N
N

N

HAL

open science

Tree Graph View: On Efficient Evaluation of XQuery in
an XML Mediator.

Tuyet-Tram Dang-Ngoc, Georges Gardarin, Nicolas Travers

» To cite this version:

Tuyet-Tram Dang-Ngoc, Georges Gardarin, Nicolas Travers. Tree Graph View: On Efficient Evalu-
ation of XQuery in an XML Mediator.. 20éme conférence Bases de Données Avancées (BDA 2004),

2004, Montpellier, France. p. 429-448. hal-00733494

HAL Id: hal-00733494
https://hal.science/hal-00733494

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00733494
https://hal.archives-ouvertes.fr

Tree Graph Views: On Efficient
Evaluation of XQuery in an XML Mediator

Tuyét-Tram Dang—Ngoc*’**—Georges Gardarin —Nicolas Travers
*PRiSM Laboratory - University of Versailles

45, avenue des Etats-Unis, 78035 Versailles CEDEX. France
{Prenom.Nom}@prism.uvsq.fr

** LICP Laboratory — University of Cergy-Pontoise

RESUME. XQuery est le standard émergent pour interroger des sources de données XML.
XLive est un médiateur léger XML/XQuery développé a l'université de Versailles dont le
moteur utilise une algebre XML dérivée du relationel, étendu afin de traiter des flux de
données d'arbres XML. L'optimiseur de requétes traduit un sous-ensemble de XQuery dans
cette algebre. Pour étendre l'ensemble des requétes XQuery traitées par l'optimiseur et mieux
optimiser les plans d'exécution, nous proposons une représentation des requétes sous forme
de graphes d'arbres, et plus précisément sous forme de graphes de modele d'arbre reliés par
des hyperliens. Notre structure appelée TGV est une extension des modeles d'arbres
généralisés proposés dans [5] comme représentation concise et pratique d'une requéte
XQuery. Elle permet de représenter plus intuitivement les requétes et permettre d'optimiser
directement avant de produire le plan physique d'exécution. Le TGV se préte aux algorithmes
simples pour produire des plans d'exécution algébriques efficaces. De plus, il est efficace
pour la traduction de vue et la simplification de requétes, et pour tenir compte des capacités
d'interrogation des sources. Nous l'implémentons actuellement dans l'optimiseur d'XLive.

ABSTRACT. XQuery is the emerging standard for querying XML data sources. XLive is a light
XML/XQuery mediator developed at University of Versailles whose engine processes an XML
algebra derived from the relational one extended to process in dataflow XML trees. The
query optimizer translates a subset of XQuery in this algebra. To extend the optimizer’s
coverage of XQuery and better optimize query plans, we propose a representation of queries
as graphs of trees, more precisely as tree pattern graphs interconnected by hyperlinks. Our
structure called Tree Graph View (TGV) is an extension of the Generalized Tree Pattern
graph proposed in [5] as a concise and practical representation of an XQuery request. It is
designed to be a more intuitive model of queries and to allow direct optimization before
generating the physical execution plan. TGV lends itself to simple algorithms to generate
efficient algebraic execution plans. Moreover, it is effective for view translation and query
simplification, and for taking into account source capabilities. We are currently
implementing it to support the new XLive optimizer.

MOT-CLEFS : Evaluation XQuery, Mediation, Modele d'arbres, Algebre XML, Vues,
Optimisation, Plan d'exécution.

KEYWORDS : XQuery evaluation, Mediation, Tree pattern, XML algebra, Views, Optimization,
Execution plan.

Actes des 20émes journées de Bases de Données Avancées, BDA'04 1

1. Introduction

In this paper, we address the problem of query optimization in an XML mediator
supporting XQuery. An increasing number of XQuery-based information integration
platforms are available. Query optimization in a mediator is a difficult task, which
has been addressed in a few papers [12][14]. Several graph-based models have been
introduced for centralized XQuery processing, including Tree Pattern and
Generalized Tree Pattern [5]. The adaptation of such models to distributed query
processing remains to be done. We propose an extended representation of XQuery
called the TGV (Tree Graph View), which is convenient for query simplification,
optimization, and transformation in a mediator.

At the University of Versailles, we have designed and implemented two versions
of a mediator [7]. The first has been commercialized and is now distributed in open
source (see www.xquark.org). The latest is a research vehicle named XLive. XLive
is an XML mediator, dealing with a significant subset of XQuery. The architecture is
able to integrate and query relational or XML sources in XQuery. Wrappers can be
accessed through Web services or directly through a Java API. Wrappers translate a
subset of the common query language (XQuery) into the source native query
language and map the source native result format into the common format (XML).
Wrappers can have different capabilities, i.e., do simple selection, navigation with
XPath query, perform FLWR with joins, etc. The mediator decomposes global
XQueries in local ones plus integration operations (union, join, reconstruction)
handled by the mediator.

One main objective of the mediator is to generate from an XQuery request an
optimized execution plan. The plan is an XML algebraic operation tree ready to be
evaluated, the leaves by wrappers, and the rest by the mediator. The construction of
an execution plan tree directly from an XQuery request is very complex although
equivalence rules for nested queries and reconstruction have been defined [12][14].
Moreover, execution plans are not convenient for all optimizations. Starting from
[5], we design a convenient model for representing and optimizing XQuery. An
XQuery is modeled as a graph interconnecting annotated tree patterns called a TGV.
This representation can be seen as an extension of relational query graphs to XML
trees in place of relations. Similar representations have been proposed (XQBE[4],
MIX]3]), but they are applied to the design of user-friendly interfaces and not to
query processing.

