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Speaker Diarization: A Review of Recent Research

Xavier AngueraMember, IEEE Simon BozonnetStudent Member, IEEB\icholas EvansiMember, IEEE,
Corinne Fredouille, Gerald Friedlanilember, IEEE Oriol Vinyals

Abstract—Speaker diarization is the task of determining “who to the periods when each speaker is active. Clear examples
spoke when?” in an audio or video recording that contains an of applications for speaker diarization algorithms in@ud
unknown amount of speech and also an unknown number of gneech and speaker indexing, document content structuring

speakers. Initially, it was proposed as a research topic rated to o . . .
automatic speech recognition, where speaker diarizationesves SP€aker recognition (in the presence of multiple or compgeti

as an upstream processing step. Over recent years, howeverSpeakers), to help in speech-to-text transcriptian ¢o-called
speaker diarization has become an important key technologfor ~ speaker attributed speech-to-text), speech translatioyraore
many tasks, such as navigation, retrieval, or higher-levehference  generally, Rich Transcription (RT), a community within \whi
on audio data. Accordingly, many important improvements in the cyrrent state-of-the-art technology has been develope

accuracy and robustness have been reported in journals and S . : .
conferences in the area. The application domains, from brodcast The most significant effort in the Rich Transcription do-

news, to lectures and meetings, vary greatly and pose diffent Main comes directly from the internationally competitivé R
problems, such as having access to multiple microphones andevaluations, sponsored by the National Institute of Stedwla
multimodal information or overlapping speech. The most reent and Technology (NIST) in the Unites States [1]. Initiated
review of existing technology dates back to 2006 and focuses  qjgina|ly within the telephony domain, and subsequently i
the broadcast news domain. In this paper we review the curren that of broadcast news, today it is in thé domain of confezenc
state-of-the-art, focusing on research developed since @® that . » today 1t : )
relates predominantly to speaker diarization for confererce Meetings that speaker diarization receives the most attent
meetings. Finally, we present an analysis of speaker diadtion Speaker diarization is thus an extremely important area of
performance as reported through the NIST Rich Transcription speech processing research.
evaluations on meeting data and identify important areas fo An excellent review of speaker diarization research is pre-
future research. sented in [2], although it predominantly focuses its attant
Index Terms—Speaker diarization, rich transcription, meetings  to speaker diarization for broadcast news. Coupled with the
transition to conference meetings, however, the statief-
art has advanced significantly since then. This paper ptesen
. INTRODUCTION an up-to-date review of present state-of-the-art systenas a

PEAKER diarization has emerged as an increasingly ieviews the progress made in the field of speaker diarization
Sportant and dedicated domain of speech research. Wherglg§® 2005 up until now, including the most recent NIST
speaker and speech recognition involve, respectively, tRd evaluation that was held in 2009. Official evaluations

recognition of a person’s identity or the transcription of'€ @n important vehicle for pushing the state-of-the-ar f
their speech, speaker diarization relates to the problem W%#'d as it is only with standard experimental protocols and

determining ‘who spoke when?’. More formally this requiredatabases that it is possible to meaningfully comparereifie
the unsupervised identification of each speaker within aficau @PProaches. Whilst we also address emerging new research
stream and the intervals during which each speaker is actife SPeaker diarization, in this article special emphasis is
Speaker diarization has utility in a majority of applicatio P aced on established technologies within the context ef th
related to audio and/or video document processing, such™N$T RT benchmark evaluations, which has become a reliable
information retrieval for example. Indeed, it is often trese Indicator for the current state-of-the-art in speakeridaion.
that audio and/or video recordings contain more than ofdiS article aims at giving a concise reference overview of
active speaker. This is the case for telephone conversgfion €Stablished approaches, both for the general reader and for
example stemming from call centers), broadcast news, dgpa0S€ new to the field. Despite rapid gains in popularity over
shows, movies, meetings, domain-specific videos (such '§§ent years the field is relatively embryonic compared & th
surgery operations for instance) or even lecture or confare Mature fields of speech and speaker recognition. There are
recordings including multiple speakers or questions/amsw OUtstanding opportunities for contributions and we hopa th
sessions. In all such cases, it can be advantageous to autoffii article serves to encourage others to participate.

