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ABSTRACT

We propose in this paper an iterative algorithm for 3D confocal microcopy image restoration. The image quality
is limited by the diffraction-limited nature of the optical system which causes blur and the reduced amount of
light detected by the photomultiplier leading to a noise having Poisson statistics. Wavelets have proved to be
very effective in image processing and have gained much popularity. Indeed, they allow to denoise efficiently
images by applying a thresholding on coefficients. Moreover, they are used in algorithms as a regularization term
and seem to be well adapted to preserve textures and small objects. In this work, we propose a 3D iterative
wavelet-based algorithm and make some comparisons with state-of-the-art methods for restoration.

1. INTRODUCTION

Confocal microscopy1 is a powerful tool allowing to get an accurate view of cellular physiology, thus explaining
its growing use in biological specimen imaging. Biological image quality is limited by two factors: a blur due
to microscope optics (modeled by the Point Spread Function (PSF) denoted here by h), even if it is limited in
confocal microscopy with respect to widefield microscopy, and the detection which is done with low photon flow
leading to Poisson statistics.
The Richardson-Lucy algorithm2, 3 is often used to restore images in case of Poisson noise because of its well
fitting. A regularization term has also been added in order to stabilize the inversion. More recently, some authors
proposed to use the wavelet transform4, 5 for biological image deconvolution. In the literature of Poisson noise,
many people use a pre-processing like the Anscombe6 transform or the Fisz transform7 in order to stabilize the
noise variance and to apply more usual methods8 (i.e. techniques developed for Gaussian noise).
In the biological context, different approaches have been introduced: deconvolution and denoising steps are often
splitted and then applied consecutively.
The approach considered here combines, in a unique algorithm, denoising and deconvolution. In this paper we
propose a deconvolution method based on a 3D wavelet decomposition and an iterative deconvolution algorithm
operating on the wavelet coefficients. We then make a comparative study of the different approaches considered
in the biological microscopy context. The organization of the paper is as follows: in Section 2, we present the
relevant background in biological microscopy image restoration. Then we introduce wavelets in Section 3 and
the proposed algorithm in Section 4. Finally, we will give comparative results in Section 5 both on simulated
and real data.

2. BACKGROUND

2.1. Problem context

Image formation model The considered image formation model is the following:

i = P(o ∗ h) (1)

where i is the observed image, o the original one, P(.) stands for Poisson noise and ∗ denotes the 3D convolution.
We work with 3D objects, both for the images and the PSF (Point Spread Function) which is constructed



following different models (physical PSF, Gaussian PSF...). Image restoration (including both denoising and
deconvolution) consists in estimating the original image, thus obtaining ô, only knowing the observation i (we
assume here that the PSF is known).

PSF model The PSF modelizes the microscope optics. We consider here an analytical form of the PSF
described by:

h(x, y, z) = |AR(x, y) ∗ P̂λem(x, y, z)|2.|P̂λex(x, y, z)|2 (2)

The excitation (resp. emission) wavelength is λex (resp. λem).

P̂λ is the 2D Fourier transform on x, y of the pupil function Pλ, given by9–11:

Pλ(u, v, z) = Πρ

(

√

u2 + v2
)

.e
2iπ

λ
.W (u,v,z) (3)

Here the complex term W (u, v, z) = 1
2z (1 − cos 2α) is the aberration phase derived from11 . ρ = NA

2λ is the
lateral cut-off frequency, and NA = no sinα the numerical aperture which is related to the amount of light en-
tering the microscope and the immersion medium refractive index no. The phase W depends only on the defect
of focus. This theoretical model of the confocal PSF does not take into account geometrical (e.g. spherical) lens
aberrations and refractive index induced diffraction.

Noise nature: Poisson statistics At the same time, we are confronted with Poisson noise. A way to face
this problem and use more conventional processing (stabilizing the variance) consists in either:

• applying the Anscombe transform6 . This transformation is defined as follows:

A(i(x, y, z)) = 2
√

i(x, y, z) +
3

8
. (4)

• applying the Fisz transform7 . This transformation is defined as follows:

1. Process a non normalized Haar transform.

2. Transform the detail coefficients dj,m(k) of level j, subband m and spatial position k as

dj,m(k) =

{

dj,m(k)/
√
aj,m(k) if aj,m(k) #= 0

0 if aj,m(k) = 0

where aj,m denotes the approximation coefficients.

