM (L) ORDERS (0_)
PARTSUPP (PS) ORDERKEY }= ORDERKEY
PARTKEY [& .| PARTKEY T CUSTKEY
SUPPKEY =7 1F 777777 SUPPKEY ORDERSTATUS
AVAILQTY |1 | | LINENUMBER TOTALERICE
SUPFLYCOST 11| QuaNTITY ORDERDATE
e
COMMENT |\ | | EXTENDEDFRICE ORDERFRIORITY
| | Discount CLERK
L | max .
CUSTOMER(C) | | ETURNELAG SHIPPRIORTLY
CUSTKEY = e LINESTATUS Sl
NAME ' A3
ADDRESS ' | | SHIPDATE
NATIONKEY = || comMmITDATE NATION (N_)
PHONE | | RECEIFTDATE NAME
ACCTBAL | sHemsTRUCT
MKTSEGMENT 01 [shiemops KEYS
COMMENT 0 commamnr | | et L NATIONKEY
i A2 " REGIONKEY <1
2l i
e - COMMENT
SUPPLIERS) | | pgre, EECIENHE)
i) I ! 1 —
I SUPPKEY ' | H D
NAME || | mevmEcaTioN -
[~ contacT H PARTKEY — REGIONKEY {4~
[LOCALISATION ! NAME
¥ COMMENT
|: ADDRESS
- DESIGNATION
NATIONKEY X
—— PHONE MEGR
L DETAIL
OBJECT
—— ACCTBAL
—— COMMENT — sEzE
Ad [~ CONTAINER
A6 —— TYPE
BRAND
| DETAIL
RETAILPRICE
COMMENT
AL

Figure 4. Schema and distribution of data

Evaluating XQuery in a full- XML mediation architecture 11

Relational tables PARTSUPP and CUSTOMER, LINEITEM, ORBEare
managed by wrappers Al, A2 and A3 on top of a relational DBIWEe-structured
XML collections SUPPLIER, PART, NATION and REGION atergd in an XML
DBMS. SUPPLIER is partitioned on wrappers A4 and A6 whiRIP is managed
by wrapper A5. NATION and REGION are managed by wrapper A6.

To illustrate the query processing steps described above, suemasthe
following query: “Display for each nation having iron in commethe list of
suppliers (name and phone) located there with nested partsugxeypand
supplycost) having an available quantity greater than 45.” The formaf qae be
written in XQuery as follows:

for $n in Collection("*")/nation
wherecontains ($n/comment, "iron")
return
<nation>
<name>{$n/name}</name>
<suppliers>
for $s in Collection ("*")/supplier, $ps in Collection ("*")/partsupp
where $s/id/suppkey = $ps/suppkey and $ps/availqty > 45
and $s//nationkey = $n/nationkey
return
<supplier>$s/name</supplier>
<phone>$s/contact/phone</phone>
<partsupp>
<partkey>{$ps/partkey}</partkey>
<supplycost>{$ps/supplycost}</supplycost>
</partsupp>
</suppliers>
</nation>

As there is not any LET clause in the example, the query ésthjirunnested.
Applying rules similar to that defined in (Manoleseual, 2001), we unnest sub-
queries from the request and purge them of all reconstruction taggegall them
elementary queriesThen, the canonization phase generates the reconstruction query
(XReconstruct operator) plus the elementary query. The reconstrugtiery is
simply the returned document with XPath expressions in place of constants.

‘ Canonized request
Elementary query 1
lett1 ::=for $n in Collection("*")/nation
where contains ($n/comment, "iron")
return ($n/nationkey, $n/name)

