Nicolas Travers
email: nicolas.travers@prism.uvsq.fr

Tuyêt Trâm Dang

Tianxiao Liu
email: tianxiao.liu@u-cergy.fr

Untyped XQuery Canonization

Keywords: XQuery evaluation, canonization of XQuery, XQuery processing

XQuery is a powerful language defined by the W3C to query XML documents. Its query functionalities and its expressiveness satisfy the major needs of both the database community and the text and documents community. As an inconvenient, the grammar used to define XQuery is thus very complex and leads to several equivalent query expressions for one same query. This complexity often discourages XQuery-based software developers and designers and leads to incomplete XQuery handling. Works have been done in [DPX04] and especially in [Che04] to reduce equivalent forms of XQuery expressions into identified "canonical forms". However, these works do not cover the whole XQuery specification. We propose in this paper to extend these works in order to canonize the whole untyped XQuery specification.

Introduction

The XQuery [W3C05] query language defined by the W3C has proved to be an expressive and powerful query language to query XML data both on structure and content, and to make transformation on the data. In addition, its query functionalities come from both the database community, and the text community. From the database languages, XQuery has inherited from all data manipulation functionalities such as selection, join, ordering, set manipulation, aggregation, nesting, unnesting, ordering and navigation in tree structure. From the document community, functions as text search, document reconstruction, structure and data queries have been added.

The XQuery query language is expressed using the famous FLWOR (FOR ...exp... LET ...exp... WHERE ...exp... ORDER ...exp... RETURN...exp...) expression form. But this simple form is not so simple: thus, any expression exp can also be recursively a FLWOR expression but also a full XPath expression.

In Table 1, Query A is a complex XQuery expression that defines a function that selects books with constraints on price, keywords and comments and that returns price and isbn depending on the number of returned titles. This query contains XPath Constraint, Filter, Quantifier, Document construction, Nesting, Aggregate, Conditional and Set operation, Ordering, Sequence and Function. However, by using XQuery specifications, some expressions are found to be equivalents (ie. give the same result independently of the set of input documents). Thus, the Query B in Table 1 is an equivalent form of the previous Query A. Query let $l1 := for $f1 in doc("rev.xml")/review for $f2 in doc("$doc")/catalog return ($f1 | $f2) for $f3 in $l1 for $x in $f3/book let $l2 := for $y in $x/comments where contains ($y, "Excellent") return $y let $l3 := orderby ($x, $x/@isbn) for $ordered in $l3 let $l4 := count ($ordered/title) let $l5 := for $z in doc("books.xml")/book let $l6 := $z/title where $z/@isbn = $ordered/@isbn and $z/position () == 3 return <title>{$l6}</title> where contains($f3, "Robin Hobb") and $x//price > 15 and count ($l2) > 0 return <book> {$ordered/@isbn} <price>{$ordered//price/text()}</price>

{ if ($l4 > 2) then {$l5} else <title/> } </book> } Table 1.
Two equivalent XQuery queries XQuery can generate a large set of equivalent queries. In order to simplify XQuery queries studies, it is useful to identify sets of equivalent queries and associate them with a unique XQuery query called : Canonical query. This decomposition is used in our evaluation model called TGV [START_REF] Travers | TGV: an Efficient Model for XQuery Evaluation within an Interoperable System[END_REF][START_REF] Travers | TGV : a Tree Graph View for Modelling Untyped XQuery[END_REF] in which each canonized expression generates a unique pattern tree. This paper aims at allowing all XQuery representation by adding missing canonization rules (not studied in [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF] and [START_REF] Olteanu | XPath : Looking Forward[END_REF]).

The rest of this paper is organized as follows. The next section describes related works, especially canonical XQuery introduced by [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF]. Section 3 focuses on our extension of [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF]'s work to the canonization of the full untyped XQuery. Section 4 reports on validation of our canonization rules and finally, section 5 concludes.

Related Work

2.1 GALAX GALAX [FSC + 03] is a navigation-based XQuery processing system. It has first propose a full-XQuery support by rewriting XQuery expression in the XQuery core using explicit operation. The major issue of the navigational approach is to evaluate a query as a series of nested loops, whereas a more efficient evaluation plan is frequently possible. Moreover, the nested loop form is not suitable in a system using distributed sources and for identifying dependencies between the sources.

