
HAL Id: hal-00733477
https://hal.science/hal-00733477

Submitted on 28 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Federating Heterogeneous Data Sources
Tuyet-Tram Dang-Ngoc, Georges Gardarin

To cite this version:
Tuyet-Tram Dang-Ngoc, Georges Gardarin. Federating Heterogeneous Data Sources. IASTED Inter-
national Conference on Information and Knowledge Sharing (IKS 2003), Nov 2003, Scottsdale, United
States. p. 193-198, ISBN 0-88986-396-2 (407). �hal-00733477�

https://hal.science/hal-00733477
https://hal.archives-ouvertes.fr

FEDERATING HETEROGENEOUS DATA SOURCES WITH XML

Tuyet-Tram Dang-Ngoc1 and Georges Gardarin2

PRiSM Laboratory
University of Versailles

45, avenue des Etats-Unis. 78035 Versailles CEDEX
FRANCE

1Tuyet-Tram.Dang-Ngoc@prism.uvsq.fr 2Georges.Gardarin@prism.uvsq.fr

Abstract.
XML has emerged as the leading language for
representing and exchanging data not only on the Web,
but also in general in the enterprise. XQuery is emerging
as the standard query language for XML. Thus, tools are
required to mediate between XML queries and
heterogeneous data sources to integrate data in XML. This
paper presents the XMedia mediator, a unique tool for
integrating and querying disparate heterogeneous
information as unified XML views. It describes the
mediator architecture and focuses on the unique
distributed query processing technology implemented in
this component. Query evaluation is based on an original
XML algebra simply extending classical operators to
process tuples of tree elements. Further, we present a set
of performance evaluation on a relational benchmark,
which leads to discuss possible performance
enhancements.

Keywords
Cooperation in Heterogeneous System, Mediation
Architecture, XML Algebra, XQuery Evaluation

1. Introduction
In recent years, there have been many research projects
focusing on heterogeneous information integration.
Typical information integration systems have adopted a
wrapper-mediator architecture [1]. In this architecture,
mediators provide a uniform user interface to query
integrated views of heterogeneous information sources.
Wrappers provide local views of data sources in a global
data model. The local views can be queried in a limited
way according to wrapper capabilities. Although the local
as view (LAV) approach has been considered in some
systems [14, 7], most systems follow the global as views
(GAV) approach, in which the integrated views are
designed in terms of the local views of sources. Well -
known research projects and prototypes based on this
architecture include Garli c [2], Tsimmis [3], IRO-DB [4]
and Yat [5]. While in the 90's most studies were based on
using the object model as data integration model, the
focus has come to XML as global model at the beginning
of the new century.

The advantages of XML as an exchange model, (i.e., it is
rich, clear, extensible and secure), makes it the best
candidate for supporting the integrated data model. In
addition, using XML views for local data sources hides
the local specificities of each system. Furthermore, the
richness of the XML schema model simplifies wrapper
mappings. Also, the emergence of XQuery as a powerful
universal query language for XML makes it possible to
query XML global and local views in a uniform way
based on a standard interface. Thus, these advantages
explain that several research projects have emerged to
query in a uniform way heterogeneous data sources based
on XML as exchange model, see for example [6, 7, 8].

e-XMLMedia is providing one of the first products based
on XML to integrate heterogeneous data sources, namely
the e-XML mediator (see www.e-xmlmedia.fr). It is the
result of a technology transfer from the university of
Versailles (PRiSM Laboratory). This mediator with the
associated wrappers provides the required functionalities
to query in a uniform way heterogeneous data sources. It
is a sophisticated component composed of several
packages in charge of decomposing queries into mono-
source sub-queries, efficiently shipping local sub-queries
to data sources, getting results in XML through a SAX
interface, processing and assembling them. Queries as
well as sub-queries are expressed in XQuery. In addition,
capabilities are associated to wrapper so that the mediator
sends only supported queries to wrappers. In summary,
the mediator uses XML to represent disparate data in a
common format and create a unified view of that data.
Using advanced distributed query processing technology,
the mediator provides an application with the services it
needs to integrate on demand heterogeneous information.