Elementary query 2

12 Bases de Données Avancées (BDA 2003)

let t2 := for $t in $t1; $s in Collection ("*")/supplier, $ps in Collection ("*")/partsupp
where$ps/availqty > 45
return($s/contact/localisation/nationkey,$s/id/suppkey,$s/name,$s/contact/phone,
($ps/suppkey , $ps/partkey, $ps/supplycost))
Reconstruction query
<nation>
<name>{$tl/name}</name>
<suppliers>
<supplier>{$s/name}</supplier>
<phone>{$s/contact/phone}</phone>
<partsupp>
<partkey>{$ps/partkey}</partkey>
<supplycost>{$ps/supplycost}</supplycost>
</partsupp>
</suppliers>
</nation>
Next, the atomization step extracts from the elementary query the orax$ob-
queries for each logical collection with associated rdw&tris and other unary
operators as sort or aggregate. It also generates the finatgoditions possibly
followed by aggregate, sort and a final nest operator to geesudting XTuple's
correctly nested for reconstructing the final XML documentsoun simple case
with only restrictions and joins, we obtain three atomic geedard two joins
followed by a nest. They can be expressed as follows in XQuery-like syntax.

Decomposed Request
- Atomic Request t1

lettl::=for $n in Collection("*")/nation

where contains ($n/comment, "iron")

return ($n/nationkey, $n/name)
- Atomic Request t2

lett2:=for $s in Collection ("*")/supplier

return($s/contact/localisation/nationkey,$s/id/suppkey,$s/name, $s/contact/phone)
- Atomic Request t3

lett3:=for $ps in Collection ("*")/partsupp

where $ps/availqty > 45

return ($ps/suppkey , $ps/partkey, $ps/supplycost)
- Global Request

for$nintl, $sint2, $psint3

where $s/id/suppkey = $ps/suppkey and $s/ /nationkey = $n/nationkey

return($n/name,($s/name,$s/contact/phone, ($ps/partkey, $ps/supplycost)))
The request is then analyzed further to identify the data sotiheg¢smay

contribute to the result. The metadata describing each esmissource are used

both to determine source relevance and to complete XPath'plétts. Notice that

Evaluating XQuery in a full-XML mediation architecture 13

a source can handle several collections and that a colleatiobecfound on several
sources. For atomic queries t1, t2 and t3, we obtain:

Atomic request ‘ Relevant path sets ‘ sources
1 Collection("NATION")/nation/comment A6
Collection("NATION")/nation/nationkey
Collection("NATION")/nation/name

t2 Collection("SUPPLIER")/ A4, A6
supplier/contact/localisation/nationkey Collection
("SUPPLIER")/supplier/id/suppkey Collection("SUPPLIER")/
supplier/id/name Collection("SUPPLIER")/
supplier/contact/phone

t3 Collection("PARTSUPP")/availgty Al

Collection("PARTSUPP")/suppkey

Collection("PARTSUPP")/partkey

Collection("PARTSUPP")/supplycost

The execution plan can now be constructed in terms of XAlgebratopeFor

each atomic request, an XSource operator is created. Its tolship the request to
the wrapper and get the result under the form of XTuple's. The gle@aést is
used to compose the join tree and the nest operator. Finally{Reeonstruct
operator is added to generate the correct XML result. The prdpoeecution plan
for the example request is represented in Figure 5. Of cohiseprte should be
further optimized.

ler t="for $n in Collection ("NATION"¥nation
where contains ($nicomment, “iron")
remum { $n/name, $n/nationkey;

for $s in Colleetion ("SUPPLIER")/supplier
retum (¥s/mame, $s/contact/phene, $s/suppkey)

for $s in Collection ("SUPPLIER "¥supplier
return ($s/name, $s/icontact/phone,, $s/suppkey)

for $tin $tl m
KT

returm ($t/nationkey)

where $ps/availqty > 45
remrn ($ps/supplycost. $ps/suppkey. $psipartkey)

[ﬁm $ps in Collection ("PARTSUPP" Vpartsupp }
B

Al

“<nation’>
‘<name> Y1 </namex
suppliers>
<suppliers
<supplier= $s/name </supplisrz
<phone> $s/phone </phone>
<supplycosts $psisupplycost </supplycoss
<livee= Sltine <livies
<Isuppliers
<isuppliers>
</nation>

Legend

@ KSource
[o @ XUnion
<> KNest Bﬂ KReconstruct

I
Figure5. Proposed execution plan for the request

The algebraic tree can be optimized using traditional ruleshef nested
relational algebra: perform restriction at first, push proggat nest operator up the

14 Bases de Données Avancées (BDA 2003)

tree, order joins, select the best algorithm for each opefHEbis.last optimization
requires either user hints or a cost model. We shall discuss that further iqubke se

5. Perfor mance M easur ement

To further understand the system bottlenecks and determine useful
optimizations, we experiment with a beta version of the indugyistem. In this
section, we describe some results of our experiments that try toe#m overhead
induced by each component of the architecture.