ically determine the number of speakers involved in additio >€ction Il presents a brief history of speaker diarization
research and the transition to the conference meeting domai
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Audio Data

features based on inter-channel delay and prosodics aad als |
attempts to combine speaker diarization systems. In Sectio i)
V, we present an overview of the current status in speaker " (iBprocessing

diarization research. We describe the NIST RT evaluations e
the different datasets and the performance achieved bg- stat Top down -
of-the-art systems. We also identify the remaining proldem
and highlight potential solutions in the context of curremtk.
Finally, our conclusions are presented in Section VI.

iii.) iv.)

. L Cluster
_ Optimum Number : ‘ Qe SR ‘ ‘ Distance | :
of Clusters .

- - Over-clustering

- - Under-clustering V.) l

Stoppil
Criterion
Over recent years the scientific community has develope ;

research on speaker diarization in a number of different (a) (b)

domains, WIFh the focus usually b‘?'”g dictated by fundelgg. 1. General Diarization system: (a) Alternative clusig schemas, (b)
research projects. From early work with telephony dataathto General speaker diarization architecture

cast news (BN) became the main focus of research towards

the late 1990’'s and early 2000's and the use of speaker

diarization was aimed at automatically annotating TV al
radio transmissions that are broadcast daily all over thedwo
Annotations included automatic speech transcription aathm
data labeling, including speaker diarization. Interestthie

Il. SPEAKER DIARIZATION

NGk lecture meetings and coffee breaks have also been consid-
ered, the conference meeting scenario has been the primary
focus of the NIST RT evaluations since 2004. The meeting

. : ; . cenario is often referred to as “speech recognition cot@ple
meeting domain grew extensively from 2002, with the laung b g b

) ) . .e. a scenario in which all of the problems that arise in
of several related research projects including the Eumpeg,, sheech recognition can be encountered in this domain.

;Jni_on I(EU) M.“'“TAO??" M(;eelt:ngfg Managelrvl(M4) projeCt’lthEConference meetings thus pose a number of new challenges
wiss Interactive Multimodal Information anager_nent()\/l to speaker diarization that typically were less relevamriier
project, the EU Augmented Multi-party Interaction (AMl)r%search.

project, subsequently continued through the EU Augmente
Multi-party Interaction with Distant Access (AMIDA) proje
a.nd, and ﬁna”y, the EU Computers in the Human Interactiqﬂ_ Broadcast News versus Conference Meetings

Loop (CHIL) project. All these projects addressed the regdea , i

and development of multimodal technologies dedicated ¢o th With the change of focus of the NIST RT evaluations from
enhancement of human-to-human communications (notably# 0 meetings diarization algorithms had to be adapted
distant access) by automatically extracting meeting (mmeaccordlng to the differences in the nature of the data. ,|First

making the information available to meeting participarts, BN Speech data is usually acquired using boom or lapel mi-
for archiving purposes. crophones with some recordings being made in the studio and

These technologies have to meet challenging demands sQHETs in the field. Conversely, meetings are usually resmbrd
as content indexing, linking and/or summarization of ofngo USINg desktop or far-field microphones (single microphares
icrophone arrays) which are more convenient for users than

or archived meetings, the inclusion of both verbal and nolgé ; p :

verbal human communication (people movements, emotiofi§2d-mounted or lapel microphoneés a result the signal-to-

interactions with others, etc.). This is achieved by exjigi N0iSe ratio is generally better for BN data than it is for negt

several synchronized data streams, such as audio, video EﬁﬁPFd'”gS- Addltlonal_ly, differences between meetingmo

textual information (agenda, discussion papers, slids), e configurations and microphone placement lead to variations
4p recording quality, including background noise, reveatien

that are able to capture different kinds of information th . . :
are useful for the structuring and analysis of meeting aunte@nd variable spe_ech levels (depending on the distance éetwe
speakers and microphones).