This paper describes a version of the mediator called
XMedia. This version differs from the industrial version
in some ways, notably it is based on an original algebra
for XML processing called the XAlgebra. The
contributions of this paper are three-fold. First we
describe the modular system architecture of the XMedia
Mediator. Second, we describe the query processing
algorithm, which is based on query transformations and
the algebra operating on tuples of XML trees. A critical
result is that the mediator is capable of processing most
queries in pipeline on XML event flows. Third, we report
on a benchmark of the architecture showing the

weaknesses and strengths of the main system components,
thus leading to new ideas for query optimization. Some of
them should be integrated in a future version of XMedia.

The rest of this paper is organized as follows. The next
section focuses on the middleware objectives and
architecture. Section 3 describes the XAlgebra, a simple
extension of relational algebra to process XML forests. In
section 4, we discuss possible extensions of the query
processing engine. We conclude by summarizing the
contributions and discussing future developments.

2. System Overview and Architecture

2.1 Integrating and Querying XML Views

XMedia mediator is a data integration middleware
managing XML views of heterogeneous data sources. It
follows the global as view approach. Global views are
defined by administrators through Queries referencing
local collections of XML documents. They are queried by
users through a Java API extending JDBC to XQuery,
called XML/DBC. Data sources can be of various types,
including relational databases, XML files, XML
databases, legacy applications, etc. Specific wrappers
delivering metadata through introspection and providing
at least a subset of XQuery on exported collections
encapsulate them. Ideally, a wrapper can provide mapping
functionalities as XML views to achieve local mappings
of data and metadata at the source.

The mediator aims at supporting fully XML standards,
including XML schema, XQuery, DOM and SAX
interfaces. XML schemas are used intensively for
metadata representation. In particular, schemas describe
wrapped data sources and views at any layer. XQueries
are type-checked through schemas. We support currently
most XQuery use-cases. Finally, we internally process
XML as SAX event flows for efficiency reasons. Indeed,
DOM is in general too costly to instantiate XML
documents during processing. However, the user can if
required get DOM trees as results and we sometimes use
DOM inside the mediator to keep XML documents for
latter processing.

Queries are decomposed in optimal mono-source sub-
queries and global query plans expressed in a specific
algebra (the XAlgebra), extending the relational algebra to
process trees. Queries are optimized in a simple but
efficient way. Simple heuristics are supported in the
current version, while cost-based query optimization
could be introduced in the future. Heuristics include the
XML counter-part of classical relational detachment of
selections and semi-join transformations. Several
algorithms are implemented for processing XAlgebra
operators.

To discover relevant sites for a query and decompose it,
metadata are maintained describing the sources. When a

wrapper is registered to a mediator, metadata describing
the source are sent to the mediator through a configuration
file. This file contains an XML document containing a
schema for each collection exposed by the source
wrapper. If the schema of a collection is not known, a
schema by default is generated, which describes the path
set of the collection; it is a form of dataguide. Metadata
schemas are kept in the mediator memory and indexed by
source, namespace, collection and path for fast access
during query processing.

2.2 A Recursive Dataflow-based Architecture

The mediator architecture is represented in Figure 1. The
XML/DB C API is the only interface with external
components. Thus, notice that the mediator ships requests
to wrappers through XML/DBC and thus get results
through it. This makes possible for a mediator to see
another mediator as a wrapper. Furthermore, results are
supplied in XML/DBC through SAX readers. Thus, flows
of events are transferred between mediators and wrappers,
avoiding the overhead generated by the allocation of
intermediate memory structures. The recursive and data
flow-based architecture is interesting for applications that
can perform data integration at multiple stages without
much performance degradation.

The major sub-components are the XQuery parser, the
metadata manager, the query evaluator, the query
decomposer, and the result reconstructor. All components
are briefly described below.

XML/D BC API

PARSER

CANONISER

DECOMPOSER

OPTIMIZER

METADATA

RECONSTRUCTOR

EXECUTOR

EVALUATOR XML Cache

executeQuery (XQuery)

Request

Canonical
Request

Atomic
Request

Query
Plan

XML

getXMetaData ()

XML/DBC

XML/DBC

Figure 1: Overview of the mediator architecture

Parser

The parser parses the query and generates the query
structure if the query is syntactically and type correct.
Otherwise, it returns a documented error.

