N

N
N

HAL

open science

TGV: a Tree Graph View for Modelling untyped XQuery

Nicolas Travers, Tuyet-Tram Dang-Ngoc, Tianxiao Liu

» To cite this version:

Nicolas Travers, Tuyet-Tram Dang-Ngoc, Tianxiao Liu.
untyped XQuery. 12th International Conference on Database Systems for Advanced Applica-

tions(DASFAA), 2007, Bangkok, Thailand. hal-00733459

HAL Id: hal-00733459
https://hal.science/hal-00733459

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

TGV: a Tree Graph View for Modelling

https://hal.science/hal-00733459
https://hal.archives-ouvertes.fr

TGV: a Tree Graph View for Modeling untyped
XQuery

Nicolas TRAVERS!, Tuyét Tram DANG NGOC?, and Tianxiao LIU?

! PRiSM Laboratory - University of Versailles, France.
Nicolas.Travers@prism.uvsq.fr
2 ETIS Laboratory - University of Cergy-Pontoise, France.
Tuyet-Tram.Dang-Ngoc@u-cergy.fr
3 ETIS Laboratory - University of Cergy-Pontoise & XCalia S.A, France.

Tianxiao.Liu@u-cergy.fr

Abstract. Tree Pattern Queries |7, 6] are now well admitted for mod-
eling parts of XML Queries. Actual works only focus on a small subpart
of XQuery specifications and are not well adapted for evaluation in a
distributed heterogeneous environment.

In this paper, we propose the TGV (Tree Graph View) model for XQuery
processing. The TGV model extends the Tree Pattern representation in
order to make it intuitive, has support for full untyped-XQuery queries,
and for optimization and evaluation. Several types of Tree Pattern are
manipulated to handle all XQuery requirements. Links between Tree Pat-
terns are called hyperlinks in order to apply transformations on results.
The TGV* has been implemented in a mediator system called XLive.

Keywords: XQuery evaluation, TGV, Extensible optimization, Cost model

1 Introduction

XQuery [9] has proved to be an expressive and powerful query language to query
XML data both on structure and content, and to make transformation on data.
In addition, its query functionalities come from both the database community
(filtering, join, selection, aggregation), and the text community (supporting and
defining function as text search). However, the complexity of the XQuery lan-
guage makes its evaluation very difficult. To alleviate this problem, most of the
systems support only a limited subset of the XQuery language.

XQuery expressions require a logical model to be manipulated, optimized
and then evaluated. [1] introduced the TPQ model that expresses a single FWR
query by a Pattern Tree and a formula. Then, [2] proposes GTPs that generalizes
TPQs with several Pattern Trees, the formula contains all the operations. The
representation is quite intuitive and acts as a template for the data source.

* The XLive system and TGV is supported by the ACI Semweb project.
TGV annotations and cost models are supported by the ANR PADAWAN project.

However, GTPs do not capture well all the expressiveness of XQuery, cannot
handle mediation problems, and do not support extensible optimization.

We design a model called TGV which provides the following features: (a)
It integrates the whole functionalities of XQuery (collection, XPath, predicate,
aggregate, conditional part, etc.) (b) It uses an intuitive representation that pro-
vides a global visualization of the request in a mediation context. (c) It provides
a support for optimization and a support for data evaluation.

In this paper we describe the TGV model for evaluating XQuery on hetero-
geneous distributed sources. This article is organized as follows. The next section
introduces the TGV structure that we had defined for modeling XQuery in a
practical way. Finally section 3 concludes with the TGV framework.

2 XQuery Modeling

XQuery modeling is a difficult goal since the language provides lots of functional-
ities. And it is all the more difficult as it needs to match mediation requirements
(data localization on sources, heterogeneous sources capabilities).

Tree Pattern matching becomes usual in XQuery modeling, trees contain
nodes and links, a formula constraints the tree pattern on tags, attributes and
contents. Since GTP, it contains joins, nesting, aggregates and optionality.

However, GTP does not handle distributed queries requirements. In fact,
data sources are not included, nor XML result constructor, nor views and query
on views modeling, nor Let and functions and tags, relations and constraints are
embedded in a boolean formula difficult to read. Moreover, there is no support
for additional information useful for optimization. Thus, this model requires
some extensions and adaptations to be the core of a distributed query-processing
algorithm in a mediator. We propose the TGV (Tree Graph View) model.

Let see all characteristics of the TGV model. First, we introduce TreePatterns
which are the XML document filters, and specific structures adapted to XQuery
requirements. Then, Constraints are added to this model to integrate general
filters, which can be attached to any type of the model. To complete this model,
Hyperlinks are introduced to link together preceding structures. A Tree Graph
View is composed of all this structure to model a complete XQuery query.