Speaker diarization plays an important role in the analgsis i )
meeting data since it allows for such content to be strudtime ~ S€cond, BN speech is often read or at least prepared in
speaker turns, to which linguistic content and other magad&dvance while meeting speech tends to be more spontaneous
can be added (such as the dominant speakers, the leve[ndfature and contains more overlapping speech. Although BN
interactions, or emotions). recordings can contain speech that is overlapped with music
Undertaking benchmarking evaluations has proven to f@!ghter, or applause (far less common for conference ngeti
an extremely productive means for estimating and comparifigt®) in general, the detection of acoustic events anckspea
algorithm performance and for verifying genuine technblogte“ds to be more challenging for conference meeting data tha
cal advances. Speaker diarization is no exception ande sifie” BN data. _ .
2002, the US National Institute for Standards and Technolog Finally, the number of speakers is usually larger in BN but
(NIST) has organized official speaker diarization evahredi SPeaker turns occur less frequently than they do in conéeren
involving broadcast news (BN) and, more recently, meetif§€eting data, resulting in BN having a longer average speake
data. These evaluations have crucially contributed togmg Urn length. An extensive analysis of BN characteristics is
researchers together and to stimulating new ideas to advaf@Ported in [3] and a comparison of BN and conference
the state-of-the-art. Whilst other contrastive sub-dormauch Meeting data can be found in [4].

1speaker diarization was evaluated prior to 2002 throughTNSpeaker 2Meeting databases recorded for research purposes usoaltgirc head-
Recognition (SR) evaluation campaigns (focusing on telaphspeech) and mounted and lapel microphone recordings for ground-trugfaton purposes
not within the RT evaluation campaigns. only
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B. Main Approaches unlabeled. Using some selection procedure to identifyablgt

Most of present state-of-the-art speaker diarizationesyst training data from the non-labeled segments, new speaker
fit into one of two categories: the bottom-up and the top-dowRodels are iteratively added to the model one-by-one, with
approaches, as illustrated in Fig. 1(a). The top-down aagiro mterleaved Viterbi realignment and adaptation. Segmatis
is initialized with very few clusters (usually one) wherehe (ributed to any one of these new models are marked as labeled.
bottom-up approach is initialized with many clusters (ligua Stopping criteria similar to those employed in bottom-up
more clusters than expected speakers). In both cases thie aifyStems may be used to terminate the process or it can centinu
to iteratively converge towards an optimum number of chsste until no more relevant unlabeled segments with which totrai
If the final number is higher than the optimum then the systef{gW Speaker models remain. Top-down approaches are far less
is said to under-cluster. If it is lower it is said to oversfer. Popular than their bottom-up counterparts. Some examples
Both bottom-up and top-down approaches are generally badglude [14]-[16]. Whilst they are generally out-perfordrisy
on Hidden Markov Models (HMMs) where each state i§€ best bottom-up systems, top-down approaches have per-
a Gaussian Mixture Model (GMM) and corresponds to @rmed consistently and respgctably well against the oad
speaker. Transitions between states correspond to spediédd of other bottom-up entries. Top-down approaches are
turns. In this section we briefly outline the standard botton@!SO extremely computationally efficient and can be impdove
up and top-down approaches as well as two recently propodBgPugh cluster purification [17].
alternatives: one based on information theory; and a second) Other Approaches: A recent alternative approach,
one based on a non parametric Bayesian approach. Althodgeugh also bottom-up in nature, is inspired from rate-
these new approaches have not been reported previoushgigtortion theory and is based on an information-theoretic
the context of official NIST RT evaluations they have showfiamework [18]. It is completely non parametric and its ffesu
strong potential on NIST RT evaluation datasets and dr@ve been shown to be comparable to those of state-of-the-ar
thus included here. Additionally, some other works propog@rametric systems, with significant savings in computatio
sequential single-pass segmentation and clustering appes Clustering is based on mutual information, which measures
[5]-[7], although their performance tends to fall short bét the mutual dependence of two variables [19]. Only a single
state-of-the-art. global GMM is tuned for the full audio stream, and mutual