Canoniser

The canoniser first normalizes the query and generates a
query in normal form. Normalization applies the
transformation rules described in [7]. For example, let

clauses are treated as temporary variable definitions and
eliminated. Expressions of the form FLWR(FLWR) are
unnested when possible. Second, the canoniser transforms
normalized queries in simple queries plus a reconstruction
operator. A simple query is a query in which all return
expressions are simple path expressions. The
reconstruction operator is a sequence of element
constructors whose tags and data are either constants or
come from simple path expressions.

Decomposer

The decomposer decomposes each simple query in atomic
queries, i.e., query involving only one global collection. It
also generates a join tree (possibly empty) to keep track of
the dependency between the atomic queries. Nesting and
unnesting operators may also be generated to restructure
intermediate results. Moreover, the decomposer identifies
from the metadata the relevant data sources and the
collection localization. Based on this information, it
translates the atomic queries on a global collection in a
union of queries on local collections. In particular, it
translates global paths with regular expressions in local
paths replacing jokers by the possible paths extracted
from the metadata. Finally, it creates a first execution plan
for the query.

Optimizer

The execution plan is composed of operators of the
XAlgebra. The role of the optimizer is to transform and
annotate it to get the best possible plan. Simple
optimizations of the query plan are performed in the
current version, but more complex ones are planned based
on a cost model. For example, the optimizer groups the
operators that refer the same source in a single query for
shipping once. It also orders the global operators
according to query heuristics and selects the best
processing method (parallel, sequence or pipeline) for
global operators. It should also choose the best algorithm
for each algebra operator.

Executor

The executor is in charge of shipping the sub-queries to
the wrappers using XML/DBC and collecting the results
in cache memory. In general, results are not fully
instantiated in main memory but SAX events are
produced and directly processed by the evaluator when
possible. We represent each ordered collection of XML
tree shipped from a wrapper as an XTuple, i.e., a tuple of
references to forest of XML trees instantiated in cache.

Evaluator

Based on the query plan, the evaluator evaluates the
remaining global query and applies the algebraic
operators in main memory. The XAlgebra operators are
able to perform XPath-based projection, restriction,
product, join, nesting, sorting, union, intersection and

difference of ordered collections of XTuples. For each
operator, we implement one or more specific algorithms.
For example, several global join algorithms are possible.
The evaluator may work with intermediate collections
full y stored in main memory, but can also work on a SAX
flow of events, thus implementing pipelining and hash
joins. Dependent join algorithms requesting XTuple to
one source and querying the other based on the results are
also possible.

Reconstructor

It applies the reconstruction operator to the intermediate
results represented as XTuples and generates the query
answer. In other words, it nests and tags the data so as to
construct the final result. Finally it built the SAX event
flow to deliver the results to the user.

Metadata manager

This package manages the schemas of all registered
sources. Further, for each source, it maintains the
collection names with the associated queryable path set.
The path set is a kind of dataguide giving an overview of
all paths instantiated in the source. If a path is missing, it
will not be queried. The path set has to be given by the
wrapper when registering the source (on command
XDescribe).

3. Physical Algebra
As mentioned above, XQuery requests are translated in a
physical algebra simple enough to be amenable to
optimization and implementation. Several algebras have
been recently proposed [6, 9, 10, 12] for XML. Our goal
is to be as close as possible to some extended relational
algebra [11], but to be able to manipulate trees and
ordered collections of trees. We now introduce our
extended relational data model and its associated algebra
for processing XML collections.

3.1 Data model
A relation is classically a subset of the Cartesian product
of a list of domains. With simple relations, domains are
simple set of values; with object relations, domains can be
set of objects or values. We introduce XRelation, that can
be considered as a special case of object relations,
domains being XML trees. Classically, an XML tree is a
set of labeled ordered rooted trees. In addition, cross-tree
hyperlinks can be supported as special edges.

With XRelation, domains are XML trees of given path
set. Attributes are XPath referencing nodes in the XML
trees (see figure 2). Each attribute can be multi-valued,
i.e., refers several sub-trees. XRelation are ordered
collections of XTuples. Thus, each XTuple is composed
of XPath named attributes, values of which reference
subtrees in the collection of trees. As a result, the schema
of an XRelation is of type R(XPath+, [Path+]), where

XPath's are defining the attributes and Path's compose the
path set of the XML trees.