Tree Pattern A Tree Pattern is a tree with different tags an XML document
must match with. This template is a set of XPaths extracted from the XQuery
query. TreePatterns are composed of Nodes from a label, NodeLinks that rep-
resent axis between Nodes (child, descendant, etc.), and a mandatory/optional
status. A Pattern Tree is illustrated on Figure 1. Specific Tree Patterns are
integrated to model each characteristic of XQuery illustrated in figure 2:

— A Source Tree Pattern (STP) is defined by a targeted document and a root
path. It corresponds to a for declaration on a targeted XML document with
a specific root path, that defines the set of trees to work with.

— An Intermediate Tree Pattern (ITP) specializes a previous TreePattern on
a specific Node. It corresponds to a for declaration with a new path from a
previous variable that specializes an element by creating a new set of trees.
Thus, it creates a Tree Pattern that defines a new domain.

— A Return Tree Pattern (RTP) defines the result construction of an XML
document. It corresponds to the return clause of an XQuery query, which
builds the main XML resulting document. Nodes is identified by tags, at-
tributes with a "@Q", quoted texts, and required XPaths.

— An Aggregate Tree Pattern (ATP) builds a temporary result set. It corre-
sponds to a let clause that defines a treatment on a set of trees. By can-
onization rules, nested queries and aggregate functions are defined in those
clauses, so they build a temporary result set.

Definition Variable Tree Pattern

Nodes

Node Links

Fig. 1. Example of a Node and of a NodeLink in a TreePattern

SourceTreePattern

G

ProjectionHyperlin

catalog

$a
—— SpecializedHyperlink

book
> for $a in /catalog/book

. let $c := for $b in $a/author

¥ IntermediateTreePattern return $b/name

where contains ($a//title, "King")

return

--title author

contains =
| ("King")
I

=

{sc}
</auteurs>

AggregateTreePattern

I GeneralizedHyperlink

/ 1
auteurs (B4
/) \nbiauthor ot 7'

ReturnTreePattern

Fig. 2. Four types of Tree Patterns and three types of Hyperlinks

Constraints In XQuery queries, constraints are declared on XPaths to prune
set of trees. This constrains may be a value predicate, function or different types
of joins. Thus, we introduce the type Constraint for this purpose.

A Constraint is a restriction of the feasible solutions on sets of trees. It can
be applied on Nodes, Tree Patterns, Hyperlinks, Constraints or Constants. It
appears as Predicates or Functions:

— Predicates are constraints with a comparison operator between two element
types. Linked types can be constants, nodes, tree patterns, hyperlinks or
other constraints in order to compose constraints.

— Functions are constraints with a name and a set, of links to different element
types. The function name defines the type of operation to treat. Linked types
can be constants, nodes, tree patterns, hyperlinks or other constraints for
function composition.

Constraint representation depends of the linked element type. For a node, we
put the constraint under the tag as we can see on figure 3. For a tree pat-
tern, it is represented above it, as we saw the count function in figure 2 on the
Aggregate TreePattern. For hyperlinks, it depends of its type, as we will see on
JoinHyperlinks in figure 3 a link between two nodes is annotated with a equality
constraint. For constraint composition, we compose naturally at the position of
the linked element (node, tree pattern and hyperlink).

catalog

book

for $b in /catalog/book
for $rin /reviews
where
$a/author = $r/author
return
! <listrev>
: <booktitle>{$b/title/text()} </booktitle>
|

| <reviewtitle>{$r/title/text()} </reviewtitle>
| ‘/_\ </listrev>
|
booktitieV ‘\

bookrev | ProjectionHyperlink
\ reviewtitle K— — —

|
|
JoinHyperl’ink

Constraint

Fig. 3. Example of node constraint

"catalogs

"reviews"
$a_2

XQuery request
for $a in (
collection("catalogs")/catalog/boo
| collection("reviews")/review)

catalog
a1l |
book

review

return
<books>
o {
SetHyperlink if (contains ($a//title, "King"))

then $a/author
else "No King in title"

}

</books>

A

$a
author title
|

contains,
("King®

Else
[E— ~--4 "No King in title"|
\\\\\ IfThenElseHyperlink

Fig. 4. Examples of Hyperlinks: A SetHyperLink (union) and a IfThenElseHyperlink

Hyperlinks Hyperlinks (see figure 3 and 4) have been defined to represent
additional relations between elements of the Tree Graph View:

— Hyperlinks link elements in Tree Graph Views. It represents associations by
Association Hyperlinks or transformations by Directional Hyperlinks.

— Association Hyperlinks are Hyperlinks that connects two elements of the
same type to represent a specific association, in order to filter results by
verifying this association. There are two types of Association Hyperlink:

e Join Hyperlinks are associations between two Nodes under Constraint
pruning non relevant trees on constraints (values or order operator).

e (Constraint Hyperlinks are associations between Constraints with a Boolean
connector. It forms a tree, connected to a ReturnTreePattern in order
to keep constraints declaration level. Relevant, trees must verify the con-
nected tree of constraints, at a given declaration level.

