N
N

N

HAL

open science

Cost Framework for a Distributed Semi-Structured
Environment

Tianxiao Liu, Tuyet-Tram Dang-Ngoc, Dominique Laurent

» To cite this version:

Tianxiao Liu, Tuyet-Tram Dang-Ngoc, Dominique Laurent. Cost Framework for a Distributed Semi-
Structured Environment. International workshop Database Management and Application over Net-

works - DBMAN (APWeb/WAIM Workshop), Jun 2007, France. pp.1-11. hal-00733435

HAL Id: hal-00733435
https://hal.science/hal-00733435
Submitted on 28 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00733435
https://hal.archives-ouvertes.fr

Cost Framework for a Heterogeneous Distributed
Semi-Structured Environment

Tianxiao Liu', Tuyét Tram Dang Ngoc?, and Dominique Laurent?3

! ETIS Laboratory - University of Cergy-Pontoise & XCalia S.A, France.
Tianxiao.LiuQu-cergy.fr;Tianxiao.Liu@xcalia.com
2 ETIS Laboratory-University of Cergy-Pontoise, France.
Tuyet-Tram.Dang-Ngoc@u-cergy.fr
3 ETIS Laboratory-University of Cergy-Pontoise, France.
Dominique.LaurentQu-cergy.fr

Abstract. This paper proposes a generic cost framework for query op-
timization in an XML-based mediation system called XLive, which in-
tegrates distributed, heterogeneous and autonomous data sources. Our
approach relies on cost annotation on an XQuery logical representation
called Tree Graph View (TGV). A generic cost communication language
is used to give an XML-based uniform format for cost communication
within the XLive system. This cost framework is suitable for various
search strategies to choose the best execution plan for the sake of mini-
mizing the execution cost.

Keywords: mediation system, query optimization, cost model, Tree Graph View,
cost annotation

1 Introduction

The architecture of mediation system has been proposed in [Wie92] for solving
the problem of integration of heterogeneous data sources. In such an architecture,
users send queries to the mediator, and the mediator processes these queries with
the help of wrappers associated to data sources. Currently, the semi-structured
data model represented by XML format is considered as a standard data ex-
change model. XLive [NJT05], mediation system based on XML standard, has
a mediator which can accept queries in the form of XQuery [W3C05] and re-
turn answers. The wrappers give the mediator an XML-based uniform access to
heterogeneous data sources.

For a given user query, the mediator can generate various execution plans
(referred to as "plan" in the remainder of this paper) to execute it, and these
plans can differ widely in execution cost (execution time, price of costly connec-
tions, communication cost, etc. An optimization procedure is thus necessary to
determine the most efficient plan with the least execution cost. However, how
to choose the best plan based on the cost is still an open issue. In relational or
object-oriented databases, the cost of a plan can be estimated by using a cost

model. This estimation is processed with database statistics and cost formulas
for each operator appearing in the plan. But in a heterogeneous and distributed
environment, the cost estimation is much more difficult, due to the lack of un-
derlying databases statistics and cost formulas.

Various solutions for processing the overall cost estimation at the mediator
level have been proposed. In [DKS92], a calibration procedure is described to
estimate the coefficients of a generic cost model, which can be specialized for
a class of systems. This solution is extended for object database systems in
[GGTI6][GSTI6]. The approach proposed in [ACP96] records cost information
(results) for every query executed and reuses that information for the subsequent
queries. [NGT98] uses a cost-based optimization approach which combines a
generic cost model with specific cost information exported by wrappers. However,
none of these solutions has addressed the problem of overall cost estimation in
a semi-structured environment integrating heterogeneous data sources.

In this paper, we propose a generic cost, framework for an XML-based medi-
ation system, which integrates distributed, heterogeneous and autonomous data
sources. This framework allows to take into account various cost models for
different types of data sources with diverse autonomy degrees. These cost mod-
els are stored as annotations in an XQuery logical representation called Tree
Graph View (TGV) [DNGT04]|[TDNLO06]. Moreover, cost models are exchanged
between different components of the XLive system. We apply our cost framework
to compare the execution cost of candidate plans in order to choose the best one.

First, we summarize different cost models for different types of data sources
(relational, object oriented and semi-structured) and different autonomy degrees
of these sources (proprietary, non-proprietary and autonomous). The overall cost
estimation relies on the cost annotation stored in corresponding components
TGV. This cost annotation derives from a generic annotation model which can
annotate any component (i.e. one or a group of operators) of a TGV.