Figure 2 shows an example of an XRelation composed of
four XTuples. The schema of the XRelation is Example
(person/fname, person/address;
person/address/street, book/title, book/author/lname,
book/date [person/fname, person/lname,
person/address, person/address/street,
person/address/town, book/title, book/author,
book/author/lname, book/date]). An XTuple refers to
nodes and can be perceived as an index of XML trees.
Processing through references computed once is much
more efficient than processing the trees through direct
navigation.

3.2 XAlgebra Operators
The XAlgebra includes both relational operations to
process the tables of references and navigation in the
XML trees. The algebra is a physical algebra in the sense
that algebraic expressions are used to process XML flows
and that algorithms are directly implementing them.

Lane
Reflexions 28/01/1966

Cover

dateauthortitle

bookperson

fname lname address

street town

1
X

T
up

le

Doeuf
lname

Fleurs Versailles

Pensées

person

address

street town

title author

book

1
X

T
up

le

Lois

17 Metropolis

lname

lnamefname lname
Peter SpidermanParker

lname
Spiderman

Forestpe
rs

on
/fn

am
e

pe
rs

on
/a

dd
re

ss

pe
rs

on
/a

dd
re

ss
/s

tr
ee

t

pe
rs

on

bo
ok

/ti
tle

bo
ok

/a
ut

ho
r/

ln
am

e

bo
ok

/d
at

e

XAttributes

Figure 2: Example of an XRelation

XML documents are sent to the mediator in the form of
event flows (based on SAX). XTuples are created "on the
fly" when XML documents of known schemas are
received from the wrappers. Non-blocking operators work
in pipeline on the event flows. Blocking operators require
the full instantiation of an input flow in cache memory.
Non-blocking N-ary operators works in general in parallel
on the input flows.

Al l operators of the XAlgebra receive a collection of
XTuples as input and return a collection of XTuples as

output. In general, we modify directly the XRelation in
memory. Operators also have specific parameters; we
only give the some logical ones in the sequel.

The evaluation process of each operator is composed of
two steps: a preparation step and an execution one. The
preparation step analyzes the input XRelation(s) and the
parameters associated to the operator to determine what
will be the exact operation to do when the XTuples wil l
flow in. For example, for an operation that requires
merging trees, the preparation step determines to which
reference node the new sub-tree will have to be linked and
which paths will be in common. Thus, the execution step
is efficient, as the major part of processing has already
been done.

4. Performance optimization by additional
modules
Figure 3 shows the different steps of an XQuery request
on the mediator. Measures shows the execution time (in
millisecond) depending on the number of resulting
documents for each type of execution. The most above
graph is the total execution time. The graph just under
represents the evaluation time on the mediator. Just under,
there is the graph representing the time spent on the
wrapper and finally the most below graph represents the
initiali zation time of the request. The experiment shows
the high cost of communication for XML documents
exchange between the wrappers and the mediator. It’ s the
first point to optimize. We propose several optimization
that should reduce this cost.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000

tim
e

(in
 m

s)

number of results documents

Total
Eval

Init
Wrapper

Figure 3: Execution time for each step

4.1 XML Compression and Bulk Transfers

Transferring XML documents between wrappers and
mediators appears to be costly. Each XTuple is encoded in
an XML message and sent over the network. The XML
message is then parsed on the client and transformed
internally in an XTuple descriptor and XML trees as event
flows. Thus, the number of messages is important and the
processing time is high. One may argue that our network

is slow (10 M bits), but this is not sufficient to explain the
results.

To save in number of messages, we could use bulk
transfer, and send several messages in one block. The
number of messages per block should be tuned such that
the pipeline on the client continues to proceed smoothly.
Nevertheless, this does not save parsing and unparsing of
lengthy messages. This is somehow inherent to XML and
may degrade performances forever.

One solution is to use a compressed format for
transferring XTuples. Schemas of XTuples are known
both by the client and the server under the form of a list of
paths. The types of values (leaves of XML trees) are also
known through XML schemas. Thus, an obvious
compression mechanism consists in sending an XTuple as
a sequence of path identifiers (16 bits is sufficient)
followed by the leaf value encoded according to its type.
Parsing will then be an obvious task. However, we may
loose the purity of XML and the generality of the
communication mechanism. Although it is a bit contrary
to XML principles, we believe that a compression device
saving parsing time is crucial.