XPath

[OMFB02] proposes some equivalence between XPath axes. Those equivalences define XPaths in a single form with child and descendant expressions. Each "orself " axis is bound to a union operator. A "Parent " or "Ancestor " axis is bound to a new variable with an "exist()" function a child/descendant. Table 2

NEXT

Transformation rules suggested by [START_REF] Deutsch | The NEXT Framework for Logical XQuery Optimization[END_REF] are based on queries minimization of [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF] and [START_REF] Ramanan | Efficient Algorithms for Minimizing Tree Pattern Queries[END_REF] in NEXT. They take as a starting point the group-by used in the OQL language, named OptXQuery. In order to eliminate redundancies while scanning elements, NEXT restructures the requests more efficiently to process nested queries. We do not take into account those transformation rules since [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF] proposes transformation rules that create "let " clauses (and not a group by from OQL).

GTP

Works on GTP [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF] propose transformation rules for XQuery queries. Aiming at structuring queries, XQuery queries are transformed in a canonical form of XQuery. The grammar of canonical queries is presented in table 3. This form is more restricted than XQuery specifications, but it allows us to cover a consequent subset of XQuery.

expr ::= (for $f v1 in range1, ... , $f vm in rangem)? (let $lv1 := "(" expr1 ")", ... , $lvn := "(" exprn ")")? (where ϕ)? return <result> < tag1 >{arg1}< /tag1 > ... < tagn >{argn}< /tagn > < /result> Table 3. Canonical XQuery in GTPs Thus, we obtain a specific syntax that enables us identifying XQuery main properties. These canonized queries must match the following requirements:

-XPath expressions should not contain building filters.

expr expressions are XPaths or canonical XQuery queries.

-Expression ϕ is a Boolean formula created from a set of atomic conditions with XPaths and constants values. -Each range expression must match the definition of a field of value.

-Each range expression is an XPath or an aggregate function.

-Each aggregate function can be only associated to a let clause.

In [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF], it is shown that XQuery queries can always be translated into a canonical form. Lemmas enumerated below show canonical transformation rules.

XPath expressions can contain restrictions included in filters (between "[]").

With XQuery specifications, those filters can be replaced by defining new variables that are associated with predicate(s) (within the filter) into the where clause. Table 4 illustrates a transformation of a filter.

XQuery query Canonized form

for $i in doc("cat.xml")/catalog/book [@isbn="12351234"]/title return {$i} for $j in doc("cat.xml")/catalog/book for $i in $j/title where $i/@isbn = "12351234" return {$i} Table 4. Query with filters 2. A FLWR expression with nested queries can be rewritten into an equivalent expression in which FLWR expressions are declared in let clauses. The new declared variable is used instead of the nested query. An example given in table 5 redefined a nested query in the let clause: "let $l: = (...)", and the return value becomes $t.

XQuery query Canonized form

for $i in doc("cat.xml")/catalog/book return <book> {for $j in $i/title return {$j}} </book> for $i in doc("cat.xml")/catalog/book let $l := (for $j in $i/title return {$j}) return <book>{$l}</book> Table 5. Nested queries transformation 3. A FLWR expression with a quantifier "every" can be transformed into an equivalent one using an expression of quantity. XQuery syntax defines quantifiers every as a predicate associated to the Boolean formula ϕ. The quantifier checks if each selected tree verifies the predicate. Table 6 returns all books for which all prices which are strictly higher than 15 euros. In order to simplify and to canonize this query, the "let" clause is created, containing books whose prices are lower or equal than 15 euros. If the number of results is higher than 0, then the selected tree ($i) does not satisfy the quantifier "every" and is not returned.