1) Bottom-Up ApproachThe bottom-up approach is by farinformation is computed in a new space of relevance variable
the most common in the literature. Also known as agglomefefined by the GMM components. The approach aims at
ative hierarchical clustering (AHC or AGHC), the bottom-ugninimizing the loss of mutual information between sucoessi
approach trains a number of clusters or models and aimschtsterings while preserving as much information as passib
successively merging and reducing the number of clustdils uffom the original dataset. Two suitable methods have been
only one remains for each speaker. Various initializatioage reported: the agglomerative information bottleneck (B3]
been studied and, whereas some have investigated k-meait$ the sequential information bottleneck (sIB) [19]. Even
clustering, many systems use a uniform initialization, veheif this new system does not lead to better performance than
the audio stream is divided into a number of equal lengfirametric approaches, results comparable to stateeedith
abutted segments. This simpler approach generally leadsG¥IM systems are reported and are achieved with great
equivalent performance [8]. In all cases the audio streamSg&vings In computation.
initially over-segmented into a number of segments which Alternatively, Bayesian machine learning became popular
exceeds the anticipated maximum number of speakers. Thethe end of the 1990s and has recently been used for speaker
bottom-up approach then iteratively selects closely niatch diarization. The key component of Bayesian inference i$ tha
clusters to merge, hence reducing the number of clustersibyloes not aim at estimating the parameters of a system
one upon each iteration. Clusters are generally modeldud wit.e. to perform point estimates), but rather the parameters
a GMM and, upon merging, a single new GMM is trained oaf their related distribution (hyperparameters). Thisowl
the data that was previously assigned to the two individuir avoiding any premature hard decision in the diarization
clusters. Standard distance metrics, such as those degcrigroblem and for automatically regulating the system with
in Section 1lI-C, are used to identify the closest clustéks. the observationse(g the complexity of the model is data
reassignment of frames to clusters is usually performest afflependent). However, the computation of posterior distrib
each cluster merging, via Viterbi realignment for exampldéions often requires intractable integrals and, as a result
and the whole process is repeated iteratively, until sortige statistics community has developed approximate intere
stopping criterion is reached, upon which there should remamethods. Monte Carlo Markov Chains (MCMC) were first
only one cluster for each detected speaker. Possible sigpppised [20] to provide a systematic approach to the computatio
criteria include thresholded approaches such as the Bayesif distributions via sampling, enabling the deployment of
Information Criterion (BIC) [9], Kullback-Leibler (KL)-ased Bayesian methods. However, sampling methods are generally
metrics [10], the Generalized Likelihood Ratio (GLR) [11plow and prohibitive when the amount of data is large, and
or the recently proposed, metric [12]. Bottom-up systems they require to be run several times as the chains may get
submitted to the NIST RT evaluations [9], [13] have perfodmestuck and not converge in a practical number of iterations.
consistently well. Another alternative approach, known as Variational Bayes,