4.2 Operator Algorithms

The benchmarked version of the mediator uses a simple
join algorithm (optimized nested loops). It is obvious that
other algorithms should be considered for joins notably,
but for other operators as well (e.g., nest is quite
complex). Implementing dependent joins, i.e., join by
reading an XRelation and querying the other with the read
value, could be helpful to save in number of messages in
case of small answers. Merge join and hash join could
also be useful. Thus, we are currently integrating a library
of algorithms for each XAlgebra operator. The problem is
then how to select the best plan. A possible answer is to
develop a cost model.

4.3 Cost Model

The classical solution for choosing the best execution plan
is to compare plan costs using a cost model. We propose a
cost model somehow inspired from DISCO[13]. The
mediator has a generic cost model derived from a
relational cost model extended with tree manipulation.
Then each wrapper can export specifics statistics and
formulas to the mediator. The generic cost model is
generally used with the exported statistics (to evaluate
cardinalities), but specific formulas exported by a wrapper
can override generic formulas. This approach gives a
framework to compute the global cost of a query plan
integrating local information on sources.

To communicate their cost model to the mediator, a
wrapper uses a cost model language. In an XML
environment, the cost language has to be defined in XML.
As formulas and statistics definitions use a lot of
mathematics notations, we based our cost language on

MathML. MathML is a specification of the W3C for
coding in XML the representation or the structure of a
mathematical object. Only the structural information
about a mathematical object is interesting for our purpose.
The advantages of using MathML for describing cost
formulas are three-fold: it is full XML , it supports general
formulas, and calculation software can be used to
compute formulas.

Parameters used for evaluation of a cost model are
statistics relative to the system (system statistics) and
statistics relative to the data (data statistics). For semi-
structured data, some other system parameters should be
defined, such as comparison between two typed values,
comparison between two trees, navigation in a tree
(pointer chasing). Data statistics depends on data and
collections of data contained in the source. Classical data
statistics used are: cardinalit y of a collection, distribution
of an attribute in a collection, minimum and maximum
values taken by an attribute. For semi-structured data, one
must add some parameters such as average depth and
width of trees in a collection. Such information could be
derived from XML schemas.

A mediation cost model depends on its system parameters
and its data parameters. One or more formulas are defined
in order to calculate the evaluation cost of a request in this
system (large granularity) or a predicate in a particular
operator (thin granularity). Formulas for the thinner
granularity are specifics to the sources and can be
expressed with specific parameters. Formulas for the
larger granularity consist of cardinality, total cost and
execution cost.

In summary, developing a complete generic cost model
with overloading per wrapper is possible in an XML
mediator. Cost formulas can be exchanged in XML. A
cost model is required to select the best execution plans,
based on estimators of communication costs and
processing costs.

4.4 Wrapper Capabilities

In the described version of the mediator, source
capabilities are taken into account by classes. We support
three classes of sources: XQuery source, SQL source,
XML f ile. Basically we push XQuery queries to our
XQuery source, basic SQL to the SQL sources, and just
selection to files wrapped by a filter. This is nice but
insufficient for distinguishing detailed functionalities of
sources. To go further and take into account detailed
functionalities of sources at the mediator level, a precise
description of source capabilities is required. This can be
done globally for a source by sending an XML fil e
associated to the metadata detaili ng what XML operator is
allowed globally on all collections or specifically on one
collection, the specific prevaili ng.

4.5 Semantic Cache

Another way to save messaging is implementing a
semantic cache at the mediator level. XTuples answering
a given query run by the mediator could be kept in cache.
XML format will not be appropriate as too large; we
would rather use the compressed format introduced above.
Thus a table of queries ordered by execution time with
associated results should be kept in cache and used to
answer new queries. Of course, update on source data will
not be taken into account. Thus, semantic caching is only
possible for certain collections of XML documents not
updated frequently. It is very valuable in the case of slow
sources, e.g., Web sources.

With semantic caching, a new request should be first
checked against the cache to determine if it can answer
the request or a part of it. If yes, the request is split in two
parts (one part can be null) : a local request that can be
answered by the cache and a source request that must be
answered by the distant sources. The two results have to
be correctly assembled. This can be done by comparing
the algebraic trees in canonical form of the request with
the one of each cached request. If one computes a subset
of the other, the cache can be used to process part of the
request. The request algebraic tree has to be pruned to
replace the common part by a call to the XRelation in the
cache. Using an XML semantic cache for XQuery is a
complex subjects that has to be further worked out.