Second, in order to perform the cost communication within the XLive system
during query optimization, we define an XML-based language to express the cost
information in a uniform, complete and generic manner. This language, which is
generic enough to take into account any type of cost information, is the standard
format for the exchange of cost information in XLive.

The paper is organized as follows: In Section 2, we introduce XLive system
with its TGV modeling of XQuery and we motivate our approach to cost-based
optimization. In Section 3, we describe the summarized cost models and show
how to represent and exchange these cost models using our XML-based generic
language. Section 4 provides the description of TGV cost annotation and the
procedure for the overall cost estimation at the mediator level. We conclude and
give directions for future work in Section 5.

2 Background

XQuery processing in XLive A user’s XQuery submitted to the XLive me-
diator is first transformed into a canonical form. Then the canonized XQuery is

modeled in an internal structure called TGV. We annotate the TGV with in-
formation on evaluation, such as the data source locations, cost models, sources
functional capabilities of sources, etc. The optimal annotated TGV is then se-
lected based on a cost-based optimization strategy. In this optimization proce-
dure, TGV is processed as the logical execution plan and the cost estimation
of TGV is performed with cooperation between different components of XLive.
This optimal TGV is then transformed into an execution plan using a physical
algebra. To this end, we have chosen the XAlgebra [DNGO03] that is an extension
to XML of the relational algebra. Finally, the physical execution plan is eval-
uated and an XML result is produced, Fig.1 depicts the different steps of this
processing.

Users E 4 %i g = = = = = .
= =
P
Query
Users * Query Result
XQuery (XML)
~ y Mediator
B H H
o Evaluation Equivalent rules }
Canonization H H
A4 Mediator
XAlgebra Information
Canonized Co_sl-!)as_ed Repository
XQuery Transformation Ontinization
Mediator
Mediator Modeling Annotated cost information
TGV
- _/
Wrapper
Tree Graph s b ppe!
. - perators
Views(TGV) Annotation Static wrapp;\ Repository
ST—2A—A . 5
=TT cost
" \bynamic Wrappers Cost information
(Wrapper) Wrapper Wrapper
PP T
Sources s T
Relational —— XML [/ wep
L data bases =) datasources H services

Fig. 1. Cost-based optimization in processing of XQuery in the XLive system

Tree Graph View TGV is a logical structure model implemented in the XLive
mediator for XQuery processing, which can be manipulated, optimized and eval-
uated [TDNL06]. TGV takes into account the whole functionality of XQuery
(collection, XPath, predicate, aggregate, conditional part, etc.) and uses an in-
tuitive representation that provides a global view of the request in a mediation
context. Each element in the TGV model has been defined formally using Ab-
stract Data Type in [Tra06] and has a graphical representation. In Fig. 2 (a), we
give an example of XQuery which declares two FOR clauses ($a and $b), a join
constraint between authors and a contains function, then a return clause projects
the title value of the first variable. This query is represented by a TGV in Fig. 2
(b). We can distinguish the two domain variables $a and $b of the XQuery, defin-
ing each nodes corresponding to the given XPaths. A join hyperlink links the
two author nodes with an equality annotation. The contains function is linked

to the $§b "author" node, and a projection hyperlink links the node title to the
ReturnTreePattern in projection purposes.

"catalogs" "reviews"

for $a in col("catalogs")/catalog/book

catalog

for $b in col("reviews")/reviews/review
where

$a/author = $b/author

and contains($b/author,"Hobb")

review

author

contains ("Hobb")

return
<books>

{$a//title} .
</books> V]

books

(a) An XQuery query (b) TGV representation

Fig. 2. An example of XQuery and its TGV representation

TGV generic annotation The motivation to annotate a TGV is to allow
annotating subsets of elements of a TGV model with various information. Pre-
cisely, for each arbitrary component (i.e. one or a group of operators of TGV), we
add some additional information such as cost information, system performance
information, source localization, etc. Qur annotation model is generic and al-
lows annotation of any type of information. The set of annotation based on the
same annotation type is called an annotated view. There can be several anno-
tated views for the same TGV, for example, time-cost annotated view, algorithm
annotated view, sources-localization annotated view, etc.