2) Top-Down Approachin contrast with the previous ap-has been popular since 1993 [21], [22] and aims at providing a
proach, the top-down approach first models the entire audieterministic approximation of the distributions. It efesban
stream with a single speaker model and successively adds rieference problem to be converted to an optimisation prable
models to it until the full number of speakers are deemdxy approximating the intractable distribution with a tiue
to be accounted for. A single GMM model is trained on athpproximation obtained by minimising the Kullback-Leible
the speech segments available, all of which are marked digergence between them. In [23] a Variational Bayes-EM
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algorithm is used to learn a GMM speaker model and optimipeoposed in [38], is to perform speaker diarization on each
a change detection process and the merging criterion. |h [Zhannel independently and then to merge the individual out-
Variational Bayes is combined successfully with eigengoiguts. In order to do so, a two axis merging algorithm is used
modeling, described in [25], for the speaker diarization ofhich considers the longest detected speaker segmentstin ea
telephone conversations. However these systems stilidems channel and iterates over the segmentation output. In the sa
classical Viterbi decoding for the classification and diffem year, a late-stage fusion approach was also proposed [8#). |
the nonparametric Bayesian systems introduced in Subsspeaker segmentation is performed separately in all ctienne
tion IV-F. and diarization is applied only taking into account the afen
Finally, the recently proposed speaker binary keys [26Ehawhose speech segments have the best signal-to-noise ratio
been successfully applied to speaker diarization in mgetiSNR). Subsequent approaches investigated preprocetssing
[27] with similar performance to state-of-the-art systelos combine the acoustic signals to obtain a single channeltwhic
also with considerable computational savings (running oould then be processed by a regular mono-channel dianizati
around0.1 times real-time). Speaker binary keys are smadlystem. In [40] the multiple channels are combined with a
binary vectors computed from the acoustic data using a UBMimple weighted sum according to their signal-to-noiseR$N
like model. Once they are computed all processing tasks takio. Though straightforward to implement, it does notetak
place in the binary domain. Other works in speaker diagrati into account the time difference of arrival between each
concerned with speed include [28], [29] which achieve fastenicrophone channel and might easily lead to a decrease in
than real-time processing through the use of several psowes performance.
tricks applied to a standard bottom-up approach ( [28]) or by Since the NIST RT'05 evaluation, the most common ap-
parallelizing most of the processing in a GPU unit ( [29])proach to multi-channel speaker diarization involves atiou
The need for efficient diarization systems is emphasizechwhieeamforming as initially proposed in [41] and described in
processing very large databases or when using diarizatondetail in [42]. Many RT participants use the free and open-

a preprocessing step to other speech algorithms. source acoustic beamforming toolkit known as Beamformilt
[43] which consists of an enhanced delay-and-sum algo-
1. MAIN ALGORITHMS rithm to correct misalignments due to the time-delay-afvat

Fig. 1(b) shows a block diagram of the generic modul TDOA) of speech to each microphone. Speech data can be
which make up most speaker diarization systems. The d tionally preprocessed using Wiener filtering [44] to atiate

; tep (Fia. (b)) tends to b hat do se using, for example, [45]. A reference channel is setec
preprocessing sep_( ig. 1(b)-i) tends to 0€ somewhat domay,  yhe other channels are appropriately aligned and cadbin
specific. For meeting data, preprocessing usually involv

. ducti h as Wi filtering f o) i Iﬁﬁth a standard delay-and-sum algorithm. The contribution
nglse rel uc |ont.(51:)c an iener T erlnSg (t)'r eXﬁlrnX e)t,hmu ‘made by each signal channel to the output is then dynamically
channel acoustic beamiorming (see ection 1i- ), the P& ighted according to its SNR or by using a cross-corratatio
rameterization of speech data into acoustic features (SYelioy metric, various additional algorithms are availabtae
as MFCC, PLP, gt;.) and the detecpon of speech. SCIMEBLS mformit toolkit to select the optimum reference channel
with a speech activity detection algorithm (see SectiofBlll 415 stabilize the TDOA values between channels before the
Cluster initialization (Fig. 1(b)-ii) depends on the appeh gionais are summed. Finally, the TDOA estimates themselves
to diarization,i.e. the choice of an initial set of clusters N, re made available as outputs and have been used sucgessfull
bottom-up clustering [8], [13], [30] (see Section IlI-C) @r , j0rove diarization, as explained in Section IV-A. Note

single segment in top-down clustering [15], [16]. Next, iBhat  althou - .
. ) o , gh there are other algorithms that can provide
Fig. 1(b)-iiifiv, a distance between clusters and a spetiging better beamforming results for some cases, delay-and-sum

rr|1ecthan|s]r-‘g (Sgi Sect:tlo_ntlll(-jD) is used to 'tféat'\éeli/. meﬁ amforming is the most reliable one when no information on
clusters [13], [31] or to introduce new ones [16]. Optiopa the location or nature of each microphone is known a priori.