The XLive query runtime is dataflow-oriented and built around an extended
relational algebra for XML, known as the XAlgebra. Several algebras have been
proposed for XML processing, among them tree algebras manipulating set of trees
[9] [11] and extended relational algebras manipulating non-1NF relations [6]. Our
algebra is hybrid in the sense that non-1NF relations are used to store pointers to tree
nodes. The original idea of our algebra is to represent XML documents as tuples of
references to virtual DOM trees, called XTuples. The mediator evaluates XTuples
all along our query plans composed of XAlgebra expressions and constructs the

Actes des 20émes journées de Bases de Données Avancées, BDA'04 2

XQuery result. To create the algebraic plan, rules for transforming the query TGV
into XAlgebra operators are enumerated. Furthermore, the query TGV is suitable for
various optimizations and operations as handling sources capabilities and applying
view rewriting.

This paper is organized as follows. In the next section, we survey as background
the GTP graph structure and describe the proposed TGV structure. In section 3, we
present the XLive XML algebra and sketch the execution plan construction method.
In section 4, we show how to optimize execution plans, handle source capabilities,
and rewrite queries on views using XQuery TGVs. The conclusion summarizes our
contribution and suggests some extensions.

2. XQuery Modélisation
2.1. Generalized Tree Pattern (GTP)

A well-known structure for modeling XML queries is the so-called Tree Pattern
Query (TPQ) [5]. A TPQ is a tree with nodes labeled by variables together with a
formula specifying constraints on tags, attributes, and contents. The tree consists of
two kinds of edges — parent-child (pc) and ancestor-descendant (ad) edges. The
semantics of a TPQ is based on the notion of pattern match, a mapping from the
TPQ nodes to the database nodes satisfying the formula.

A Generalized Tree Pattern [5] is a natural extension of TPQs. XQuery contains
joins, nesting, aggregates and other complex constructs not captured by TPQ. GTP
integrates most of them, including optional and mandatory nodes. An example of a
GTP is given Figure 1. Notice the dotted line, the join conditions, and the block
levels (e.g., 1.1.0). Block levels identify links between TPQs and are defined by the
level of hierarchy in the group number.

T (0 (1.0) (1.1.0) F $p.tag=person & $g.tag=age &
$p $t $e $nl.tag=name &$g.content>25
\ \
\ \ & $t.tag=closed_auction &
\ \\ b.tag=buyer & $i.tag = itemref
\
$\hl $ %i g2 (L10) & $e.tag = europe & $t2.tag =

item & $n2.tag = ltemName
0 @@ @10 | 9
! Join Condition:
$n2(1.1.1) = $p.id=$b.person &
$i.item=$t2.id

\\‘ : Optional relation
Figure 1. Generalized Tree Pattern

However, GTP does not model all constructs that are required for distributed
queries:

Actes des 20émes journées de Bases de Données Avancées, BDA'04 3

- The notion of data source is not included.

- The XML result of a query is not modeled.

- Modeling views and query on views are not possible.
- Let and functions are not integrated.

- Tags, relations, and constraints are embedded in a boolean formula difficult to
read.

All in all, the GTP representation is not very intuitive, as dependencies between tree
patterns are not explicated except in formulas. Thus, this model requires some
extensions and adaptations to be the core of a distributed query-processing algorithm
in a mediator. We propose the TGV (Tree Graph View) model that we are currently
implementing in the XLive mediator for XQuery processing.

2.2. Tree Graph View (TGV)

As in GTP, we represent XQuery requests using tree patterns. A query is mapped
into a bi-graph called a Tree Graph View (TGV). This is really a graphical view of a
graph whose nodes are trees. A TGV is composed of a set of tree patterns T'and a set
of hyperlinks #£

2.2.1. Tree pattern

A tree pattern similar to the TPQ is associated to each XML collection. As usual,
a tree pattern is composed of nodes and edges. Annotations are added on nodes and
edges. Nodes are labeled with a label representing a tag or a data source (root node),
an optional selection predicate representing a filter applied to the node, and an
optional function expression to apply to the node after filtering. Thus, a node N is
annotated by a structure (label, predicate, function expression). Let ALbe the set of
nodes of the tree pattern. An edge between two nodes represents a parent-child
(simple line) or ancestor-descendant (double line) relationship. They can also be
optional or mandatory as in TPQ. Thus an edge E linking two nodes is defined as
E(source_node, destination_node, descendant, mandatory, multiplicity), where
source_node and destination_node belong to A descendant and mandatory can be
true or false, multiplicity means that these element should be nested within its
parent (see below). For edges, we keep the representation of the GTP, with double
line for ancestor-descendant link, solid line for mandatory branch, and dotted line for
optional one.

We distinguish a special tree pattern - called the return tree pattern (RTP) - that
models the return clause of a query. In general, nodes in the return tree pattern have
no predicate attached; all edges represent parent-child relationships. In our graphical
representation, common tree patterns are represented in bubbles while the return tree
pattern is enclosed in a box.

Every tree pattern matches the schema of the represented collection, including
the return tree pattern, which matches the result schema. When processing queries
each XPath generates new labels into the tree pattern. An attribute is formalized as a

Actes des 20émes journées de Bases de Données Avancées, BDA'04 4

label with a "@" in prefix. When an XPath is referenced only into a return clause, it
is not mandatory in the XML result fragments as an empty tag can be generated. In
this case, a dotted line is used to represent the XPath extraction, meaning that null
values are allowed.