3 Heterogeneous Cost Models and Cost Communication
within XLive

3.1 Cost Models for Heterogeneous Autonomous Data Sources

Cost models summary We summarize different existing cost models for var-
ious types of data sources in Fig. 3. This summary is not only based on types
of data sources but also on autonomy degrees of these sources. In addition, this
summary gives some relations between different works on cost-based query op-
timization. The cost models with the name "operation" contain accurate cost
formulas for calculating the execution cost of operators appearing in the plan.
Generally, cost information such as source statistics is necessary for these cost
models, because these statistics are used to derive the value of coefficients in cost
formulas. It is often data sources implementers who are able to give accurate cost
formulas with indispensable sources statistics.

Cost models based on Generic cost models
operation implemetation: Calibration

Calibration WD Sampling

& [2L98] —
ailable T 3 Historical cost
- : [ACP96]

[DKS92]
Operation :
[GP89] Exented Adaptive
[ML86] [SA82] 1 [Zhu95]

Operation

Calibration

Flora Wrappers

[CD92] [GST96]
[BMG93] [['(;lrzz?] [HKWY97]
[DOA+94] [ROH99]

Applied

Operation XQuery
Self-Learning

INGT98] [ZHJGMLOS]

Path
[GGT96]

Hybrid cost model

[AANO1]
[MW99]

Proprietary data sources Heterogeneous autonomous data sources

Relational O Object-oriented Semi-structured
data sources data sources data sources

Fig. 3. Cost models for heterogeneous sources

When the data sources are autonomous, cost formulas and source statistics
are unavailable. For obtaining cost models we need some special methods that
vary with the autonomy degree of data sources. For example, the method by
Calibration [DKS92] estimates the coefficients of a generic cost model for each
type of relational data sources. This calibration needs to know access methods
used by the source. This method is extended to object-oriented databases by
[GSTI6]. If this calibration procedure can not be processed due to data source
constraints, a sampling method proposed in [ZL98] can derive a cost model for
each type of query. The query classification in [Z1.98] is based on a set of common
rules adopted by many DBMSs. When no implementation algorithm and cost
information are available, we can use the method described in [ACP96], in which
cost, estimation of new queries is based on the history of queries evaluated so far.

Generic cost model Here, we show how to reuse the summary in Fig. 3 to
define our generic cost model used for XQuery optimization in the XLive system.
First, a cost model is generally designed for some type of data source (but
there are also some methods that can be used for different types of sources, for
example, the method by history [ACP96]). Second, this cost model can contain
some accurate cost formulas with coefficients’ value derived from data sources
statistics, or a specific method for deriving the cost formulas. This cost model
may also have only a constant value for giving directly the execution cost of
operators. The possible attributes of our generic cost model are described in
Table 1. This descriptive definition of cost model is used for TGV cost annotation
for the purpose of overall cost estimation in the mediator level (ref. Section 4).

For a cost model, all attributes are optional by reason of generality. We apply
the principle as accurate as possible. For example, the method by calibration can

normally provide more accurate cost models than the method based on histori-
cal costs, but it has a lower accuracy level than cost models based on operation
implementation. That means if the cost models based on operations implemen-
tation are available, we use neither the method by calibration nor history.

Attribute Description

Data source type|This type can be relational, object-oriented, semi-structured,
files, Web services, etc.

Method The specific method stored in this field can be used to derive
the practicable cost formulas. These cost formulas may be in-
accurate, but can at least roughly estimate the execution cost.
This respect our as accurate as possible principle. Generally,
some APIs corresponding to the specific method are available
in this field, these APIs are implemented by XLive system and
can give some useful services such as "provide the value of
coefficients in the formulas".

Formulas This is the core of a cost model, but they are often unavailable
in a heterogeneous environment. These formulas are given in
form of equations. The values of coefficients appearing in the
formulas can also be represented in form of equations, for ex-
ample, Cardinality — 10000. All these formulas forms an equa-
tions system. For some cost models, only a constant cost value
is available. This value can be provided by data source (stored
in wrapper information repository), or derived from results of
executed queries (historical cost)

Table 1. Definition of generic cost model

3.2 Generic Language for Cost Communication (GLCC)

XML-based generic language To perform cost communication within our
XLive system, we define a language to express the cost information in a uniform,
complete and generic manner. This language fits to our XML environment, to
avoid costly format converting. It considers every cost model type and allows
wrappers to export their specific cost information. In our XLive context, this
language is generic enough to express cost information of different parts of a
TGV and is capable to express cost for various optimization goals, for example,
response time, price, energy consummation, etc.

Our language extends the MathML language [W3CO03], which allows us to
define all mathematical functions in XML form. MathML fits to cost commu-
nication within XLive due to its semi-structured nature. We use the Content
Markup in MathML to provide explicit encoding for cost formulas. We just add
some rules to MathML to define the grammar of our language. Furthermore, this
grammar is extensible so that users can always define its own tags for any type
of cost.

