Nicolas Travers
email: nicolas.travers@prism.uvsq.fr

Tuyêt Trâm Dang

AN EXTENSIBLE RULE TRANSFORMATION MODEL FOR XQUERY OPTIMIZATION Rules Pattern for XQuery Tree Graph View

Keywords:

-has extended the Tree Pattern representation in order to make it more intuitive, respect full XQuery specification and got support to be manipulated, optimized and then evaluated. For optimization, a search strategy is needed. It consists in generating equivalent execution plan using extensible rules and estimate cost of plan to find the better one. We propose the specification of extensible rules that can be used in heterogeneous environment, supporting XML and manipulating Tree Patterns.

INTRODUCTION

Efficient evaluation of XML Query Languages has become a crucial issue for XML exchanges and integration [START_REF] Abiteboul | Querying Semistructured Data[END_REF]. XQuery (W3C, 2005) has proved to be an expressive and powerful language to query XML data both on structure and content, and to make transformation on data. In addition, its query functionalities come from both database community (filtering, join, selection, aggregation), and text community (supporting and defining function as text search). However, such functionalities provided by the XQuery language imply complexity that makes its evaluation very difficult.

Tree Pattern Queries [START_REF] Sihem | Tree Pattern Query Minimization[END_REF][START_REF] Jagadish | TAX : A Tree Algebra for XML[END_REF] are now well admitted for modeling parts of XML Queries. Works as GTP [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On efficient Evaluation of XQuery[END_REF] use the Tree Pattern Query as a basis to model a part of the XQuery specification.

In previous work [START_REF] Dang-Ngoc | Tree graph view : On efficient evaluation of xquery in an xml mediator[END_REF][START_REF] Travers | TGV : a Tree Graph View for Modelling untyped XQuery[END_REF][START_REF] Travers | TGV : a Tree Graph View for Modelling untyped XQuery[END_REF], we have defined the TGV model that extends the Tree Pattern representation in order to make it intuitive, have full XQuery support and got support to be manipulated, optimized and then evaluated. XQuery queries are modeled with TGV to generate execution plan that will be used to evaluate the XQuery query.

We are interested in providing an extensible framework to optimize XQuery queries' evaluation. Optimizing query evaluation can have different meaning depending on what the user or the application expects. The most popular and important aspect is efficiency or cost. Mainly, cost models referred to time cost (time for evaluating the whole request and provide the result), but also resource cost, energy cost, money cost, etc. But depending on the context, other aspects can be considered instead for an optimized query evaluation, as accuracy on the evaluation as introduced in weighted patterns (Damiani and Tanca, 2000), fuzzy (Damiani et al., 2000) or flexible [START_REF] Calmès | Requêtes flexibles et données semi-structurées -quelques éléments de discussion et d'implémentation[END_REF] queries or right access.

Extensible optimizer were studied in Exodus [START_REF] Carey | The EXODUS Extensible DBMS Project : An Overview[END_REF], Starburst [START_REF] Widom | The Starburst Active Database Rule System[END_REF], Volcano [START_REF] Graefe | The Volcano Optimizer Generator : Extensibility and Efficient Search[END_REF] and OPT++ [START_REF] Kabra | OPT++ : an objectoriented implementation for extensible database query optimization[END_REF]). An extensible optimizer aims at generating a query optimizer by integrating new transformation rules. These rules transform algebraic plans into alternative ones. Extensible optimizers need search strategies to order transformation rules for queries execution. It often relies on cost information as with introduced expected cost factor in [START_REF] Carey | The EXODUS Extensible DBMS Project : An Overview[END_REF] and [START_REF] Graefe | The Volcano Optimizer Generator : Extensibility and Efficient Search[END_REF].

However, these works are designed to relational or object contexts. And as far as we know, those solutions could not be applied on semi-structured data with tree pattern matching queries. So, we define a model for designing transformation rules that would be applied on TGV, to optimize XQuery evaluation.

In this article, we briefly recall the TGV model and annotations on which transformation rules rely on (section 2). In section 3, we present the goal of this article which defines a new model, the rule patterns, which would be integrated in our extensible optimizer. And, finally we conclude.