In the context of a mediator, we distinguish source tree patterns (STP) from
other tree patterns. A STP models a query on a data source collection. It has to
match with the schema of the data source. It is not derived from another tree pattern.
The label of the root of the tree pattern is the source name. Figure 2 portrays a
source tree pattern on "sourcel". A restriction is applied on the XPath
(sourcel//a/[b = 5]). A count function is set on sourcel//a/c; a is linked by a dotted
line to ¢ as this path is not mandatory and is only useful for the result reconstruction;
the "*0" on ¢ means it should be nested inside its parent a (before counting). Finally,
the XPath sourcel//a//d/@id is optional and useful for results as well.

Non-source and non-result tree patterns are called intermediate tree patterns
(ITP). An ITP is resulting from a mapping from one or more other tree pattern. This
tree pattern is useful to model queries including a variable created from another one
(e.g., for $i in $j) or intermediate results coming from a filtered data source.

sourcel

I
b/ oy
value=5 Count() :
@id

Figure 2. Source Tree pattern

A problem when processing queries is to model nesting operations. To represent
the fact that a node should be nested in a parent, we introduce an additional
multiplicity mark graphically denoted by a "*". Nesting can be requested
simultaneously on several child elements of a given node. To denote that, we use an
index; thus, two stars on the out edges of the same parent with the same level of
nesting (e.g., *1 and *1) mean nested together within the parent.

2.2.2. Hyperlinks

Tree patterns are connected together by hyperlinks. Hyperlinks connect two
nodes belonging to different tree patterns. There can be several hyperlinks from one
tree pattern to another. In general, hyperlinks are labeled by a comparison predicate
chosen among {=,<,<=>=, #}. An hyperlink models a correspondence between two
nodes: the instance node values satisfying the query shall satisfy the comparison
predicate. As any edge, an hyperlink can be mandatory or optional (meaning null
value possible). An hyperlink H belonging to the set # of all the hyperlinks of the
TGV is represented by H(source node, destination node, type, mandatory,

Actes des 20émes journées de Bases de Données Avancées, BDA'04 5

multiplicity), where source_node and destination_node belong to A; type can be of
type projection or of type join, mandatory can be true or false, and multiplicity is the
nest index saw in the previous subsection.

The TGV is a declarative model that represents as a graph of trees the relevant
fragments of the database for the query. However, to clarify the description and be
complete, we introduce some procedural features in the model (that is partially the
case for the multiplicity factor and the distinction between STP, ITP, and RTP). In
this line, we distinguish join hyperlinks and projection hyperlinks. Joins hyperlinks
connect two tree patterns that are not return tree patterns. It corresponds to a join
condition between paths of two collections. It is mandatory for full join and optional
for outer-join (we should distinguish left and right outer-joins partly dotted). Figure
3 illustrates a join hyperlink between two sources (“sourcel” and “source2”) on
different XPaths: sourcel//a//d//@id = source2//a2/b2/text().

sourcel

a.

/kﬂ “\ N
b c d
value=5 Count() :

@id

b2 o2 d2

Figure 3. Join Hyperlink

Projection hyperlinks connect two tree patterns where the projected tree pattern
results from a mapping of the other tree pattern. One of the tree patterns can be (and
often is) a RTP. A projection hyperlink is always labeled with an equal predicate. It
is optional in results if not constrained elsewhere by a predicate or full join.

The model is powerful enough to represent let clauses. A let clause generates a
new tree pattern. This tree pattern is matched by a tree that represents the expression
defining the let variable (in general an XPath). When this tree pattern is produced
from an existing tree pattern, hyperlinks labeled by the equal predicate are created
with the parent node. The result of a let clause is often nested under the root label by
adding the multiplicity annotation (*i).

For example, the query “for each restaurant, select its identifier and name, the
number of proposed menus, and the list of employees with their name, age and
phone” is represented by the TGV of Figure 4.

for $r in collection(“sourcel”)//restaurant
let $m := $r//menu
where $r/category = “5”

return
<restaurant id="{$r/@id} >

Actes des 20émes journées de Bases de Données Avancées, BDA'04 6

{$r/name}
<nb_menu>{count($m)}</nb_menu>
<employees> {
for $p in collection(“source2”)/person
where $p/work/employer/text () = $r/@id
return
<employee>
{$p/name}
<comment>
{Sp/age}
{$p/phone}
</comment>
</employee>}
</employees>
</restaurant>

source2
I
person

e

work name age phone

/7N \
“.employer

= text()

sourcel

restaurant

categOry name menu
value = 5

~ @id
restaurantfnb_menu>L /
*1
employees— employee \e -
omment

Figure 4. An example of TGV

In Figure 4, the two STPs are connected by a join hyperlink. The let clause
duplicate the sub-tree of root restaurant and descendant menu. Source2 is a nested
query, thus a nesting factor (*0) is added on the relevant element of the RTP.

We now give a more formal definition of the TGV model. A TGV is defined by a
set of hyperlinks H and a set of tree pattern T. In the table of Figure 5, we
characterize the components of the model using a grammar. The set of tree patterns
is partitioned in three subsets: STP, ITP and RTP, thus the TGV can be expressed as
in line (1). Before optimization, in most cases, each bubble (STP or ITP) just have
one tree pattern inside. But we will see in 4 that bubbles can be merged, thus there
could be several tree patterns in one bubble linked by internal hyperlinks. Thence
STP (line 2) and ITP (line 3) are defined as one or more tree patterns and a set of

Actes des 20émes journées de Bases de Données Avancées, BDA'04 7

hyperlinks. An RTP is composed of one Tree-Pattern (line 4). Lines (5), (6), (7) and
(8) describe the tree pattern components (edges and node) and hyperlinks. A Bubble
Tree Pattern (BTP) is a generic term designing STP, ITP or a RTP (line 9).