5.1 Evaluated Architecture
We use client-server architecture with two servers. Thentcprocessor is a
Celeron 600 MHz with 64 Mb RAM, while the servers are dntium 4 1.6 GHz

with 256 Mb RAM. The network is 10 Mbits/second. All systears running
Linux. 2.4

/
(1

/‘/\m < ()

“75 A4 AS A Al A2 l\u AS A6

S (HE EEEEED B

a) (b) (c)
Figure 6. The compared mediation architecture

‘>

—_ U_‘Jt

To compare various architectures, we use different arrangemenisdiators
and wrappers, as shown in Figure 6. MO, M1, M2, M3 and M4 adiators. They
are all run on the client computer. A1, A2, A3 are wrappertoprof a relational
databases. A4, A5, A6 are wrappers on top of a semi-structiatedhase (this is
indeed the e-XML Repository of e-XMLMedia). A7 is a wrappr top of a
relational database that contains exactly all the data of AlamR A3. M1 is
connected to mediators while all others are connected to weapes is possible
as mediators and wrappers have the same interfaces.

5.3 Time per step

The processing of a request follows the steps below:
1. Request parsing that transforms the XQuery request into emaht
form.

2. Algebra tree construction that normalizes, canonizes, atontlimes
request and finally constructs the algebraic tree.

Evaluating XQuery in a full-XML mediation architecture 15

3. Execution initialization establishing the connection to the wirapaed
getting the first XTuple.

4. Local execution of the request on the wrapper including sending the
request to the wrapper, getting the result by XML/DBC in th& S
format and transforming the SAX flow in XTuple.

5. Global execution of the request and reconstruction, i.e., procelsing t
XTuples through the algebraic tree to return the result.

Steps 1, 2 and 3 compose the initialization phase of request processing.

The time spent for the initialization phase, for steps 4, 5, fandomplete
processing are depicted on Figure 7. The initialization steyisst insignificant
with regards to other times. The total time is still apprataty the double of the
wrapper time. The evaluation on the wrapper consists of: (I)sfaaning the
request into SQL (2) Executing the request on the databasedD(@)cGetting the
tuples and changing them into XML document.

As the results are measured with a hot database, the topliescache and SQL
requests are executed in main memory. This confirms that thenaaintime is
XML construction and shipping.

Figure 7. Execution time for each step Figure 8. Execution time of init steps

B G H : H

¥ A\'\'. &
M dedw | 4
}&Wuwwwwmmm i

LARINA LA o i s i i il F s | 1A L

10 |

o =00] 1m00 2000 200 a0m
b of reauits dodiments.

16 Bases de Données Avancées (BDA 2003)

In Figure 8, we detail the initialization time between titoeparse the query,
time to generate the execution plan and time to get therdissit. All these times
are small. Request parsing is very short (< 10 ms). Gemgrtite execution plan
takes a little more time (< 15 ms). Getting the firsuferequires a little more time,
showing again that exchange time is dominant.

5.2 Mediation Cost Overhead

To evaluate the costs of the mediator overhead, we consideohgedries of
the modified TPC/R benchmark introduced above. The following simple query

for $0O in collection"ORDERS")
where$O/orderkey < N
return<result> <O>$0/comment</O></result>

is executed successively on mediator MO, mediator M4 and wrakpeN
varies from 1 to 3000 to get different result size. In théy,wwe can compare the
overhead cost of a mediator on another mediator, and of a mediatowrapper.
To compare with a direct access to wrapper A3, all oralersnanaged by wrapper
A3. Figure 9 hows the execution time depending on the number of resulting
documents for each type of execution.