XQuery query Canonized form

for $i in doc("cat.xml")/catalog/book where every $s in $i/price satisfies $s > 15 return {$i} for $i in doc("cat.xml")/catalog/book let $l :=(for $j in $i/price where $j <= 15 return {$j}) where count($l) = 0 return {$i} Table 6. Transformation of a quantifier "every" 4. In the same way, a FLWR expression, containing a quantifier "some", can be transformed. It is the same transformation, but the tree is selected if there is at least a tree that checks the condition (in the "let" clause). 5. Aggregates functions defined in FLWR expressions can be rewritten in "let" clauses, associated to a new variable. This variable replaces the aggregate function at the previous location.

Table 7 shows transformation of a nested query, an aggregate and a filter.

XQuery query Canonized form

for $y in doc("rev.xml")/review [. contains ("daulphin")]/book where $y/price > 15 return <result> {$y/@isbn} {$y/price} <nb titles>{ for $z in collection ("books")/book where $z/@isbn = $y/@isbn return {count ($z/title)} }</nb titles> </result> for $x in doc("rev.xml")/review, $y in $x/book let $l1 := (for $z in collection ("books")/book let $l2 := count ($z/title) where $z/@isbn = $y/@isbn return {$l2}) where $x contains ("dauphin") and $y/price > 15 return <result> {$x/@isbn} {$y/price} <nb titles>{$l1}</nb titles> </result> Thus, we propose some more canonization rules in order to handle those XQuery requirements, making it possible to cover a more consequent set of the XQuery queries. Those new canonization rules will allow us to integrate those expressions in our XQuery representation model: TGV [START_REF] Travers | TGV : a Tree Graph View for Modelling Untyped XQuery[END_REF] (Tree Graph View).

Canonisation

As said in the previous section, transformation rules transform a query into a canonical form. Since, it covers a subset of XQuery; we propose to cover much more XQuery queries. Thus, we add new canonization rules that handle all untyped XQuery queries.

In [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF], five categories of expression are missing: ordering operators, set operators, conditional operators, sequences and function declaration. We thus propose to add canonization rules for each of those expressions.

Ordering (Order by)

Ordering classifies XML trees according to one or more given XPaths. The order of the trees is given by nodes ordering on values, coming from XPaths. This operation takes a set of trees and produces a new ordered set.

Lemma 3.1 : Ordering

An XQuery query containing an Order By clause can be transformed into an equivalent query without this clause. It is declared in a let clause with an aggregate function orderby() whose parameters are ordering fields with XPaths, and the ascending/descending sorting information. The orderby function results a set of sorted trees. The new linked variable replaces original used variables into the return clause. To keep the XML trees flow, a for clause is added on the given variable.

To obtain a canonical query, the order by clause must be transformed into a let clause. In fact, ordering is applied after for, let and where clauses, and before the return clause. Thus, results of preceding operations can be processed by the aggregate function: orderby(). This function orders each XML trees with a given XPath. Then, this aggregate function is put into a let clause, as specified in the canonical form. The new variable replaces all variables contained into the return clause.

Proof: Take a query Q. If Q does not contain an orderby clause, it is then canonical (for the order criteria).

Let us suppose that Q has n orderby clauses: order by $var 1 /path 1 , $var n /path n . Using the transformations lemmas on XPaths, path x are in a canonical form. The query Q is said to be canonical if the orderby clause is replaced by a let clause with an aggregate function orderby, and each transformed corresponding variable.

It is then necessary to study 3 cases of orderby clause:

1. If a variable is declared: order by $var 1 /path 1 return $var 1 /path 2 , then: let $t: = orderby ($var 1 , $var 1 /path 1) return $t/path 2 ; 2. If two variables (or more) are declared, but identical: order by $var 1 /path 1 , $var 1 /path 2 return $var 1 /path 3 , then: let $t: = orderby ($var 1 , $var 1 /path 1 , $var 1 /path 2) return $t/path 3 ; 3. If two variables (or more) are declared, but different: order by $var 1 /path 1 , $var 2 /path 2 return {$var 1 /path 3 , $var 2 /path 4 }, then: let $t 1 : = orderby ($var 1 , $var 1 /path 1), $t 2 : = orderby ($var 2 , $var 2 /path 2) return {$t 1 /path 3 , $t 2 /path 4 }.

Then, the (n + 1) th orderby expressions in query Q can be written with n orderby expression, since a query with no orderby expression is canonical, then recursively, Q can be written without orderby clause.