Mediator

Wrapper
Information

An example of cost model and its
representation on GLCC

TGV cost Provides

computation

ICost Information
Cost_Re =

Historical Cost_Restriction + Cost_Projection

cost

Records

Historical Adjy, <cost source="relational">
Records of cost models - <apply><eq/>
Parser <apply><ci>CostRe</ci></apply>
Adjustment <apply><plus/>
ofeQst models <ci>CostRestriction</ci>
Cost information <ci>CostProjection</ci>
</apply>
Extract <apply>

Operators
Evaluation

——D Information transfered using GLCC.

Fig. 4. Dynamic cost evaluation with GLCC in XLive system

Cost formulas are represented in the form of equations set. Each equation
corresponds to a cost function that may be defined by the source or by the me-
diator. Each component of TGV is annotated with an equation set in which the
number of equations is undefined. One function in a set may use variables defined
in other sets. We define some rules to ensure the consistency of the equations
system. First, every variable should have somewhere a definition. Second, by
reason of generality, there are no predefined variable names. For example, in the
grammar, we do not define a name "time" for a cost variable because the cost
metric can be a price unit. It is the user of the language who gives the specific
significant names to variables. This gives a much more generic cost definition
model compared to the language defined in [NGT98].

Dynamic cost evaluation Fig. 4 gives a simple example for the expression of
a cost model and shows the role of our language in cost communication. After
extracting cost information from data source, the wrapper exports that infor-
mation using our language to the parser, which derives cost models that will be
stored in the wrapper information repository. When the mediator needs to com-
pute the execution cost of a plan (TGV), the wrapper information repository
provides necessary cost information for operators executed on wrappers. We have
a cache for storing historical execution cost of queries evaluated, which can be
used to adjust the exported cost information from the wrapper. All these com-
munications are processed in the form of our language. Our language completes
the interface between different components of XLive.

4 Overall Cost Estimation

4.1 TGV cost annotation

As mentioned in Section 2, the TGV is the logical execution plan of XQuery
within the query processing in XLive. The purpose of our query optimization is
to find the optimal TGV with the least execution cost. For estimating the overall
cost of a TGV, we annotate different components (one or a group of operators) of
TGV. For an operator or a group of operators appearing in a TGV, the following
cost information can be annotated:

— Localization: The operator(s) can be executed on the mediator or on the
wrappers (data sources).

— Cost Model: Used to calculate the execution cost of the component.

— Other information: Contains supplementary information that is useful for
cost estimation. For example, several operators’ (such as join operator) im-
plementation allows parallel execution between its related operators.

™) Ne | Localization Cost Model Other
“catalogs" "reviews" "’ Type Method Cost formulas information
| 2) ()| Wrapper | Relational History Cost_s1 =return value of APT | Dynamic
catalog reviews] Cost_link_review =
3) - N -y e Cost_IO*card(reviews)
e @)| Wrapper XML - Cost_IO = 0.05 ~
|) reviews = 10000
author _~"| Cost_link_review =
e @3)| Wrapper | XML 7| Cost_10*card(catalogs)
®) card(catalogs) = 6000
Cost_link_author = /
4| Wrapper XML Calibration | 2*card(catalogs)*sel P
sel=0.2
- - N - | Cost_restr_author = _—
(5)| Wrapper XML - Cost_10*sel _—
(6) | Wrapper XML Cost 2=2)+ A+ H+B)
Cost_join= Parallel
card: cardinality ~ sel: selectivity (| Mediator | XML | Calibration | (\ (™ Cpuye card_s1*card_s2) exe‘:::)tl'zn
— 1 N
P - | Cost_proj =result_card *
restr: restriction proj: projection (®)| Mediator XML 0.02 -
. . Cost_global = Max((1), (6)) + —
(9)| Mediator XML D) —

Fig. 5. An example for TGV cost annotation

Fig. 5 gives an example for TGV cost annotation. In this example, different
components of the TGV introduced in Fig. 2 (Ref. Section 2) are annotated. We
can see for the operators executed on Sourcel(S1), we have only the historical
cost, to use for estimate the total execution cost of all the these operators; in
contrast, for each operator executed on Source2(S2), we have a cost model for
estimating its execution cost. For the join operator(numbered (7)) executed on
the mediator, the operators linked to it can be executed in parallel.