TREE GRAPH VIEW (TGV)

XQuery is a rich language on XML documents. It defines complex operations such as aggregation, ordering, nesting/unnesting, document construction, conditional cases, sets, sequences, quantifiers, and XPath filter. To handle such functionalities, a canonical form using simple sequences of FOR...LET...WHERE...RETURN (FLWR) expressions equivalent to any XQuery expression can be retrieved (the demonstration begin in [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On efficient Evaluation of XQuery[END_REF] and achieved in [START_REF] Travers | Full Untyped XQuery Canonization[END_REF]).

The canonized XQuery evaluation process relies on our TGV model. Since we focus on TGV transformation rules, we briefly recall the TGV model. Details and Abstract Data Type formalization of the TGV model can be found in [START_REF] Travers | Extensible Optimization in an XML Mediatior[END_REF][START_REF] Travers | TGV : a Tree Graph View for Modelling untyped XQuery[END_REF]. A TGV implementation is downloadable on http://www.prism.uvsq.fr/˜ntravers/xlive/

The TGV model

To manipulate XQuery expressions, a tree logical structure is needed. (Amer-Yahia et al., 2001) has introduced the TPQ model that expresses a single FOR-WHERE-RETURN (FWR) query by a Pattern Tree and a formula. Then, [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On efficient Evaluation of XQuery[END_REF] proposes the GTP model that are a generalization of the TPQ model. In this model, each LET clauses generates a Tree Pattern, and one predicate that contains all constraints. The representation acts as a pattern applicable on data sources. However, GTPs do not capture well all XQuery expressiveness and cannot be used in a mediation context. Moreover, it does not support extensible optimization.

We have proposed the TGV model [START_REF] Dang-Ngoc | Tree graph view : On efficient evaluation of xquery in an xml mediator[END_REF][START_REF] Travers | Extensible Optimization in an XML Mediatior[END_REF][START_REF] Travers | TGV : an Efficient Model for XQuery Evaluation within an Interoperable System[END_REF] -Set Hyperlinks (SH) : a set operation between two tree patterns. All these elements are connected together to form a TGV that represents an XQuery query. They are formalized in [START_REF] Travers | Extensible Optimization in an XML Mediatior[END_REF].

Table 1 illustrates an XQuery query which contains a FOR clauses ($x) with a constraint predicate defined in a filter (between "[]"). This constraint selects all documents containing the word "XML". Then, the book attribute "isbn" must not exceed "1526". Finally, the result includes the title of the book and authors if only there is more then two authors (aggregation and a join on "isbn" with another collection).

This query is represented by a TGV in figure 1. We can see Tree Patterns represented by ovals (STP) and rectangles (ATP, RTP). The first STP defines the collection filter for "reviews". It is associated to a "contains" function, the tree representation is composed of two branches with a title and an isbn (linked to a constraint). The second STP filters the collection where $x/@isbn > 1526 return <books> {$x/title} { for $y in collection("books")/book where $x/@isbn = $y/@isbn and count($y/author) > 2 return $y/author } </books> TAB. 1: XQuery Example "books". The isbn is linked to the previous isbn node with a Join Hyperlink. The author node is linked to two ATPs by Projection Hyperlinks. The ATP on the right corresponds to the aggregate constraint that requires more than two authors by book. The ATP on the left nests results for each book (defined by its isbn), this result is put in the RTP by a Generalized Hyperlink. The RTP represents the XML document creation, with tags (nodes relation) and values (hyperlinks).

The TGV logical structure recognizes the full untyped-XQuery specification and covers 8 of 9 use cases of the W3C. The use-cases category not covered by our TGV model is the STRONG category that includes query type information.

Annotations

Our TGV logical model can be extended by annotating its elements with physical information, produ-cing an annotated TGV (which is then a physical model). Annotations add new information to a TGV model in order to indicate for example, execution costs, localization information, or some others constraints as accuracy, access right, etc.

We introduce a generic annotation model, which allows us annotating subsets of TGV elements with information. The motivation for annotating a TGV is to give, for each arbitrary granularity (i.e. subset size), some additional information such as cost information, system performance information, source localization, etc. Our annotation model is generic and allows any type of information. The set of annotation based on the same annotation type is called an annotated view. There can be several annotation view for the same TGV, eg. time-cost annotated view, algorithm annotated view, source-localization annotated view, etc.