200000

time (in ms)

4500

4000

3500

3000

2500

2000

time (in ms)

180000 |-

160000 |-

140000 |-

120000 |

100000 |

X 80000 | /
- 60000 M/
i M .
a0l 40000 f
L /
1000 w /
20000
* /
ik

0

1500

oOORRH IO
g0 HHNRIOOO KN

0 1000 2000 3000 4000 5000 6000 7000
number of result documents

Figure 10. Execution time on M2 and M4

2500 3000

The Figure 9 shows that the execution time of the query on M1 aupdd?
then A3 differs by less than 10% from the execution time ofaklssing directly
A3. This demonstrates the value of our recursive architecturenagdnieral the
small overhead induced by the mediator for simple queries. Nbteunning the
query directly on the wrapper takes approximately half time. iShdsie to the time
required for transferring and converting the data in XML.

5.4 Intersite join

We now submit a set of requests that perform a join betweenafes. The
request is as follows:

Evaluating XQuery in a full- XML mediation architecture 17

for $L in collection('LINEITEM"), $O in collection("'ORDERS")
where$O/orderkey = $L/orderkey and$L/orderkey < N
return
<result>
<lcom>$L/comment</lcom>
<ocom>$0O/comment</ocom>
</result>
As previously, N varies from 1 to 3000 to change selectivity.fideevaluate
the request on the mediator M4 and then on the mediator M2. firdhease, the
join is executed by the data source (Oracle) in the sereemamy, in the second
case, the join is performed on the mediator and XML tuplegransferred on the
network. Again, the result (see Figure 10) shows that the tramsfelis dominant.
It also shows that intersite joins are costing operations ltwatic be pushed to the
wrapper when possible.

6. Possible | mprovements

The results of the experiments, some being reported above, denwotisrhigh
communication cost to exchange XML documents between wrappers and nsediator
Thus, this is the first point to improve. We propose several augonents that
should reduce this cost drastically.

6.1 XML Compression and Bulk Transfers

Transferring XML documents between wrappers and mediators apjeebes
costly. Each XTuple is encoded in an XML message and senttmvaetwork. The
XML message is then parsed on the client and transformadatitein an XTuple
descriptor and XML trees as event flows. Thus, the number of agessis
important and the processing time is high. One may argue that owrkes slow
(10 M bits), but this is not sufficient to explain the results.

To save in number of messages, we could use bulk transfeseaddseveral
messages in one block. The number of messages per block should be tuned such that
the pipeline on the client continues to proceed smoothly. Neverth#lessdoes not
save parsing and unparsing of lengthy messages. This is somehoswnirtbexML
and may degrade performances forever.

One solution is to use a compressed format for transferring Xg.upthemas of
XTuples are known both by the client and the server under the foamlisf of
paths. The types of values (leaves of XML trees) are also krtlosmeaugh XML
schemas. Thus, an obvious compression mechanism consists in samigple
as a sequence of path identifiers (16 bits is sufficientpat by the leaf value
encoded according to its type. Parsing will then be an obvisits However, we
may loose the purity of XML and the generality of the communicatiechanism.

18 Bases de Données Avancées (BDA 2003)

Although it is a bit contrary to XML principles, we believe tttea compression
device saving parsing time is crucial.

6.2 Operator Algorithms

The benchmarked version of the mediator uses a simple join hfgorit
(optimized nested loops). It is obvious that other algorithms shouttbh&dered
for joins notably, but for other operators as well (e.g., nest i qumplex).
Implementing dependent joins, i.e., join by reading an XRelationgardying the
other with the read value, could be helpful to save in numbereséages in case of
small answers. Merge join and hash join could also be useful. Thus, werarely
integrating a library of algorithms for each XAlgebra operattie fproblem is then
how to select the best plan. A possible answer is to develop a cost model.