Here is a example of an orderby clause canonization:

XQuery query Canonized form

for $i in /catalog/book order by $i/title return $i/title for $i in /catalog/book let $j := orderby ($i, $i/title) for $k in $j return $k/title In table 8, the f or clause selects a set of book elements contained in catalog. Then, it is sorted by values of the title element, and linked to the $j variable. The orderby clause canonization gives a let clause: $j, whose ordering function orderby() takes the variable $i for the input set, and $i/title to sort. The result set is then defined into the f or clause ($k), in order to build a flow of XML trees. This new variable is used in the return clause by modifying XPaths ($k/title instead of $i/title).

Then, we obtain a canonized query without orderby clauses. This let clause creates a step of evaluation that would be easily identified in the evaluation process.

Set operators

Set operators express unions, differences or intersections on sets of trees. It takes two or more sets of trees to produce a single set. A union operator gathers all sets of trees, a difference operator removes trees of the second set from the first one and an intersection operator keeps only trees that exist in the two sets.

Lemma 3.2 : Set Operator

An XQuery query containing a set operator can be transformed into an equivalent query where the expression is decomposed and contains a let clause with two canonized expressions. The return clause contains the set operator between the two expressions.

Proof: Let's take a query Q. If the query Q does not contain a set operator between two FLWR expressions, then it is known as canonical.

When a query Q contains n + 1 set operators between two expressions (other than variables), using canonization lemmas, we can say that this expressions are canonical. Let's take ξ, the set operator defined as {union, intersect, except} (union, intersection, difference), then the table 9 illustrates the four possibilities of transformation:

Set expression

Canonized expression Comments (expr1 ξ expr2) let $t3 := for $t1 in expr1 each expression is defined by for $t2 in expr2 a new variable. Those are return ($t1 ξ $t2) linked by the operator. (expr1 ξ expr2)/P let $t3 := for $t1 in expr1

The expression is broken up. for $t3 in expr2 1) the set operator return ($t1 ξ $t2) 2) the expression is replaced by ... $t3/P the variable. $XP (P1 ξ P2) for $tx in XP A new variable is created. let $t3 := for $t1 in $tx/P1

Apply the set operator (rule 1) for $t2 in $tx/P2 on the new variable return ($t1 ξ $t2) $XP (P1 ξ P2)/P3

for $tx in XP Use the second and third let $t3 := for $t1 in $tx/P1 decomposition rule on set for $t2 in $t2/P2 expressions between XP et P3 return ($t1 ξ $t2) ... $t3/P 10, the f or clause contains a union "|" between two sets. The first set is /catalog and the second one /review. On each one, the book element is selected. The title is then projected for each book. The canonization of the union operator (shortened "|") gives a let clause ($i 3) containing two expressions $i 1 and $i 2 . Each one is defined by a f or clause on expected paths. The let clause $i 3 returns the union of the two variables. Then, the XML trees flow is rebuilt by the f or clause i 3 on the book element. We then obtain a canonized query where set operators are decomposed to detail each step of the procedure.

Conditional operators

Conditional operators bring operational processing on XML documents. Indeed, results of conditional operators depend on a given predicate. Then, the first result is returned if the constraint is true, the second one else. In the possible results, we can find XPath expressions, nested queries, tags or strings. In the case of nested queries, it is then necessary to canonize them to create a single canonized form.

Lemma 3.3 : Conditional Operators

An XQuery query containing a conditional operator (if/then/else) and a nested query, this one can be transformed into an equivalent query where the nested query will be declared in a clause let.

This lemma can be demonstrated in the same way of unnested queries [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF] (section 2.4). Thus, recursively, we are being able to show that any query containing a nested query in a conditional operator can be canonized.

Here is a canonization example of a query with a conditional operator:

XQuery query Canonized form

for $i in /catalog/book return {if contains ($i/author, "Hobb") then (for $j in $i//title return $j) else ($i/author)} for $i in /catalog/book let $l := for $j in $i//title return $j return {if contains ($i/author, "Hobb") then ($l) else ($i/author)} Table 11. Canonization example of conditional operators In table 11, a conditional operator is declared in the return clause with a constraint on the author's name that must contain the word Hobb. If the word is contained, the nested query $j returns the title(s) of book else the author is returned. We obtain a canonized query where nested queries in conditional operators are set in a let clause.