5. Conclusion
We have presented the XMedia system for querying
integrated views of heterogeneous data. A first version of
the system has been developed at the university at the end
of the 90' s, and then transferred to the industry from 2000
to 2002 where it was completely redesigned. Currently, a
new research project is planned to develop an improved
mediator, which should take into account lessons from the
past. The second version is commerciali zed and has
several ongoing applications and planned ones, notably on
tourism data, health data, and chemistry data.

The version described in this paper has unique features.
XQueries are compiled in execution plans expressed in an
extended relational algebra capable of processing in
pipeline XML trees. Query processing is clearly divided
in steps. We isolated the query rewrite step from the
decomposition step that generates algebraic trees
processing localized data sources. Localization of
collections is performed using metadata under the form of
XML schemas. The optimization step requires a cost
model to be fully efficient. Hints have been introduced in
the industrial version.

Performance measurement demonstrates the validity of
the approach but the cost of transferring XML files from
wrappers to mediators appears to be excessive. Several
possible improvements that should be partly implemented
in XMedia have been suggested. We would like also to
develop a more efficient X-machine to process XAlgebra
expressions on XML flows.

References

[1] Wiederhold G.: Intelligent Integration of
Information, ACM SIGMOD Conf. on Management
of data, Washington D.C., USA, 1993, 434-437.

[2] Haas L., Kossman D., Wimmers E., Yang J.:
Optimizing Queries across Diverse Data Sources,
Proc. 23rd VLDB Conf., Athens, Greece, 1997.

[3] Chawathe S., Garcia-Molina H., Hammer J.,
Ireland K., Papakonstantinou Y., Ullman J., and
Widom J.: The TSIMMIS Project : Integration of
Heterogeneous Information Sources, Proc. IPSJ
Conf., Tokyo, Japan, 1994, 7-18.

[4] Fankhauser P., Gardarin G., Lopez M., Muñoz J.,
Tomasic A.: Experiences in Federated Databases:
From IRO-DB to MIRO-Web, Proc. 24rd VLDB
Conf., USA, 1998, 655-658.

[5] Cluet S., Delobel C., Siméon J., Smaga K.: Your
Mediators Need Data Conversion, ACM SIGMOD.
Conf. on Management of Data, USA, 1998.

[6] Christophides V., Cluet S., Siméon J.: On
Wrapping Query Languages and Efficient XML
Integration, ACM SIGMOD, Dallas, Texas, USA,
2000, 141-152.

[7] Manolescu I., Florescu D., Kossmann D.:
Answering XML Queries over Heterogeneous Data
Sources, Proc. 27th VLDB Conf., Roma, Italy,
2001, 241-250.

[8] Shanmugasundaram J., Kiernan J., Shekita E., Fan
C., Funderburk J.: Querying XML Views of
Relational Data, Proc. 27th VLDB Conf., Roma,
Italy, 2001.

[9] Jagadish H.V., Lakshmanan L.V.S., Srivastava D.,
Thompson K. TAX: A Tree Algebra for XML,
Proc. DBPL Conf., Roma Italy, 2001.

[10] Fernandez M., Simeon J., Wadler P.. An Algebra
for XML Query, In Foundations of Software
Technology and Theoretical Computer Science,
New Delhi, 2000.

[11] Zaniolo C. The Representation and Deductive
Retrieval of Complex Objects, Proc 11th VLDB,
Stockholm, 1985.

[12] Galanis L., Viglas E., DeWitt D.J., Naughton J.F.,
Maier D. Following the Paths of XML : an
Algebraic Framework for XML Query Evaluation,
2001

[13] Tomasic A., Raschid L., Valduriez P. Scaling
Heterogeneous Databases and the Design of
DISCO, Intl Conf. on Distributed Computing
Systems, Hong Kong, 1996.

[14] Levy A., Rajaraman A., Ordill e J. Querying
Heterogeneous Information Sources Using Source
Descriptions, Intl. Conf. on VLDB, Bombay, 1996.