data purification algorithms can be used to make clusterg MM ong alternative beamforming algorithms we find maximum

discriminant [13], [17], (32]. Finally, as ilustrated indE 1(b)- | afihood (ML) [46] or generaligz;edgsidelobe canceller (GS

v, stopping criteria are used to determine when the optim ] which adaptively find the optimum parameters, and

number of clusters has been reached [33], [34]. minimum variance distortionless response (MVDR) [48] when
prior information on ambient noise is available. All of tkes

A. Acoustic beamforming have higher computational requirements and, in the cadeof t

The application of speaker diarization to the meeting d@daptive algorithms, there is the danger of converging {0 in
main triggered the need for dealing with multiple micropasn accurate parameters, especially when processing micneisho
which are often used to record the same meeting from differéf different types.
locations in the room [35]—[37]. The microphones can have . )
different characteristics: wall-mounted microphonesefiied B- Speech Activity Detection
for speaker localization), lapel microphones, desktopronic  Speech Activity Detection (SAD) involves the labeling of
phones positioned on the meeting room table or microphosigeech and non-speech segments. SAD can have a significant
arrays. The use of different microphone combinations a$ wehpact on speaker diarization performance for two reasons.
as differences in microphone quality called for new appheac The first stems directly from the standard speaker diadpati
to speaker diarization with multiple channels. performance metric, namely the diarization error rate (RDER