In this paper, we have extended the works of [START_REF] Olteanu | XPath : Looking Forward[END_REF] and [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF] in order to recognize the full untyped XQuery specification.

We claim that thanks to our canonization rules, all works that aim to manipulate XQuery could handle the full untyped XQuery specification with only a minimal XQuery subset to recognize. Especially for our TGV model [START_REF] Travers | TGV: an Efficient Model for XQuery Evaluation within an Interoperable System[END_REF][START_REF] Travers | TGV : a Tree Graph View for Modelling Untyped XQuery[END_REF] which is a simple translation from canonized XQuery queries [START_REF] Travers | An extensible rule transformation model for xquery optimization[END_REF].

Adding typing to the canonized form needs some works using typing consideration [START_REF] Gottlob | The complexity of XPath query evaluation and XML typing[END_REF] on validated XML document. We are currently working on this issue.

This work has been implemented as a module in the XLive mediation system that evaluates any XQuery query on distributed heterogeneous sources.

 illustrates some canonization of XPath axis.

	XPath with specific axis	Canonized XPath
	for $i in //a/parent::b	for $i in //b
		where exists ($i/a)
	for $i in //a/ancestor::b	for $i in //b
		where exists ($i//a)
	for $i in //a/descendant-or-self::b	for $i in //a(//b | /.)
	for $i in //a/ancestor-or-self::b	for $k1 in //b
		for $k2 in $k1//a
		for $i in ($k1 | $k2)

Table 2 .

 2 XPath canonization

Table 7 .

 7 Canonization of a nested query, an aggregate Function and a filter As we can see, rules minimization[START_REF] Deutsch | The NEXT Framework for Logical XQuery Optimization[END_REF] and canonization[START_REF] Olteanu | XPath : Looking Forward[END_REF] [Che04] helps at transforming XQuery queries into a canonical form. The[START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF] approach is more likely to deal with our needs, but it does not handle: Ordering operators, Set operators, Conditional operators, Sequences and Functions declaration.

Table 8 .

 8 Orderby canonization example

Table 9 .

 9 Transformation of different set expressionsThus, a query Q that contains n + 1 set operators between two expressions can be rewritten with n set operators. If there are no set operators, it is canonical. Then, recursively, any query Q can be canonized without set operators.Here a canonization example of a set expression:

	XQuery query	Canonized form
		let $i3 :=
		for $i1 in /catalog
	for $i in (/catalog | /review)/book	for $i2 in /review
	return $i/title	return ($i1 | $i2)
		for $i in $i3/book
		return $i/title

Table 10 .

 10 Canonization of a set expressionIn table

Acknowledgement This work is supported by the ACI Semweb and the ANR PADAWAN projects. The research prototype XLive system is an Open Source software and can be downloaded on : http : //www.prism.uvsq.f r/users/ntravers/xlive

Sequences are sets of elements on which operations are applied. Indeed, when a constraint is applied on a sequence using brackets (XPath), the constraint is applied on the set of the trees defined by XPath (and not on each one). This operation gathers sets of trees in order to produce a unique set one which we apply the given constraint.

Lemma 3.4 : Sequences An XQuery query containing a sequence can be rewritten in an equivalent query without sequences. Each sequence is translated in a let clause on which operations are put.

Sequences' filters behave like on current XPaths. They applied on results of the sequence. So, the proof is similar to the filter's one in lemma (2.3.1) of [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF]. Sequences are built by grouping information. Thus any sequence expression is declared in a let clause, generating a new variable that could be used in the remaining query.

XQuery query

Canonized form 12, a sequence is defined in the f or clause. The catalog's book set is aggregated. Then the second book element is selected (and not the second element of each set). Then, its title is projected. The canonization step produces a let clause in which the f or clause is declared on required elements. Then, the new variable is used in the f or clause $i with a constraint on position. Finally, the title is returned.