6.3 Cost Modél

The classical solution for choosing the best execution plam ¢®mpare plan
costs using a cost model. We propose a cost model somehow irfspineDISCO
(Tomasicet al, 1996). The mediator has a generic cost model derived from a
relational cost model extended with tree manipulation. Then eaapper can
export specifics statistics and formulas to the mediator. geémeric cost model is
generally used with the exported statistics (to evaluat@inzdities), but specific
formulas exported by a wrapper can override generic formulasaphi®ach gives
a framework to compute the global cost of a query plan integratbcal
information on sources.

To communicate their cost model to the mediator, a wrapperausest model
language. In an XML environment, the cost language has to be dafiXddL. As
formulas and statistics definitions use a lot of mathemattstions, we based our
cost language on MathML. MathML is a specification of the W8Ccoding in
XML the representation or the structure of a mathematical olfjedy. the semantic
information about a mathematical object is interesting for oupqgse. The
advantages of using MathML for describing cost formulas are tbteeit is full
XML, it supports general formulas, and calculation software can be aiseipute
formulas.

Parameters used for evaluation of a cost model are sttisfative to the
system (system statistics) and statistics relatithdalata (data statistics). For semi-
structured data, some other system parameters should be defudd,as
comparison between two typed values, comparison between &0 mi@vigation in
a tree (pointer chasing). Data statistics depends on data dedtionk of data
contained in the source. Classical data statistics usedaadinality of a collection,
distribution of an attribute in a collection, minimum and maximuatues taken by
an attribute. For semi-structured data, one must add some gqtaransuch as
average depth and width of trees in a collection. Such infamabuld be derived
from XML schemas.

Evaluating XQuery in a full-XML mediation architecture 19

A mediation cost model depends on its system parameters andhtés
parameters. One or more formulas are defined in order tala@dhe evaluation
cost of a request in this system (large granularity) or a @edin a particular
operator (thin granularity). Formulas for the thinner granularigyspecifics to the
sources and can be expressed with specific parametersul&srfor the larger
granularity consist of cardinality, total cost and execution cost.

In summary, developing a complete generic cost model with overlogging
wrapper is possible in an XML mediator. Cost formulas carxbkasged in XML.
A cost model is required to select the best execution plansd lmsestimators of
communication costs and processing costs.

6.4 Wrapper Capabilities

In the described version of the mediator, source capabilitiestaken into
account by classes. We support three classes of sources: XQueoe, SQL
source, XML file. Basically we push XQuery queries to ourué€y source, basic
SQL to the SQL sources, and just selection to files wrapgedl filter. This is nice
but insufficient for distinguishing detailed functionalities of sestcTo go further
and take into account detailed functionalities of sources amtédiator level, a
precise description of source capabilities is required. Thisvealone globally for a
source by sending an XML file associated to the metadatdimtptevhat XML
operator is allowed globally on all collections or specificallyone collection, the
specific prevailing.

6.5 Semantic Cache

Another way to save messaging is implementing a semantic caclilee
mediator level. XTuples answering a given query run by the noediauld be kept
in cache. XML format will not be appropriate as too large;would rather use the
compressed format introduced above. Thus a table of queries ordeegddution
time with associated results should be kept in cache and usedvier alesv queries.
Of course, update on source data will not be taken into account. Jémsantic
caching is only possible for certain collections of XML documents upatated
frequently. It is very valuable in the case of slow sources, e.g., Web sources.

With semantic caching, a new request should be first checkeasatjze cache
to determine if it can answer the request or a part dfyed, the request is split in
two parts (one part can be null): a local request that camdveeged by the cache
and a source request that must be answered by the distant sohedso results
have to be correctly assembled. This can be done by compariniyebea& trees
in canonical form of the request with the one of each cached steg@icone
computes a subset of the other, the cache can be used to partegsthe request.
The request algebraic tree has to be pruned to replace the cqramdy a call to
the XRelation in the cache. Using an XML semantic caoh&Query is a complex
subjects that has to be further worked out.