The multiple distant microphone (MDM) condition waswhich takes into account both the false alarm and missed
introduced in the NIST RT‘04 (Spring) evaluation. A varietyspeaker error rates (see Section VI.A for more details on
of algorithms have been proposed to extend mono-chaneealuation metrics); poor SAD performance will therefore
diarization systems to handle multiple channels. One aptidead to an increased DER. The second follows from the fact
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that non-speech segments can disturb the speaker dianzateported in [6], apply distinctly independent segmentatod
process, and more specifically the acoustic models invalvedclustering stages. Thus the segmentation and clusterinigi®no
the process [49]. Indeed, the inclusion of non-speech setgmeare described separately here.
in speaker modelling leads to less discriminant models andSpeaker segmentation is core to the diarization process and
thus increased difficulties in segmentation. Consequeatlyaims at splitting the audio stream into speaker homogeneous
good compromise between missed and false alarm speech esegyments or, alternatively, to detect changes in speakists,
rates has to be found to enhance the quality of the followingown as speaker turns. The classical approach to segmenta-
speaker diarization process. tion performs a hypothesis testing using the acoustic seggme
SAD is a fundamental task in almost all fields of speedh two sliding and possibly overlapping, consecutive wiwdo
processing (coding, enhancement, and recognition) angy m@ar each considered change point there are two possible
different approaches and studies have been reported in Hypotheses: first that both segments come from the same
literature [50]. Initial approaches for diarization triemisolve speaker {;,), and thus that they can be well represented
speech activity detection on the fle. by having a non- by a single model; and second that there are two different
speech cluster be a by-product of the diarization. Howevepeakers I;), and thus that two different models are more
it became evident that better results are obtained usingagpropriate. In practice, models are estimated from each of
dedicated speech/non-speech detector as pre-processmg ghe speech windows and some criteria are used to determine
In the context of meetings non-speech segments may inclugieether they are best accounted for by two separate models
silence, but also ambient noise such as paper shuffling, dg¢and hence two separate speakers), or by a single model (and
knocks or non-lexical noise such as breathing, coughing ahdnce the same speaker) by using an empirically determined
laughing, among other background noises. Therefore, Yighjr dynamically adapted threshold [10], [59]. This is penfied
variable energy levels can be observed in the non-speewftoss the whole audio stream and a sequence of speaker turns
parts of the signal. Moreover, differences in microphongs extracted.
or room configurations may result in variable signal-toseoi Many different distance metrics have appeared in the liter-
ratios (SNRs) from one meeting to another. Thus SAD is fature. Next we review the dominant approaches which have
from being trivial in this context and typical techniqueseéd peen used for the NIST RT speaker diarization evaluations
on feature extraction (energy, spectrum divergence betweguring the last 4 years. The most common approach is that of
speech and background noise, and pitch estimation) combirige Bayesian Information Criterion (BIC) and its assoalate
with a threshold-based decision have proven to be relgtivehABIC metric [33] which has proved to be extremely popular
ineffective. e.g.[60]-[62]. The approach requires the setting of an explicit
Model-based approaches tend to have better performangegalty term which controls the tradeoff between misseastur
and rely on a two-class detector, with models pre-traingtl wiand those falsely detected. It is generally difficult to restie
external speech and non-speech data [6], [41], [49], [SB].[ the penalty term such that it gives stable performance acros
Speech and non-speech models may optionally be adaptedjitferent meetings and thus new, more robust approaches hav
specific meeting conditions [15]. Discriminant classifist€h bheen devised. They either adapt the penalty term autortigtica
as Linear Discriminant Analysis (LDA) coupled with Melj.e.the modified BIC criterion [33], [63], [64], or avoid the use
Frequency Cepstrum Coefficients (MFCC) [53] or Suppogf a penalty term altogether by controlling model complexit
Vector Machines (SVM) [54] have also been proposed {B5]. BIC-based approaches are computationally demanding
the literature. The main drawback of model-based appra@achgd some systems have been developed in order to use the
is their reliance on external data for the training of spee@IC only in a second pass, while a statistical-based distanc
and non-speech models which makes them less robustigoused in a first pass [66]. Another BIC-variant metric,
changes in acoustic conditions. Hybrid approaches have begferred to as cross-BIC and introduced in [67], [68], ives
proposed as a potential solution. In most cases, an energye computation of cross-likelihood: the likelihood of asfir
based detection is first applied in order to label a limitesegment according to a model tuned from the second segment
amount of speech and non-speech data for which thereaisd vice versa. In [69], different techniques for likelilioo
high confidence in the classification. In a second step, thermalization are presented and are referred to as bilatera
labeled data are used to train meeting-specific speech ard ngoring.
speech models, which are subsequently used in a model-basesl popular and alternative approach to BIC-based measures
detector to obtain the final speech/non-speech segmentafip the Generalized Likelihood Ratio (GLR.g. [70], [71].
[9], [55]-[57]. Finally, [58] combines a model-based with an contrast to the BIC, the GLR is a likelihood-based metric
4Hz modulation energy-based detector. Interestingljtea® and corresponds to the ratio between the two aforementioned
of being applied as a preprocessing stage, in this system SA{hotheses, as described in [39], [72], [73]. To adapt the

is incorporated into the speaker diarization process. criterion in order to take into account the amount of tragnin
_ data available in the two segments, a penalized GLR was
C. Segmentation proposed in [74].

In the literature, the term ‘speaker segmentation’ is some-The last of the dominant approaches is the Kullback-Leibler
times used to refer to both segmentation and clusterird{L) divergence which estimates the distance between two
Whilst some systems treat each task separately manyrahdom distributions [75]. However, the KL divergence is
present state-of-the-art systems tackle them simultasigouasymmetric, and thus the KL2 metric, a symmetric altereativ
as described in Section llI-E. In these cases the notion ledis proved to be more popular in speaker diarization when
strictly independent segmentation and clustering modidesused to characterize the similarity of two audio segmeri${7
less relevant. However, both modules are fundamental to {fi&].
task of speaker diarization and some systems, such as thdinally, in this section we include a newly introduced
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distance metric that has shown promise in a speaker di@nzat In all cases the different acoustic classes are represented
task. The Information Change Rate (ICR), or entropy can lbsing HMM/GMM models. EM training or MAP adaptation
used to characterize the similarity of two neighboring sheeis used to obtain the closest possible models given therurre
segments. The ICR determines the change in information tlfi@me-to-model assignments, and a Viterbi algorithm isduse
would be obtained by merging any two speech segments unttereassign all the data into the closest newly-created faode
consideration and can thus be used for speaker segmentatiuch processing is sometimes performed several timesédor th
Unlike the measures outlined above, the ICR similarity iBame assignments to stabilize. This step is useful wheasscl
not based on a model of each segment but, instead, on ihereated/eliminated so that the resulting class digiohus
distance between segments in a space of relevance varialddewed to adapt to the data.