Functions

Function definition is useful to define a query that could be re-used many times, or to define queries with parameters. In XQuery, functions take parameters in input and a single set in output. Inputs and output are typed.

Lemma 3.5 : Functions

An XQuery function containing an XQuery expression can be rewritten in an equivalent function containing a canonical expression.

In Table 13, a function is defined (local: section) with a parameter in input. This input is defined by the f or clause: for $f in doc("catalog.xml")/catalog, which set of trees will be used in the called function: local:section ($f). In the function, each book element returns its title, and the set of all the titles contained in the sections ($/section/title). As we can see, the function contains a nested query. The unnesting canonization step transforms the query into a canonized form inside the function.

XQuery query

Canonized form

Canonical XQuery

Thus, using the previous lemmas and those proposed by [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns : On Efficient Evaluation of XQuery[END_REF], we can cover a broad set of expressions over XQuery. We can now cover: 1 XPath expressions with filters 2 f or, let and return clauses 3 Predicates in the where clause 4 Nested queries 5 Aggregate functions 6 Quantifiers 7 Ordering operators 8 Set operators 9 Conditional operators 10 Sequences 11 Definition of functions. The only part of XQuery we do not consider yet is typing. Adding typing to the canonized form needs some works using XQuery/XPath typing consideration [START_REF] Gottlob | The complexity of XPath query evaluation and XML typing[END_REF] on validated XML document.

Table 14 summarizes the additional canonization rules we propose. Those rules allow us to cover all untyped XQuery queries.

Expressions

Canonical Form R1 order by var/xp ⇒ let $l1 := orderby(var, var/xp) R2 (expr1 union expr2)

⇒ let $i3 := for $i1 in expr1, $i2 in expr2 return ($i1 union $i2) (expr1 intersect expr2) ⇒ let $i3 := for $i1 in expr1, $i2 in expr2 return ($i1 intersect $i2) (expr1 except expr2) ⇒ let $i3 := for $i1 in expr1, $i2 in expr2 return ($i1 except $i2) R3 if expr1 let $l1 := expr2, $l2 := expr3 then expr2

⇒ if expr1 then $l1 else $l2 else expr3

(if each expr2 and expr3 are nested queries) R4 (expr1)/expr2

⇒ let $l1 := expr1 ... $l1/expr2 With all previous lemmas, we can infer theorem 3.1 that defines a grammar for canonical XQuery queries (Table 15). We can see that canonical queries start with a FLWR expression Expr and zero or more functions. The canonical form of Expr is composed of nested queries, aggregate functions, XPaths and non-aggregate functions. Moreover, set operators are integrated in these expressions, while the conditional operations are integrated into ReturnClause. The Declaration has also a canonical form that prevents any nested expressions. XPaths do not contained anymore filters, sequences, nor set operators, since those are canonized.

XQuery ::= (F unction)* FLWR; FLWR ::= ("for" "$" STRING " in " Declaration (, "$" STRING " in " Declaration)* | "let" "$" STRING "::=" "(" Expr ")" (, "$" STRING "::=" "(" Expr ")")*)+ ("where" P redicate (("and" | "or") P redicate)*)? "return " ReturnClause ; ReturnClause ::= "{" CanonicExpr "}"

| "{" "if" P redicate "then" "(" Expr ")" "else" "(" Expr ")" "}" | "<" STRING ">" (ReturnClause)* "</" STRING ">" ; "@" QN ame; QName ::= (STRING ":")? STRING; Function ::= "declare function" QName "(" "$" STRING "as" "element" ("," "$" STRING "as" "element")* ")" "as" "element" "{" FLWR "}";

Table 15. Untyped Canonical XQuery

Validation

The use cases listed in Table 16 were created by the XML Query Working Group to illustrate important applications for an XML query language. Each use case is focused on a specific application area. Each use case specifies a set of queries that might be applied to the input data, and the expected results for each query. They are designed to cover the most part of XQuery specification. We have already implemented the XQuery canonization in our XML-based mediation system: XLive [START_REF] Travers | XLive : Integrating Source With XQuery[END_REF]. With the canonization, the XQuery processor has been easier to design and implement, and any untyped XQuery can be evaluated with XLive.