3. Reconstruct using the inverse non normalized Haar transform.

After such transformations, the noise can be asymptotically considered as N (0, 1).
Some authors12 make the assumptions of a mixture of Gaussian noise (with mean µ and variance σ2) and

Poisson noise P(.). They consider the following image formation model:

i = αP(o ∗ h) +N (µ, σ2) (5)

where α > 0 and develop adapted methods for image restoration problem.

In our case, we consider the noise having Poisson statistics.



2.2. Richardson-Lucy based algorithms

Many approaches are based on the Richardson-Lucy (RL) algorithm2, 3 which is well adapted to Poisson noise.

One iteration of this algorithm is given by:

on+1(x) =

{[

i(x)

(on ∗ h) (x)

]

∗ h(−x)

}

on(x) . (6)

Several regularizations, allowing to stabilize the inversion, have been proposed such as:

Tikhonov-Miller regularization13

on+1(x) =

{[

i(x)

(on ∗ h) (x)

]

∗ h(−x)

}

on(x)

1 + 2λTM △on(x)
. (7)

Total variation regularization14, 15 The algorithm (RL-TV) is thus yielding to:

on+1(x) =

{[

i(x)

(on ∗ h) (x)

]

∗ h(−x)

}

on(x)

1− λ div
(

∇on(x)
|∆on(x)|

) . (8)

2.3. Separation of the denoising and deconvolution steps

In the microscopy field, researchers often apply deconvolution and denoising steps consecutively, thus introducing
some difficulties. We discuss in this part the advantages and drawbacks of the different approaches.

2.3.1. Denoising then deconvolution

denoising algorithm

Deconvolution

STEP 1 STEP 2

Preprocessing
preprocessing

InverseWaveleto ô

Figure 1. Scheme of Method 1.

The denoising step often corresponds to a wavelet coefficient thresholding using wavelets4, 5 or steerable
pyramids16 . Concerning the deconvolution step, RL algorithm or a MAP (Maximum A Posteriori) method
is often used. When Poisson noise is considered, pre-processing stage to stabilize the noise variance is applied
previously on the data.
Several drawbacks can be pointed out : we wonder whether the PSF is modified during the denoising step (in16

they estimate it after denoising); but also, we are not sure of the noise nature after the denoising step. Wavelets
have shown to be really efficient in denoising problems, which leads naturally to method 1.

2.3.2. Deconvolution then denoising

Inversion

of the PSF denoising

Wavelets

estimation

Noise

STEP 1 STEP 2

o ô

Figure 2. Scheme of Method 2.



The deconvolution step often corresponds to an inversion of the PSF17 taking into account it may have zeros.
A simple way to achieve it is

F(ô) =

{

F(o)
F(PSF ) if |F(PSF )| > ǫ

0 otherwise
(9)

where F(.) denotes the Fourier transform. ǫ can be taken equal to 0.001.

Concerning the denoising step, it often corresponds to a coefficient thresholding in a transformed domain.
The noise level has to be estimated. When Poisson noise is considered, pre-processing stage to stabilize the noise
variance is previously applied on the data.
The approach creates an amplification of the noise during the deconvolution step and after the inversion of the
PSF, the noise nature is not known. The second step (denoising) must take into account this particularity.
This method is easy to implement and comes naturally to mind. Nevertheless, without an adaptation and a
careful implementation,18 the noise is too strongly amplified and this method gives rise to bad results.

In order to tackle the different problems above mentioned, we propose to combine the denoising and decon-
volution steps using a single algorithm operating in the 3D transformed domain, as we will see later.

3. 3D WAVELET ANALYSIS

This section aims at giving a brief recall of the 3D wavelet transform. We also propose here an anisotropic
version of the transform.
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Figure 3. Analysis filter bank for a 3D Discrete Wavelet Transform.