For example, we can annotate the execution cost on a hyperlink ; it's also possible to annotate all elements of a source all together by adding an execution cost and some localization information.

Figure 2 illustrates an annotated TGV with algorithms annotations. This physical TGV represents a view of the possible algebraic evaluation of the TGV with given operators. We can see XSources that selects and filters data on sources s1 and s2 (we can notice that aggregate functions are embedded in the source s2). An XJoin will join data provided by s1 and s2 with a left outer join. Then, an XConstruct will build an XML document with specific projections on data.

Figure 3 shows a cost annotated TGV. Several TGV elements are linked to cost annotations. This view gives an estimate cost of each step of the evaluation. We can see the use of cardinality, selectivity, projection, and aggregation in formulas. The final cost formula (8) provides the evaluation global cost. "reviews" left Outer-join

(1)

(2)

(2) (4)

(2) XSource :

query on source s2

(1) XSource :

EXTENSIBLE OPTIMIZATION

Now we have recall TGV characteristics, we present the optimization framework. TGV are modified by the optimizer to generate more efficient evaluations.

The optimization framework takes several transformations to manipulate TGVs and generates new ones. We now introduced the optimization process, and then focus on transformations we call Rule Patterns. We present a model to create new transformation rules in order to extend our optimizer. We propose a model to represent and create rules ; we do not focus on which rule we add to our optimizer (or proving them). Some classical transformation rules can be found in [START_REF] Cherniack | Changing the Rules : Transformations for Rule-Based Optimizers[END_REF][START_REF] Lohman | Grammar-like Functional Rules for representing Query Optimization Alternatives[END_REF][START_REF] Ali | Minimization of Tree Pattern Queries[END_REF].

Optimization framework

Since TGV is an intuitive representation model for XQuery, we aim at defining a representation model for transformation rules on TGV. Then, rules definition could be easier to create, according to existing equivalence rules on object-oriented queries [START_REF] Cherniack | Changing the Rules : Transformations for Rule-Based Optimizers[END_REF][START_REF] Lohman | Grammar-like Functional Rules for representing Query Optimization Alternatives[END_REF][START_REF] Ali | Minimization of Tree Pattern Queries[END_REF].We present rules specification applicable on the TGV model.

Two TGV are said to be equivalent if they do have the same evaluation (i.e. same resulting document) independently of the XML documents sources : eval(T GV 1 , τ) = eval(T GV 2 , τ). eval is the evaluation function for a T GV and τ an XML document set. Then, a transformation rule φ keeps equivalence if the T GV modified by φ is equivalent to T GV : eval(φ(T GV), τ) = eval(T GV, τ).

Equivalence Rules (or shortly Rules) define that under specified conditions, the result of the TGV after the transformation is equivalent (i.e. same results).

Rule Patterns

We propose a rule presentation model for this rule language : a Rule Pattern Model (RP Model). Like TGV mappings on XML documents with Tree Patterns, we represent rules in intuitive manners in order to build a pattern to map visually on TGV representations. Since TGV representation is a translation from ADT formalization, we can naturally use this transformation process and extract parts of the TGV.

The given rule pattern for the transformation rule is a part of a TGV in which is represented only concerned elements. Two rule patterns are necessary to represent a transformation rule. In fact, the first rule pattern is called Condition Rule Pattern and represents the rule condition. The second rule pattern is called Conclusion Rule Pattern and represents the rule conclusion (i.e. the final pattern after applying transformations using condition pattern's variables).

Then, the framework given in Figure 4 defines transformation rules. Rx is the transformation name identifier. The condition rule pattern represents which TGV elements a TGV must have to be applied. The conclusion rule pattern represents the pattern transformation when applied. Differences between the two rule patterns correspond to the transformation.

Transformation rules defined by the Rule Language allow us to improve optimizer's knowledge with new transformations which would modify TGV representations and reach an optimal representation. The two first categories include well-known equivalence rules : logical rules and physical rules. Those categories are detailed in following sub-sections with illustrating examples (figure 5 and6).