Name Grammar Definition Description
(1) [Tree Graph | TGV = (TP*, H¥) Definition of TGV in terms of TPs
View TGV := (STP*, ITP*, and hyperlinks.
RTP, H¥)
TGV = (BTP*, H¥)
(2) | Source Tree | STP = (TP+, H¥) A source TP may include one or more
Pattern TP.
(3) | Intermediate |ITP :=(TP+, H¥)
Tree Pattern
(4) |Return Tree | RTP :=TP A return TP is only one TP
Pattern
(5) | Tree Pattern | TP := (N*, E¥) A TP is a graph.
(6) | Tree Node N:=(string, A node is composed of a node name,
predicate_expression* | 0 or more predicate expression, and 0
, function_name*) or more function names
(7) | Tree Edge E =N, N, boolean, | An edge is composed of source node
boolean, integer) ; destination_node ; descendant (// :
true) or son (/ : false) ; mandatory
(true) or optional (false) , multiplicity
(8) | Hyperlink H = (N, N, boolean, | source_node, destination_node, type :
type , integer) projection or join, mandatory (true)
or optional (false), multiplicity
(9) |Bubble Tree |BTP : = STP | ITP || A BTP is a generic bubble that may
Pattern RTP = (TP+, H*) include several TPs.

Figure 5. Definition for TGV terms

3.

Exécution plan

3.1. XML Algebra

The XLive runtime engine executes query plan expressed in XAlgebra [7].
XAlgebra includes both relational operations to process tables of references to nodes

Actes des 20émes journées de Bases de Données Avancées, BDA'04 8

and navigation operations in the XML trees. The algebra is a physical algebra in the
sense that algebraic expressions are used to process XML flows and that algorithms
are directly implementing the operators.

3.1.1. XRelation and XTuple

We introduce XRelations, which can be considered as a special case of object
relations, domains being XML trees. Classically, an XML tree is a set of labeled
ordered rooted trees. In addition, cross-tree hyperlinks can be supported as special
edges. With XRelation, domains are XML trees of given path set. Attributes are
XPath expressions referencing nodes in the XML trees. Each attribute can be multi-
valued, i.e., refers several sub-trees. XRelations are ordered collections of XTuples.
Thus, each XTuple is composed of XPath named XAttributes, values of which
reference sub-trees in the collection of trees. As a result, the schema of an XRelation
is of type R(XPath+, [Path+]), where XPaths are defining the attributes and Path's
compose the path set of the XML trees.

Figure 6 shows an example of an XRelation composed of two XTuples. The
schema of the XRelation is:

R (person/fname, person/address, person/address/street, person, book/title,
book/author/Iname, book/date, [person/fname,person/lname,person/address,
person/address/street,person/address/town,book/title,
book/author,book/author/Iname, book/date |)

An XTuple refers to nodes and can be perceived as an index of XML trees.

. XAttributes
g
3 £
o | 8 g £
S8 g 5
£ | B g 2| s g
= = = c| E E 3
g | 2 2 g 2| 3 3
g g g g 8 8 8 For est
person book
,,,,,,,,,,,,,,,,,,,,, .
% ® ® - fname Iname address Reﬂéi)élgns author zg/ojajfgse
2 . [) D L _7Lois Lane .7 A N
153 N . . . ©7 Sfeet town I(?ame B5ms
Ll D . R e R - - 17 Metropolis 7°Ve" /
NI N - 7 / 7 A '
person book
,,,,,,,,,,,,,,,,,,,,, =
- titfe author
L fname Iname Inameaddress pensées
® N ° .\ L d”etelpa'?grSplderr?d 7 | /
< N - e 7 name
AN N P I ___.7 - Sireet mwn/. Spiderman
N N - Fleurs Versailles
AN I I B =l 7 4
® ~ - . /
5 e T
g [e B
-

Figure 6. An Example of an XRelation

Actes des 20émes journées de Bases de Données Avancées, BDA'04 9

3.1.2 XAttribute annotation

We introduce annotations on XAttribute in order to distinguish attributes
behavior in the request evaluation. By default, attributes are unnested and
mandatory. We introduce the '?' sign for specifying an optional attributes and the 'Nx'
sign to specify a nested attribute of nest group x.

With these annotations, the schema of an XRelation has the following form:
R ((XPath Annotation?)+ [Path+])

For example:

R1(person/fname?, person/Iname™", person/address™/street?,
person/address’/town?, [person/fname,person/Iname,person/address,
person/address/street,person/address/town])

means that in the XRelation R1, the fname is optional, there is a mandatory
Iname and if there are several Iname, it must be nested (NV/) and the address node is
also nested in another group (N2) if multi-valuated and have the optional connected
nodes street and town.

3.1.2. XOperators

Except for XSource and XReconstruction, all operators of the XAlgebra receive
one or more XRelation as input and return an XRelation as output. In general,
XRelations are modified directly in memory. We give an overview of the main
operators below.

XSource (source, xquery, xpaths*) = XRelation

XSource is the starting operation to process XML data sources. XSource takes
the name of a source, an XQuery applying to this source, and the XPath describing
the XAttributes in the result XRelation. XSource transforms an XML source in an
XRelation of attributes a sequence of XPaths.

XRelation. XRestriction (predicate) - XRelation

The XRestriction operator filters XTuples satisfying conditions on attribute
values.

XRelation. XProjection (xpath*) = XRelation

The XProjection removes attributes that are not in the specified xpath sequence.

XRelation.XJoin (XRelation, predicate) 2 XRelation

The XJoin operator joins two XRelations on attribute values satisfying the
predicate.