The classical 3D dyadic wavelet analysis of L2(R) involves one scaling function ψ0 ∈ L2(R) and a mother
wavelet ψ1 ∈ L2(R) such that:

∀m ∈ {0, 1}, 1√
2
ψm(

t

2
) =

∞
∑

k=−∞

hm[k]ψ0(t− k),

where (hm[k])k∈Z are real-valued square summable sequences. The analysis filter bank presented in Fig. 3 itered
on the lowpass coefficients allows to realize the mutiresolution analysis.
Another specification of confocal microscopy is the difference of resolution in the z direction compared to the (x, y)
directions. A way to tackle this problem would be to consider an anisotropic decomposition. By anisotropic, we
mean to make a different processing (i.e. better adapted) in the z direction. We propose here to use a different
wavelet in the z direction (as the decomposition is separable) and also to consider a different resolution level
(lower). This is equivalent in Fig. 3 to use different filters in the z direction compared to the x and y directions



and stop the multiresolution analysis earlier for the z direction.
The coefficients obtained after such an analysis will be processed as presented in the next section.

4. PROPOSED ALGORITHM

We study here an iterative 3D wavelet-based algorithm19–21 allowing to operate conjointly denoising and de-
convolution in the wavelet transform domain, considering the 3D Discrete Wavelet Transform presented in the
previous section. The objective is to:

minimize
o∈H

1

2
‖h ∗ o− i‖2 +

∑

k∈K

φk(〈o | ek〉). (10)

This criterion is composed of two terms: a data fidelity term and a regularization term (which penalizes each
wavelet coefficients) where the regularization function φk can be chosen adaptively.

The algorithm reads:

on+1 = on + λn(proxγnφk < on + γn(h
∗(i− hon))|ek > −on) (11)

where ek stands for an orthonormal basis and prox denotes the proximity operator. Some properties of this
operator as well as the convergence property of this algorithm are given in21 .
For instance, we can choose:

φ = ω | . | (12)

or φ = ω | . |2 (13)

where ω is a fixed parameter and φ a fixed regularization function. When φ is defined by (12), then the
corresponding proxφ is a soft thresholding with threshold ω. We take γ = 1.99 (step size) and λ = 1 (relaxation
parameter) in the numerical experiments.
This algorithm is directly applied to the coefficients issued from a 3D wavelet transform. When Poisson noise is
considered, we apply a pre-processing on the data (Anscombe or Fisz), because this algorithm has been developed
for Gaussian noise.

5. COMPARATIVE RESULTS

5.1. Initial definitions

In order to evaluate the quality improvement, we propose to use the I-divergence measure. The I-divergence22

between two 3D images o and ô is given by:

Io,ô =
∑

ijk

{

oijk. ln

[

oijk

ôijk

]

− (oijk − ôijk)

}

(14)

5.2. Tested images

We propose here to proceed the tests on simulated, phantom and real data.

Synthetic image The first kind of data allows us to evaluate the proposed method performances in terms of
qualitative but also quantitative measures. We suppose we know the original image and we add blur and noise
in order to obtain the observed data. The original and degraded data are represented in Fig. 4.
We assume the microscope has a perfect pinhole and its characteristics are the following :

• The magnification of the objective is 63×.

• The refractive index of the medium is 1.33 and of the immersion lens medium (oil) is 1.518.



• The numerical aperture is 1.4 airy units.

• The excitation wavelength is 488nm whereas the emission wavelength is 520nm.

• The voxel size is 0.02µm× 0.02µm× 0.05µm.

Figure 4. 3D synthetic image. Original (left) and degraded (right).

Phantom image We consider here a spherical shell (as represented in Fig. 5) of diameter 15µm and which
thickness is known to lie between 0.5µm and 0.7µm.

The acquisition is made using a microscope having the following parameters:

• The magnification of the objective is 63×.

• The refractive index of the medium is 1.33 and of the immersion lens medium (oil) is 1.518.

• The numerical aperture is 1.4 airy units.

• The excitation wavelength is 488nm whereas the emission wavelength is 520nm.

• The voxel size is 89.26nm× 89.26nm× 232.75nm.

The 3D image consists in 128 stacks of size 256× 256 and one xy slice of the obtained image is shown in Fig.
7 (left). The objective is, knowing the original object size, to recover it after restoration process.

15 µm

Figure 5. Spherical shell of diameter 15 µm.



Real image We also work with real 3D confocal microscopy images.

We consider here an image which consists in 30 stacks representing a regenerating mammalian skin (see Fig.
6). The acquisition parameters are the following :

• Microscope Zeiss Axiovert 200

• The magnification of the objective is 40×.

• The refractive index of the medium is 1.33 and of the immersion lens medium (oil) is 1.518.

• The numerical aperture is 1.3 airy units.