Condition

$n $c => = $H 1 1 = $H 1 $n 2 $n $c 1 $n $c 2 R1: FIG. 5: Logical Rule Pattern Example $n => = $H 1 1 $n 2 R2: (1) (2) (3) (3) Algorithm : : left Outer-join (1) (2) Cardinality () Cardinality () (1) (2) << $n = $H 1 1 $n 2 (1) (2) (3) (3

Logical Pattern Rules

Thus, Logical Equivalent Transformations correspond to logical knowledge on TGV. Those rules deal with topology improvements on TGV without annotations requirements.

Figure 5 illustrates a transformation rule R1. This rule takes care of nodes which are linked to both a constraint and a join hyperlink. Since the equal ope-rator is distributive, we can infer that the constraint will be cloned to the linked node. This figure shows a Condition Rule Pattern on the left, in which a join hyperlink $H 1 links $n 1 and $n 2 . $n 1 is also linked to a constraint $c. We notice that the join hyperlink is equality joint. Then, the Conclusion Rule Pattern represents the same pattern with a single modification. The constraint $c is cloned on $n 2 .

When we apply R1 on our example (figure 1), a join hyperlink is present with a linked constraint. Then the transformation is applied and we obtain a new TGV (figure 7) and the constraint is cloned to the other node isbn.

Physical Pattern Rules

Physical Equivalent Transformations use physical information that sources can provide like algorithms, cost information, function capabilities, systems statistics. These transformations are based on sources information annotated on TGV (see section 2.2).

Figure 6 illustrates a physical transformation rule.

"reviews"

Bind left Outer-join (1) (2)
(2)

(

(2) XSource : query on source s2

(1) XSource : query on source s1

(4) XConstruct :

($x, $y) >1526

FIG. 8: Physical transformation on TGV

This physical rule uses two types of annotation. In fact, some annotations from the algorithm-annotated view showed in figure 2 and the cost-annotated view in figure 3 are used in Rule Patterns. We can see a join hyperlink on which annotations must be present (XJoin for the join hyperlink with a left outer join) and cardinality annotations for Tree Patterns (cardinality are given by formulas). The Condition Rule Pattern verifies if the cardinality of source s1 is quite lower than source s2's one. Then the transformation modifies the algorithm annotation by a Bind left outer join.

The cardinality comparison is carried out by the optimizer (theoretical cardinalities are given by the cost model).

When the rule pattern is applied on the TGV, the join algorithm is modified has expected. The result is showed in figure 8.

Extensibility

User-define Transformations are rules provided by a user or an administrator that have knowledge on sources or data behavior. It could be used to create a specific rule.

Since we have categorized transformations, a search-strategy push the information into the optimizer proposed in [START_REF] Travers | Extensible Optimization in an XML Mediatior[END_REF]. This strategy relies on rule valuation with a coefficient of improvement [START_REF] Carey | The EXODUS Extensible DBMS Project : An Overview[END_REF]. This coefficient is directed by information provided by our cost model. Transformation rules, like cost model, need an annotation support on parts of the TGV model in order to manage external information on Tree Graph Views.

The extensibility of the optimizer is then given by new added rules. Each of these rules are added to the optimizer and can potentially improve performances.

EXPERIMENTAL EVALUATION

The purpose of this section is to validate the better performance of a query evaluation after having integrated previous defined optimization rules. Thus, we evaluate a query on the benchmark defined by [START_REF] Dragan | Benchmarking an xml mediator[END_REF] within the mediator XLive (Travers et al., 2007a). We load the extensible optimizer with rule patterns that are applied if the rule condition matches. We use XML documents with various sizes and information distribution, and calculate their execution time after having applied optimization rules. Tests have been realized on an AMD Athlon 1.8GHz, with 1024Mo RAM under Windows XP SP2, sources were handled by a Pentium 2.65GHz, with 512Mo de RAM under Windows XP SP2 with a 10Mbps connection.

The transformation rules integrated into the optimizer are physical rules transformation as they use annotation information (functional capacities of the sources for the functions, cardinality for the algorithm of joint).

Thus, these three optimization rules are used successively :

-delegate function contains to sources ; -delegate the aggregate operation to sources ; -change the join algorithm (nested loop to hash).

On Figure 9, we report the time used by the XLive mediator to evaluate the XQuery shown in our previous example, applied on documents with different size. Of course, as the document data size increase, the execution time linearly increase too.