4.2 Overall cost estimation

Cost Annotation Tree (CAT) We have seen how to annotate a TGV with
cost information. Now we are concentrated on how to use this cost annotation

for the overall cost estimation of a TGV. As illustrated in Fig. 5, the cost of an
annotated component of TGV generally depends on the cost of other compo-
nents. For example, for the cost formula annotated in (6), we see that it depends
on the cost of (2), (3), (4) and (5). From the cost formulas annotated for each
component of TGV, we obtain a Cost Annotation Tree (CAT). In a CAT, each
node represents a component of TGV annotated by cost information and this
CAT describes the hierarchical relations between these different components.
Fig. 6 (a) illustrates the CAT of the TGV annotated in Fig. 5.

associateCost (node) {
node.analyzeCostModel ();
if (node.hasSpecialMethod()) {
node.callAPI();

Node that needs to call APIs for obtaining
the necessary coefficients’ value

1

2

3

4

5 }

6 for (each child of node) {
7 associateCost(child);

8 }

9 node.configCostFormula();
1 node.calculateCost();

1

0
1}

(a) Cost Annotation Tree (CAT) (b) Overall cost estimation algorithm

Fig. 6. Cost Annotation Tree and the algorithm for overall cost estimation

Overall cost estimation algorithm We now show how to use the CAT of
a TGV to perform the overall cost estimation. We use the recursive breadth-
first search algorithm of a tree for performing cost estimation of each node. For
each node of CAT, we define a procedure called associateCost (Fig. 6 (b)) for
operating the cost annotation of a node. This procedure first analyzes the cost
annotation of the node and derives its cost model (line 2); If a specific cost
method is found, it calls an API implemented by XLive for obtaining the neces-
sary values of coefficients or cost formulas for computing the cost (line 3-5); if the
cost of this node depends on the cost of its child nodes, it executes recursively
the associateCost procedure on its child nodes (line 6-8). When these 3 steps are
terminated, a procedure configCostFormula completes the cost formulas with
obtained values of coefficients (line 9) and execution cost of this node will be
calculated (line 10). By using this algorithm, we can obtain the overall cost of a
TGV, which is the cost of the root of CAT.

4.3 Application: plan comparison and generation

It has been shown in [TDNLO6] that for processing a given XQuery, a number
of candidate plans (i.e. TGV) can be generated using transformation rules that

operate on TGVs. These rules have been defined for modifying the TGV without
changing the result. The execution cost of a TGV can be computed by using our
generic cost framework and thus we can compare the costs of these plans to
choose the best, one to execute the query.

However, as the number of rules is huge, this implies an exponential blow-
up of the candidate plans. It is impossible to calculate the cost of all these
candidate plans, because the cost computation and the subsequent comparisons
will be even more costly than the execution of the plan. Thus, we need a search
strategy to reduce the size of the search space containing candidate execution
plans. We note in this respect that our cost framework is generic enough to
be applied to various search strategies such as exhaustive, iterative, simulated
annealing, genetic, etc.

5 Conclusion

In this paper, we described our cost framework for the overall cost estimation
of candidate execution plans in an XML-based mediation system. The closest
related work is DISCO system [NGT98|, which defines a generic cost model for
an object-based mediation system. Compared to DISCO work and other medi-
ation systems, we have the following contributions: First, to our knowledge, our
cost framework is the first approach proposed for addressing the costing problem
in XML-based mediation systems. Second, our cost communication language is
completely generic to express any type of cost, which is an improvement com-
pared to the language proposed in DISCO. Third, our cost framework is generic
enough to fit to overall cost computation within various mediation systems.

As futur work, we plan to define a generic cost model for XML sources
with cost formulas that can compute the cost with given parameters that are
components in TGV. This cost model would be generic for all types of XML
sources. We will also concentrate on the design of an efficient search strategy
that will be used in our cost-based optimization procedure.

Acknowledgment

This work is supported by Xcalia S.A. (France) and by ANR PADAWAN project.

References

[AANO1] A. Aboulnaga, A. Alameldeen, and J. Naughton. Estimating the Selec-
tivity of XML Path Expressions for Internet Scale Applications. VLDB,
2001.

[ACP96| S. Adali, K. Candan, and Y. Papakonstantinou. Query Caching and
Optimization in Distributed Mediator Systems. In ACM SIGMOD, 1996.

[BMG93| J. A. Blakeley, W.J. McKenna, and G. Graefe. Experiences Building the
Open OODB Query Optimizer. In ACM SIGMOD, 1993.