• The excitation wavelength is 488nm whereas the emission wavelength is 520nm.

• The pinhole size is equal to 71µm

• The voxel size is 0.45µm× 0.45µm× 1µm.

Figure 6. 3D real image: regenerating mammalian skin. c©UMR 6543 CNRS / Institute of Signaling, Developmental
Biology and Cancer.

5.3. Tested methods

Method 1:

1. Pre-processing

2. Wavelet denoising

3. Inverse Pre-processing

4. RL algorithm

Method 2:

1. PSF inversion

2. Noise estimation

3. Wavelet denoising

Method 3:

1. Pre-processing

2. Deconvolution + denoising

3. Inverse Pre-processing



On the one hand, when the noise is estimated (for example, after the PSF inversion in method 2), we use the
robust median estimator which leads to the estimated variance σ̂ of σ considering the first level detail wavelet
coefficients d1,(2,2)

23 :

σ̂ =
1

0.6745
median[|d1,(2,2,2)|]. (15)

On the other hand, when the noise is Poisson, we apply the Anscombe transform (see Section 2) in order to
stabilize its variance to 1.

5.4. Quantitative and qualitative results

Synthetic image We propose, first, to give some numerical results comparing the three proposed methods.
These preliminary tests allow us to calibrate the parameters. We consider symlets wavelets of length 16. For
method 1, Sureshrink24 thresholding is applied followed by the RL algorithm. For method 2, we invert the
PSF as described by (9) with ǫ = 0.001, then make an estimation of the noise level (using the robust median
estimator) and apply Sureshrink thresholding. Concerning method 3, φ = 0.15| . | and in the anisotropic case,
we replace the z wavelet by the Haar wavelet. In all cases, we choose the Anscombe transform as pre-processing
stage.

I-div Initial value Method 1 Method 2 Method 3 Method 3 anis

6.98 1.17 2.11 1.09 0.90

Table 1. Restoration results (I-divergence) considering Poisson noise on the synthetic image.

As predicted, method 2 does not lead to good numerical results because it has to be better adapted. The
anisotropic form of the wavelet transform allows to improve the I-divergence. The first approach also allows to
obtain good results.

Phantom image The objective here is to recover the initial shell dimension.

Figure 7. Restoration of the shell. Raw data (left), restored images using method 1 (center) and method 3 (right).

In Fig. 7, we represent the original data (left) the restored data using method 1 (center) and the restored
data using method 3 (right). It seems that method 3 leads to a reduced thickness. Let’s have a look to the
intensity profile represented in Fig. 8. The observed data gives approximately a thickness of 1.2µm whereas
method 1 leads to 1µm and method 3 to 0.76µm. The two first measurements are too large and the third one is
a little bit too large but it better approximates the reality which means that method 3 allows to better recover
the initial shell size.
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Figure 8. Intensity profile of the 3 xy images respresented in Fig.7. 1 pixel represents 89nm.

Real image Now, we are interested in 3D real image restoration. The obtained results can be judged and
evaluated visually.

In Fig. 9, we have represented two slices of the 3D image shown in Fig. 6. The right column corresponds
to the restored images; the first impression can be mitigated but a careful look to these images allows to notice
some improvements. In the upper left corner, we can see in the stack, the vitelline membrane which is considered
as noise and alveolus structures which correspond to the central cells. In the upper right corner we have the
restored image: the vitelline membrane has been removed and some central cells are recovered from noise. In
the lower right corner, we can distinguish some filaments in the image which correspond to epidermal cells. In
the associated restored image, a part of the noise has been removed allowing to recover some central cells and
to better see epidermal cells.

6. CONCLUSION AND PERSPECTIVES

We have presented, in this paper, different image restoration methods for 3D confocal microscopy images based
on wavelets. More sophisticated analyses such as the Dual-tree Wavelet Transform25, 26 could improve these
restoration results at a price of a low redundancy.

Concerning the presented methods, the hyperparameters have been fixed empirically until now. An objective
would be to computed them adaptively27 . The main idea we want to follow in the future is to develop directly
Poisson statistic adapted methods.
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Figure 9. Restoration of the the regenerating mammalian skin image. c©UMR 6543 CNRS / Institute of Signaling,
Developmental Biology and Cancer. Original data (left column) and corresponding restored images using method 3 (right
column) .
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