XRelation.XNest (XAttribute*) - XRelation

Actes des 20émes journées de Bases de Données Avancées, BDA'04 10

If there is an XAttribute argument, the XNest operator acts as a group-by
operation, merging in the same XAttribute several references on different nodes. If
there are no XAttribute, the XNest operator just merges all XTuples in one, merging
all attributes of each column together. Note that for nesting, every attributes can be
an ordered list of reference. And there can be as many levels of ordered lists on the
references.

XRelation. XFunction (function, arguments*) - XRelation

Predefined function and external functions as min, max, count, and avg are
applied using the XFunction operator.

XRelation.XConstruction (construction) > XML

The XConstruction operator extracts XML documents of given schema from the
given XRelation.

With this algebra, query execution plans can be expressed. For example, for the
example request of Figure 4, the following execution plan can be specified:

R1 := XSource("sourcel",
"for $r in collection("sourcel")//restaurant
where $r/category ="5"
return <results>{$r/name} {$r/menu} {$r/@id}</results>",
{restaurant/name?, restaurant/menu?, restaurant/@id})
R2 := R1.XProjection("restaurant/menu")
R3 :=R2.XNest ()
R4 := R3.XFunction ("count", "restaurant/menu")
RS := XSource("source2",
"for $p in collection ("source2")/person return
<results>{$p/name} {$p/age} {$p/phone} {$p/work/employer/text() } </results>",
{person/name?, person/age?, person/phone?, person/work/employer/text()})
R6 :=R5.XNest () ;
R7 :=R1.XJoin (R6, "person/work/employer/text()=restaurant/@id")
XConstruction (R7,"<restaurant id="{$r/@id} "> {restaurant/name}
<nb_menu>{count(restaurant/menu) } </nb_menu>
<employees>{<employee>{person/name } <comment>{person/age}
{person/phone}</comment></employee>} </employees></restaurant>")

3.2. From TGV to Execution Plan

The TGV is the basis for query transformation and optimization. From a given
TGV, a query plan can be generated. A query plan is valid if the relevant wrappers
can execute the XSource operations that it contains. Generating valid query plan is
not an easy task as sources have limited capabilities. The goal of the query optimizer
is to generate the most efficient valid query plan, according to some cost model. We
now detail how to generate a logical query plan from a TGV.

Actes des 20émes journées de Bases de Données Avancées, BDA'04 11

Each STP (source tree pattern) is transformed into one or more XSource
operation(s) followed by a XUnion in case of multiple XSource operations. The tree
pattern is rewritten into a mono-collection request and the required XAttributes are
determined. The collection is possibly partitioned on multiple sources and thus an
XSource operation must be generated for each relevant source. As the mediator
maintains the path set describing each source (these metadata are acquired at
connection time), relevant data sources for a STP are determined from the metadata.
XPath with ancestor-descendant relationships (double line) can also be expanded in
fully documented XPath (with only parent-child relationships).

Basically, we cannot make any assumption on XML query capabilities of the
sources. The only reasonable requirement on an XML source is that it can at least
provide a scan method on a collection, i.e., return all the stored XML documents
without any filtering. We will take into account sources capabilities and include the
source filtering when possible in section 4.3.

Each Source Tree Pattern enclosed into a bubble can be basically transformed
into a sequence of XOperator using the following steps:

1. The root of the Tree Pattern is transformed into an an XSource
(source_collection, request, attributes) operator, where the source collection is the
name of the root, request is the scan request and attributes is '*', meaning that all
attributes of the XML document are requested.

2. The whole set of conditioned nodes determines the relevant path set
{XPathi} of the Tree Pattern including leaves and internal nodes. They are used to
determine the XAttributes of the XProjection (XPathy,...,XPath,) operator. The
resulting XAttributes are the paths of relevant nodes, considering the / (resp. //)
notation while navigating in the Tree Pattern in place of the single (resp. double)
edges. Note that nodes reached by a dotted line are represented by an XAttribute
annotated by the optional sign '?' and nodes annotated by a '*x' sign are represented
by an XAttribute annotated by the ™ sign.

3. All the nodes of the Tree Pattern associated with a predicate are used to
generate XRestriction operators conditioned by the predicate and returning the
corresponding XAttributes.

A whole bubble is mapped to a linear execution subtree composed of a starting
XSource operator, an XProjection and a sequence of zero, one or more XRestriction
for each constrained XAttributes. This yields the following sequence of operations:

R1 :=XSource (source _name, scan, *)
R2 :=R1.XProjection (XPath, , ,XPath,)
R3 :=R2.XRestriction. (p;(XPathy))

Ri =R(i-1).XRestriction. (pn(XPath,,))

Hyperlinks of type "joins" are transformed into the XJoin operator. From joins
hyperlinks joining two XRelation R; and R;, the operator (theta-join, equi-join, semi-

Actes des 20émes journées de Bases de Données Avancées, BDA'04 12

join) on the joined XPaths from R; and R; is used to create the predicate p;;. Thus,
XlJoin operations are generated of the following form:

Ri..XJoin (R;, pj) > Ry

Hyperlinks of type "projection" entering the RTP (result tree pattern) are
transformed into the XReconstruction operator. The reconstruction template is
simply expressed as an XML document template with the XAttributes of the input
XRelation as values. The reconstruction template is passed as an argument to the
XConstruction operator.

4. TGV-Based Optimization

4.1. TGV Transformation

A TGV is in a sense a declarative definition of the relevant data to process for
computing the result of an XQuery. To define transformations, we use the following
notations:

- tgv is a TGV with the set of tree patterns Tand the set of hyperlinks

- btp is a Bubble Tree Pattern; according to the definition, btp = (tp,, ...tp,, hy, ..,
h,) with tp;, .., tpn belonging to the set of the Tree Pattern T and 4, .., &, being
internal hyperlinks.