— Directional Hyperlinks are injected transformations between elements. It
specifies a transformation from a set of elements to a single one. There are
four types of Directional Hyperlinks:

e Projection Hyperlinks are Node to Node Directional Hyperlink represent-
ing a value projection of the given node. It can be an optional hyperlink.

e Specialized Hyperlinks are Node to Tree Pattern Directional Hyperlink. It
contains a mandatory or optional status. It represents the specialization
of a Node, by specifying a new TreePattern which root is the given node.

e (Generalized Hyperlinks are Tree Pattern to Node Directional Hyperlink.
It contains a mandatory or optional status. It represents a TreePattern
generalization result set, which result is projected into the given node.

e Set Hyperlinks are set of Tree Patterns to Node under Constraint Di-
rectional Hyperlink. Tt represents a set operation (Union, Intersect or
Difference) between few TreePatterns projected on a single Node.

e [fThenElse Hyperlinks are set of Elements to Node under Constraint
Directional Hyperlink. Elements can be a Node or an Aggregate TreeP-
attern, and the constraint is a Predicate or a Function. It represents a
conditional expression which result is deduced by the constraint status.

Functions Functions take some parameters and give a single element in return.
Into our model, we will treat only parameters with element (), boolean and
number types. A function is represented by a TGV, and its parameters by an
Aggregate Tree Pattern with its function name. Variables are linked to elements
by Projection Hyperlins.

Tree Graph Views A Tree Graph View (TGV) is a representation of an
XQuery query containing TreePatterns, Constraints and Hyperlinks. Input of
the TGV is given by SourceTreePatterns, the output is defined by the Return-
TreePattern (not a AggregateTreePattern by inheritance).

Figures 1, 2, 3 and 4 are TGV examples. For more descriptions, see [3, 8].

Canonical XQuery to TGV Each queries in a canonical form can be trans-
lated to a tgv representation. All characteristics of XQuery queries correspond
to an element in the tgv model. For clauses to STP and ITP, where clauses to
constraints, Constraint Hyperlinks and Join Hyperlinks, return clauses to ATP
and RTP, let clauses to ATP, and set and conditional operations to Directional
Hyperlinks. All canonical XQuery queries can be translated in a TGV.

3 Conclusion

XQuery is an XML querying language that provides a rich expressiveness. By
this way, an efficient query processing model is all the more difficult. In this
paper, we describe our TGV model composed of Tree Patterns which are filters
on XML documents. Thanks to this model, we are able to optimize TGV with
transformation rules. Those rules rely on a mapping of Rule Patterns on a TGV
(as a TGV on XML documents). In order to take into account physical infor-
mation coming from the system, a generic annotation framework is designed on
TGV. This annotation framework allows us to describe any type of information
on TGVs (cost model, sources and traitments localization, evaluation algorithms,
etc.). The cost model is annotated on TGV in order to estimate its execution
cost. It allows the optimizer to choose an optimal TGV to evaluate the query.
More information can be found in [8].

The whole XQuery evaluation process is implemented in the mediator XLive
[4]. All XQuery queries of the W3C use-cases [5] except the typed use-cases
(STRONG) are evaluated correctly by our system, using Tree Graph Views.

As the TGV model is not specifically bound to a specific language (first
designed for XQuery), it can be applied to any untyped queries in any language
(SQL, OQL, OEM-QL, etc.) on structured or semi-structured data.

References

1. S. Amer-Yahia, S. Cho, Laks V. S. Lakshmanan, and D. Srivastava. Minimization
of Tree Pattern Queries. In SIGMOD, 2001.

2. 7. Chen, HV Jagadish, L. VS Laksmanan, and S. Paparizos. From Tree Patterns
to Generalized Tree Patterns: On efficient Evaluation of XQuery. In VLDB, 2003.

3. T.T. Dang-Ngoc and G. Gardarin. Federating Heterogeneous Data Sources with
XML. In Proc. of IASTED IKS Conf., 2003.

4. T.T. Dang-Ngoc, C. Jamard, and N. Travers. XLive: An XML Light Integration
Virtual Engine. In Proc. of BDA, 2005.

5. D.Chamberlin, P.Fankhauser, D.Florescu, M.Marchiori, and J.Robie. XML Query
Use Cases, september 2005. W3C. http://www.w3.org/TR/xquery-use-cases.

6. HV Jagadish, LVS Lakshmanan, D. Srivastava, and K. Thompson. TAX: A Tree
Algebra for XML. In DBPL, pages 149 164, 2001.

7. A. Sihem, C. SungRan, V. S. Laks Lakshmanan, and D. Srivastava. Tree Pattern
Query Minimization. VLDB Journal, 11(4)::315 331, 2002.

8. N. Travers. Optimization Extensible dans un Médiateur de Données XML. PhD
thesis, University of Versailles, December 2006.

9. W3C. An XML Query Language (XQuery 1.0), 2005.