20 Bases de Données Avancées (BDA 2003)

7. Conclusion

We have presented the XMedia system for querying integrated viéws
heterogeneous data. A first version of the system has been develbpbd
university at the end of the 90's, and then transferred to thetipdsm 2000 to
2002 where it was completely redesigned. Currently, a new rbseaofect is
planned to develop an improved mediator, which should take intuactessons
from the past. The second version is commercialized and Wasakengoing
applications and planned ones, notably on tourism data, healtraddtahemistry
data.

The version described in this paper has unique features. XQaegie®mpiled
in execution plans expressed in an extended relational algmteble of processing
in pipeline XML trees. Query processing is clearly dividedteps. We isolated the
query rewrite step from the decomposition step that generdgebraic trees
processing localized data sources. Localization of collecti®nzerformed using
metadata under the form of XML schemas. The optimization reigpires a cost
model to be fully efficient. Hints have been introduced in the industrial version.

Performance measurement demonstrates the validity of the apjaatie cost
of transferring XML files from wrappers to mediators appdarde excessive.
Several possible improvements that should be partly implementéiédia have
been suggested. We would like also to develop a more efficianachine to
process XAlgebra expressions on XML flows.

References

Chawathe S., Garcia-Molina H., Hammer J., Ireland K., Papakatirsbu Y., Ullman J., and
Widom J.:"The TSIMMIS Project: Integration of Heterogeneous Information Sources
IPSJ Conf, Tokyo, Japan, October 1994, p. 7-18.

Christophides V., Cluet S., Siméon Ion Wrapping Query Languages and Efficient XML
Integration”, ACM SIGMOD 2000, Dallas, USA, p.141-152.

Cluet S., Delobel C., Siméon J., Smaga"Kour Mediators Need Data ConversigriRCM
SIGMOD Intl. Conf. on Management of Data, Seattle, USA, 1998, pl887-

Fankhauser P., Gardarin G., Lopez M., Mufioz J., Tomasi¢EXperiences in Federated
Databases: From IRO-DB to MIRO-Wel24rd Intl Conf VLDB, New York City, USA,
1998, p.655-658.

Fernandez M., Simeon J., Wadler PAn Algebra for XML Query"In Foundations of
Software Technology and Theoretical Computer Science, New Delbénieer 2000.

Galanis L., Viglas E., DeWitt D.J., Naughton J.F., Maier'Enllowing the Paths of XML:
an Algebraic Framework for XML Query Evaluatioechnical Report, 2001

Goldman R, Widom J. "DataGuides: Enabling Query Formulatiod Optimization in
Semistructured Databases", Proc 7th VLDB, Athens, 1997.

Evaluating XQuery in a full- XML mediation architecture 21

Haas L., Kossman D., Wimmers E., Yang "Dptimizing Queries across Diverse Data
Sources;' 23rd Intl Conf VLDB, Athens, Greece, 1997.

Jagadish H.V., Lakshmanan L.V.S., Srivastava D., ThompstRAX: A Tree Algebra for
XML", Proc Of DBPL Conf., Roma Italy, Sept 2001.

Levy A., Rajaraman A., Ordille J'Querying Heterogeneous Information Sources Using
Source Descriptions'intl. Conf. on VLDB, Bombay, 1996.

Manolescu I., Florescu D., Kossmann DAnswering XML Queries over Heterogeneous
Data Sources"27th Intl Conf VLDB, Roma, Italy, 2001, p.241-250.

Shanmugasundaram J., Kiernan J., Shekita E., Fan C., Funderb@kelying XML Views
of Relational Data;' Proc. Of the 27th Intl Conf VLDB, Roma, Italy,. 2001, p.261-270.

Tomasic A., Raschid L., Valduriez FScaling Heterogeneous Databases and the Design of
DISCO" Intl Conf. on Distributed Computing Systems, Hong Kong, 1996.

Wiederhold G.: "Intelligent Integration of Information”, ACM SM®D Conf. On
Management of data, Washington D.C., USA, May 1993, p. 434-437.

Zaniolo C."The Representation and Deductive Retrieval of Complex Ohjdtst of the
11th Intl Conf VLDB, Stockholm, Aug., 1985.