- H is the set of hyperlinks linked to and from btp; H =H, U H, with H; = {h [JH
/h.sourcelJ (tp;, ...tp,)} the set of outgoing hyperlinks and H; = { h [H
/h.destination] (tp,, ...tp,)} the set of incoming hyperlinks.

To reduce data to process, to simplify a TGV, and more generally to perform
logical optimization, several transformations can be applied to a TGV:

1. Clone bubble. A bubble btp can be duplicated, which requires adding the
correct set of ingoing hyperlinks and the correct set of outgoing hyperlinks. This
corresponds to adding an intermediate XRelation in the query plan. The Intermediate
Tree Pattern itp is constructed by cloning the tree patterns (fp; — tp') and the
internal hyperlinks (h; — h"), with itp = (tp';, ...tp",, h';, .., h",). The set of hyperlink
H of the TGV must be modified. We must replace the set Hs of outgoing hyperlinks
by a set of hyperlinks Hs1 with the same source node but pointing to the image of the
Tree Pattern in the Intermediate Tree Pattern and a set of hyperlinks Hs2 from these
point to the original destination. Hy; = {h; / hlH, hgsource = h.source AND
hydestination = image (h.source)} and Hy, = {hy / h[H, hgsource = image
(h.source) AND hydest = h.destination}. In the same way for the set of incoming
hyperlinks, Hy = {h; / h[HH, hpsource = h.source AND hydestination = image
(h.source)} O {hy / hlH, hesource = image (h.source) AND hpdest =
h.destination}).. We use clone bubbles to have an intermediate relation, for
generating an equivalent execution plan, but also for taking into account wrappers
capabilities as shown in section 4.3.

Actes des 20émes journées de Bases de Données Avancées, BDA'04 13

2. Remove bubble. A bubble can be removed either because all entering
hyperlinks are optional joins or the incoming hyperlinks are similar to the outgoing
ones. This corresponds to suppressing useless conditions or useless intermediate
XRelations. With the previous notation, a bubble bfp -with sets of incoming
hyperlink H, and outgoing hyperlink H- can be removed if {Lh[H,,/ (h.type =
"join" AND h.mandatory = false) OR (Lh' [J H, / h.destination = h'source)}. The
TGV tgv would then become #gv \ bip.

3. Migrate predicate. When a node is constrained by a predicate, the predicate
can be migrated to other nodes through equality hyperlinks (modeling equi-joins or
projections). This is fairly similar to sideway information passing in deductive
database. Predicate migration can be generalized with transitivity rules on theta-
comparators (>, <, >=, <=). If (h [J H; n H,) AND (h.type = "join") AND
(h.predicate = "=") then the linked nodes /.source and h.destination will have the
following predicates: (h.source.predicate [J h.destination.predicate)

4. Migrate function. When a function is applied to a node, the node value can
be passed to another node through an equality link. Let btpl, btp2 two BTP with
respectively H1 and H2 the hyperlinks (incoming or outgoing) connected to them. If
(h [JH; n Hy)) AND (h.type = "join") AND (h.predicate = "=") then the linked
nodes h.source and h.destination will have the following predicates
(h.source. function [J h.destination.function)

5. Migrate nesting. When a nesting (*i) is applied in a node, it can be migrated
with the associated function if any through projection hyperlinks.

6. Remove hyperlink. An hyperlink can be removed if it computes nodes not
mandatory in the final result nodes and in conditions. It can also be removed in case
where the join predicate is asserted by other hyperlinks.

7. Add hyperlink. Hyperlinks between nodes that are set equals by other
hyperlinks can be added. This corresponds to the well-known transitivity of join rule
(a=b and b=c =» a=c). Let btp,, bip,, btp; three BTPs with respectively H;, H, and
H; the hyperlinks (incoming or outgoing) connected to them. If (h; [/H; n Hy) AND
(h, JH, n H;) AND (h,.type = hy.type = "join") AND (h;.predicate = hj.predicate
= "=") then we can add an hyperlink /; /7 H; n H; with type join and edge labeled
with equal.

8. Propagate optional. Certain nodes in RTP are optional, in general when no
predicate apply to them. Other are mandatory. When a node is source of another, the
optional and mandatory feature can be propagated with the rule optional and
mandatory gives optional.

9. Remove node. A node can be removed if it has no predicate attached, nor
any hyperlink.

10. Merge bubbles : For some optimization (see section 4.3, taking sources
capabilities into account), bubbles can be merged. Their tree patterns and hyperlinks
are then enclosed in the final merged bubble. Let btp = (T,H) [resp. btp' = (T", H')]
be a Bubble Tree Pattern of a TGV 1gv (B, #), with btp [J B fresp. btp' [7BJ, and T

Actes des 20émes journées de Bases de Données Avancées, BDA'04 14

[resp. T"] be a set of tree patterns, IH [resp. IH"] be a set of internal hyperlinks, and
H [resp. H'] O # be the set of hyperlinks connected to bp [resp. btp']. The set of
hyperlinks joining b#p and b#p' is then H n H'. The merged btp, would then be
defined by (T J T', IH [JIH' [J (H n H')). Thus, the final zgv would have the
following form : (B\ (btp [btpl) [J btpm, H \ (H n H")).

In summary, several transformations can be applied to a TGV in order to support
query optimization. These transformations are in general applicable under certain
conditions, but are useful for taking into account query optimization, source
capability handling, and view query rewriting.

4.2. TGV Optimization

Classical logical optimization rules can be applied on the TGV, as graph
transformations. For example, pushing selection to sources for reducing numbers of
processed XTuples consists in migrating predicate to SPT, and pushing projection
for reducing number of XAttributes of each XTuples consists in eliminating useless
hyperlinks from the RPT. More advanced optimization can be done, as removing
useless subqueries (remove bubble) and taking advantage of transitivity of equality
and other comparison operators.