[CDY2]
[DKS92]|
[DNG03]
[DNGT04]
[DOAT94]
[F1096]
[GGT96]
[GM93]
[GP89)
[Gru96]
[GST96]
[HKWY97]
[MLS86]
[MW99]
[NGT98]
[NJTO5]

[ROH99]

[RS97]
[SA82]

[TDNLO6]

[Tra06]

[W3C03)|
[W3C05]
[Wie92|

S. Cluet and C. Delobel. A General Framework for the Optimization of
Object-Oriented Queries. In ACM SIGMOD, 1992.

W. Du, R. Krishnamurthy, and M.C. Shan. Query Optimization in a
Heterogeneous DBMS. In VLDB, 1992.

T.T. Dang-Ngoc and G. Gardarin. Federating Heterogeneous Data
Sources with XML. In Proc. of IASTED IKS Conf., 2003.

T.T. Dang-Ngoc, G. Gardarin, and N. Travers. Tree Graph View: On
Efficient Evaluation of XQuery in an XML Mediator. In BDA, 2004.

A. Dogac, C. Ozkan, B. Arpinar, T. Okay, and C. Evrendilek. Advances
in Object-Oriented Database Systems. Springer-Verlag, 1994.

D. Florescu. Espace de Recherche pour I’Optimisation de Requétes Objet.
PhD thesis, University of Paris IV, 1996.

G. Gardarin, J.R. Gruser, and Z.H. Tang. Cost-based Selection of Path
Expression Algorithms in Object-Oriented Databases. In VLDB, 1996.
G. Graefe and W.J. McKenna. The Volcano Optimizer Generator: Ex-
tensibility and Efficient Search. In ICDE, 1993.

D. Gardy and C. Puech. On the Effects of Join Operations on Relation
Sizes. ACM Transactions on Database Systerms (TODS), 1989.

J.R. Gruser. Modéle de Cott pour I’Optimisation de Requétes Objet. PhD
thesis, University of Paris IV, 1996.

G. Gardarin, F. Sha, and Z.H. Tang. Calibrating the Query Optimizer
Cost Model of IRO-DB. In VLDB, 1996.

L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimization
Queries Across Diverse Data Sources. In VLDB, 1997.

L. F. Mackert and G. M. Lohman. R* Optimizer Validation and Perfor-
mance Evaluation for Local Queries. In ACM SIGMOD, 1986.

J. McHugh and J. Widom. Query Optimization for Semistructured Data.
Technical report, Stanford University Database Group, 1999.

H. Naacke, G. Gardarin, and A. Tomasic. Leveraging Mediator Cost
Models with Heterogeneous Data Sources. In ICDE, 1998.

T.T. Dang Ngoc, C. Jamard., and N. Travers. XLive: An XML Light
Integration Virtual Engine. In Bases de Données Avancées (BDA), 2005.
M.T. Roth, F. Ozcan, and L. Haas. Cost Models DO Matter: Providing
Cost Information for Diverse Data Sources in a Federated System. In
VLDB, 1999.

M. Tork Roth and P.M. Schwarz. Don’t Scrap It, Wrap it! A Wrapper
Architecture for Legacy Data Sources. In VLDB, 1997.

P. G. Selinger and M. E. Adiba. Access path selection in distributed
database management systems. In /COD, 1982.

N. Travers, T.T. Dang-Ngoc, and T. Liu. TGV: An Efficient Model
for XQuery Evaluation within an Interoperable System. Int. Journal of
Interoperability in Business Information Systems (IBIS), 3, 2006.
Nicolas Travers. Optimization Extensible dans un Médiateur de Données
XML. PhD thesis, University of Versailles, 2006.

W3C. Mathematical Markup Language (Mathml TM) Version 2.0, 2003.
W3C. An XML Query Language (XQuery 1.0), 2005.

G. Wiederhold. Mediators in the Architecture of Future Information
Systems. Computer, 25(3):38-49, March 1992.

[ZHJGMLO5] N. Zhang, P. J. Haas, V. Josifovski, and C. Zhang G. M. Lohman. Sta-

tistical Learning Techniques for Costing XML Queries. In VLDB, 2005.

[Zhu95] Q. Zhu. Estimating Local Cost Parameters for Global Query Optimization
in a Multidatabase System. PhD thesis, University of Waterloo, 1995.

[Z1.98] Q. Zhu and P.A. Larson. Solving Local Cost Estimation Problem for
Global Query Optimization in Multidatabase Systems. Distributed and
Parallel Databases, 1998.