The objective is to validate the extensible optimizer and show that the more matching pattern rules there are, the faster is the evaluation.

Measurement are made with sets of rules that are loaded successively in the optimizer. In each additio-nal set that is provided, one rule pattern match the request.

FIG. 9: Time execution depending on the data size

RELATED WORK

Using transformation rules, a given execution plan will be transformed into an equivalent execution plan (i.e. that give the same result when evaluated). Transformation rules can be logical (i.e. based on the algebraic properties of the operators), physical (i.e. based on the hardware, system and data statistics) or userdefined (i.e. defined arbitrarily by the user).

EXODUS [START_REF] Carey | The EXODUS Extensible DBMS Project : An Overview[END_REF]) was the first system to include a query optimizer generator based on a rule language that specifies transformation of query trees. The EXODUS optimizer uses a best-first search strategy for rule-application based on the excepted benefit of applying a rule to a query. The Volcano [START_REF] Graefe | The Volcano Optimizer Generator : Extensibility and Efficient Search[END_REF] optimizer generator improves EXO-DUS generator through its use of heuristics and semantics to guide the search for transformations, its ability to learn optimization heuristics, its extensible support for physical properties of data, and its support for flexible costs models that can be used to generate plans for partially specified queries. Starburst [START_REF] Pirahesh | Extensible/rule based query rewrite optimization in Starburst[END_REF] optimizer is divided in two phases, each one having its own rules language. The query rewrite rules is written in C. Esprit EDS [START_REF] Finance | A rule-based query optimizer with multiple search strategies[END_REF] defines an unified rules language for expressing query transformations in an extensible query optimizer.

However, all these works are designed to relational or object contexts. And as far as we know, those solutions could not be applied on a semi-structured context with tree pattern matching queries. So, our model defines transformation rules that would be ap-plied on TGV, to optimize XQuery evaluation and bring adaptability to the mediator with specific rules.

CONCLUSION

In this paper, we propose a rule-based optimizer for XQuery. Rule-based optimizers are extensible as they consist in modifiable sets of rules. Sets of rules can be defined in two categories :

-Logical rules that rely on logical operators used by the query -Physical rules that rely on physical information got from sources and from the system. Rules are applied on the XQuery model called TGV designed for heterogeneous distributed sources, which supports full non-typed XQuery specification. A logical rules suite is provided using theorems deduced from the definition of the Abstract Data Type TGV. In order to define the physical rules suite, physical information on sources and system must be provided. User-defined rules provided by the user or the administrator based on her/his knowledge of data and systems. Moreover, the search strategy is all the more efficient since transformation rules are based on annotated information. This leads to a better execution plan. A generic annotation is defined to annotate the TGV and that can be used when defining rules. This generic annotation can support any type of information, mainly cost information, but also information as accuracy, access, preferences, etc.

Many systems relying on rules-based optimizer have been defined for relational sources [START_REF] Pirahesh | Extensible/rule based query rewrite optimization in Starburst[END_REF][START_REF] Graefe | The Volcano Optimizer Generator : Extensibility and Efficient Search[END_REF][START_REF] Carey | The EXODUS Extensible DBMS Project : An Overview[END_REF][START_REF] Mitchell | Extensible query processing in an object-oriented database[END_REF] and object-oriented sources [START_REF] Kabra | OPT++ : an objectoriented implementation for extensible database query optimization[END_REF][START_REF] Finance | A rule-based query optimizer with multiple search strategies[END_REF]. But as far as we know, nothing has been done yet for semi-structured systems and a fortiori on heterogeneous distributed XQuery queries. For those reasons, our work on rules-based optimizer for XQuery is a new axis.

Our system based on the mediator/wrappers architecture is called XLive and already supports full XQuery evaluation on heterogeneous distributed sources, using TGV with annotation support (a poster presentation has also been submitted to the conference).

 FIG. 2: Algorithm-annotated TGV view

 FIG. 4: Transformation rules's framework

 FIG. 6: Physical Rule Pattern Example

 FIG. 7: Logical transformation on TGV

ACKNOWLEDGEMENTS

The XLive is supported by the ACI Semweb project. Part of this work is also supported by the ANR PADAWAN project.