Using the metadata information, we can get more information for optimizing the
TGV. For example completing path as seen above or identifying collections located
on the same source is possible. When two collections are located on the same source,
the source bubbles can be merged to generate only one XSource operator.

In our mediation context, sources and the mediator can have costs statistics and
models. We plan to use a generic cost model as defined in DISCO [13]. Thus, a cost
model to estimate plan cost could be used to drive the TGV transformations and plan
generation.

4.3. Taking Advantage of Source Query Capabilities

Since the data sources (DBMS, Web server, search engine, etc.) may be very
heterogeneous, their wrappers can have different capabilities for query processing. If
a wrapper is not able to handle functionality an XOperation (restriction, joins, etc.),
the mediator must handle it [15]. Thus, a valid TGV must be generated from the
query basic TGV. For each STP, non-possible navigation, condition and function
should be isolated (e.g., colorized). The most basic requirement that a source must
be able to do is the scan operation. In this case, everything but the root of the tree
pattern would be colorized.

Before generating the execution plan as described in 3.2, the plan generator
analyzes the TGV and the colorized part of the TGV. A STP associated to a source
that performs the minimal scan operation is transformed into the sequence XSource
(source_name, scan, *)-XProjection-XRestriction

Actes des 20émes journées de Bases de Données Avancées, BDA'04 15

Dedicated XML data sources have operators improved for queries optimization,
by using internal indexing and having direct disk access for data location, page
loading, etc. So if such a source is able to do a particular XOperation, it is better to
delegate the operation to the source instead of doing it on the mediator. The problem
of handling query capabilities of an XML data source is then how to formulate the
query passed to the XSource operator. For example, in most cases, XML databases
know how to handle simple XQuery with selection and projection. Then in the best
cases, for a Source Tree Pattern applied to source;, the sequence XSource
(source_name, scan, *)-XProjection (XPath, ..., ,XPath,)-[XRestriction p;(XPathe)]’
can be merged into a single one XSource (source_name, query, xpaths) where
xpaths=(XPath,,... ,XPath,) and query is of the following form:

for $var in source;
where $var/XPath, and $var/XPath, ... and $var/XPath,
return <result> {XPathy} ... {XPath,)</result>

with xpaths in the return part and the set of predicates given in the XRestrictions
in the where part.

Notice that joins are generated out of the XSource operations. If the source is
able to handle the join operation and if the collections are on the same source,
pushing join to the source has to be done at physical optimization directly on the
query plan.

4.4. View Optimization

An XML view is a virtual collection defined by an XQuery [1]. The definition
query can be represented as a TGV. A query on the view corresponds to another
TGV applied to the RPT of the view TGV. The query modification process can be
expressed as "merging TGVs". The RPT of the view definition should be
transformed into an IPT. Then, removing useless SPT or IPT, migrating predicates
and functions towards the sources, etc., should be applied to optimize the global
TGV.

To demonstrate the ability of TGVs to optimize queries on views, we develop a
motivating example. The view is a TGV "restaurants_employees" defined by the
XQuery and TGV shown in Figure 4. The query listed below retrieves all the
employees' names with restaurant identifier for employees of age greater than 25.

for $i in collection("restaurants_employees")//restaurant
where $i//employee/age > "25"
return <employee>

{$i//femployee/name}
<restaurant id="{$i/@id}"/>
</employee>

Actes des 20émes journées de Bases de Données Avancées, BDA'04 16

SOIIT(.‘CZ

snurn:el
restaurant

person

work ndémeage phone

|
_employer
< rexr()j

@id

category
e=35

name menu

(a) Query on view

@id 5

nb_menu

«—

restaurant

7
employees % employee Seo

restaurant

el
@id" employee
/N

age ndme
value > 25

sourﬁel

work ndmeage phone

i value
employer
) |2

festauran
I
menu
count () - =]=

—
@id - ‘

restaurant _

employee

~

restaurant —@ id

restaurant —— nb_menu ! VZ
employees *—employee _

co

(b) Move up predicate
(c) Add hyperlinks

restaurant

@id employee

age ndme

employee

S~ restaurant —@ id

sourﬁel

restaurant

work ndm
\

g
value
> 25
festauran

coini g (d) Delete useless
et 2 e hyperlinks
- employees - employes <cumm="l< «—

restaurant

1
@id" employee

nime

age

employee

S~ restaurant —@ id

(e) Delete useless bubbles
(f) Delete useless tags

Figure 7. TGV view and logical query optimization

Actes des 20émes journées de Bases de Données Avancées, BDA'04

17

(a) represents the query applied on the view defined in Figure 4. The figure shows
the first TGV derived from Figure 4, an ITP modeling the query on the view RTP,
and finally a second RTP for the reconstruction of the result. (b) results from the
application of rule 3 defined above allowing moving up a predicate along equality
hyperlinks. A good heuristics consist in delegating if possible selection to the
sources to decrease the size of downloaded results. So, the predicate "age>25" is set
on the STP "source2". (c) results from adding new equality hyperlinks by applying
rule 7 and removing useless hyperlinks by applying rule 6. The added hyperlinks are
derived by transitivity from different equal-labeled hyperlinks. From the goal (query
RTP), we follow the hyperlinks to the STPs, as much as possible. First, the employee
name can be linked to the "source2" person name directly using an equal-labeled
hyperlink. Second, following the hyperlinks from the attribute @id to the "sourcel”
STP on restaurant "@id" attribute, it is possible to infer another equality hyperlink.
But the equality hyperlink modeling the join between the two STPs can be used to
add an equal-labeled hyperlink from the @id attribute of the RTP to the
employer/text() value of the STP "source2". The (d) shows a TGV with useless
hyperlinks removed. In general, to simplify a TGV, redundant hyperlinks are
deleted. For this purpose, our algorithm starts from the STP and only keeps useful
hyperlinks that connect with an STP or the nearest ITP of an STP. All others
hyperlinks become useless due to the fact that they are no more connected to the
final RTP. Thence, the optimization algorithm deletes non-constraining hyperlinks
recursively from the first ITP up to reaching an STP. The result is a graph with
linked and unlinked bubbles as shown in (d). (e-f) represents the final optimized
TGV. Bubbles without hyperlink have been removed by applying rule 2 (step ¢), and
useless tags also by applying rule 9 (step f). Note that the bubble sourcel can finally
be removed if the hyperlink is not mandatory.

5. Conclusion

In this paper, we propose a framework for distributed XQuery processing in a
mediator. The runtime engine of the mediator is based of an extended relational
algebra for XML, called the XAlgebra. This framework brings out a useful tool to
translate XML queries in optimized query execution plan. It can be seen as an
extension and adaptation of the GTP model [5]. Our model tries to represent
XRelation as bubbles including a TPQ and to link bubbles by hyperlinks modeling
join predicates and extractions. The model is intuitive and is inspired from a visual
query language [4]. Our specific approach proposes an algebraic representation
(TGVs) and transformation rules. The optimization algorithms simply apply these
transformation rules and could use cost models [10].

The important difficulties of XQuery that are optional results (null values),
functions, multiplicity and nesting are somehow integrated in the model. TGV
transformations are introduced to model current optimization heuristics. The model
lands itself towards making simple some complex optimizations, e.g., transitivity of
equality, query simplification, capabilities handling, and query through views.

Actes des 20émes journées de Bases de Données Avancées, BDA'04 18

Further work remains to be done to better formalize the TGV transformations and
direct them using a rule-based optimizer.

Another important aspect of our work is that the XLive mediator federates known
source of data, whose schema can be declared at connection time. Thus, XRelation
schemas are determined at query compile time. In Web Service mediation, sources
may be messages with unknown and varying schemas from message to message.
Fortunately, queries are well identified and all meta-information derived from the
query are known at compile time. We plan to integrate some message directed
constructor to build source bubbles, so that schema-varying sources may be handled
in a future version of XLive.

6. References

[1] Abiteboul S. "On Views and XML". PODS: 1999, pp 1-9, Symposium on Principles of
Database Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania.

[2] Amer-Yahia Sihem, Cho SungRan, Lakshmanan V. S. Laks, Srivastava Divesh. "Tree
pattern query minimization". VLDB J. 11(4): 315-331 (2002).

[3] Baru C., Gupta A., Ludaescher B., Marciano R., Papakonstantinou Y., and Velikhov
P.. "XML-Based Information Mediation with MIX". In Demo Session, ACM-
SIGMOD'99, Philadelphia, PA, 1999.

[4] Braga D., Campi A.: "A Graphical Environment to Query XML Data with XQuery".
WISE, pp 31-40,2003.

[5] Chen Z., Jagadish H.V., Lakshmanan L.V.S., Paparizos S.. "From Tree Patterns to
Generalized Tree Patterns: On efficient Evaluation of XQuery". Very Large Data Bases
2003, pp 237-248, Germany Sept 2003.

[6] Christophides Vassilis, Cluet Sophie, Siméon Jérome: "On Wrapping Query
Languages and Efficient XML Integration". SIGMOD Conference 2000: 141-152

[7] Dang-Ngoc T.-T. and Gardarin G. "Federating heterogeneous data sources with XML".
In Proc. of IASTED IKS Conf., 2003.

[8] Fernandez M.F., Morishima A., and Suciu D. "Efficient evaluation of XML middle-
ware queries". In SIGMOD '01, May 2001.

[9] Galanis L., Viglas E., DeWitt D.J., Naughton J.F. and Maier D.. "Following the Paths
of XML Data: An Algebraic Framework for XML Query Evaluation". 2001. Available at
http://www.cs.wisc.edu/niagara/papers/algebra.pdf

[10] G. Graefe, W. McKenna. "The Volcano Optimizer Generator: Extensibility and
Efficient Search". In Proceeding of the 12th International Conference on Data
Engineering, 1993, 209-218

[11] Jagadish H.V. et al. "TAX: A Tree Algebra for XML". pp. 149-164, DBPL 2001.
[12] Manolescu 1., Florescu D., Kossmann D. "Answering XML Queries over

Heterogeneous Data Sources", 27th Intl Conf VLDB, Roma, Italy, 2001, p.241-250.

Actes des 20émes journées de Bases de Données Avancées, BDA'04 19

[13] Naacke H., Gardarin G., Tomasic A. "Leveraging Mediator Cost Models with
Heterogeneous Data Sources". ICDE pp. 351-360, 1998.

[14] Papakonstantinou Y., Borkar V., Orgiyan M., Stathatos K., Suta Lucian, Vassalos V.,
Velikhov P. "XML queries and algebra in the Enosys integration platform", Data Knowl.
Eng. 44(3): 299-322 (2003).

[15] M. Roth, P. Schwarz. "Don't Scrap It, Wrap it! A Wrapper Architecture for Legacy
Data Sources". Proc. VLDB Conference, 1997.

[16] Sannella, M. J. "Constraint Satisfaction and Debugging for Interactive User
Interfaces". Ph.D. Thesis, University of Washington, Seattle, WA, 1994.

Actes des 20émes journées de Bases de Données Avancées, BDA'04 20