with maximum mutual information or minimum entropy. One The one-step segmentation and clustering approach, al-
suitable space comes from GMM component parameters [18lough much slower, constitutes a clear advantage versus
The ICR approach is computationally efficient and, in [78kequential single-pass segmentation and clustering apipes

ICR is shown to be more robust to data source variation thisj—[7]. On the one hand, early errors (mostly missed speake
a BIC-based distance. turns from the segmentation step) can be later corrected by
the re-segmentation steps. On the other hand, most speaker
segmentation algorithms use only local information to deci

D. Clustering . ;
. . on a speaker change while when using speaker models and
Whereas the segmentation step operates on adjacent Wiiarhj realignment all data is taken into consideration.

dows in order to determine whether or not they correspond to\yhen performing frame assignment using Viterbi algorithm
the same speaker, clustering aims at .|dent|fy|ng and 9Pl minimum assignment duration is usually enforced to avoid
together same-speaker segments which can be localized afyyy nreajistic assignment of very small consecutive setgnen
where in the audio stream. Ideally, there will be one clulter 1, gifferent speaker models. Such minimum duration is ugual

each speaker. The problem of measuring segment similariy 4e according to the estimated minimum length of any given
remains the same and all the distance metrics describe HEaker turn.

Section I1I-C may also be used for clusteringg. the KL
distance as in [10], a modified KL2 metric as in [61], a BIC
measure as in [79] or the cross likelihood ratio (CLR) as in IV. CURRENT RESEARCH DIRECTIONS
[80], [81]. In this section we review those areas of work which are

However, with such an approach to diarization, there is r&ill not mature but which have the potential to improve
provision for splitting segments which contain more than diarization performance. We first discuss the trend in recen
single speaker, and thus diarization algorithms can onlgkwoNIST RT evaluations to use spatial information obtainedriro
well if the initial segmentation is of sufficiently high quitgl multiple microphones, which are used by many in combination
Since this is rarely the case, alternative approaches cmmbwith MFCCs to improve performance. Then, we discuss the
clustering with iterative resegmentation, hence faditigathe use of prosodic information which has led to promising
introduction of missing speaker turns. Most of present dspeaker diarization results. Also addressed in this sedtio
arization systems thus perform segmentation and clugteriihe ‘Achilles heel’ of speaker diarization for meetings,igh
simultaneously or clustering on a frame-to-cluster baass, involves overlapping speech; many researchers have ctarte
described in Section IlI-E. The general approach involvée tackle the detection of overlapping speech and its cbrrec
Viterbi realignment where the audio stream is resegmentiedbeling for improved diarization outputs. We then consiale
based on the current clustering hypothesis before the modecent trend towards multimodal speaker diarization idicig
are retrained on the new segmentation. Several iteratins studies of multimodal, audiovisual techniques which haaerb
usually performed. In order to make the Viterbi decoding enosuccessfully used for speaker diarization, at least fariaiory
stable, it is common to use a Viterbi buffer to smooth theestatconditions. Finally we consider general combination styas
cluster or speaker sequence to remove erroneously detecteat can be used to combine the output of different diaorati
brief speaker turns, as in [16]. Most state-of-the-artayst systems. The following summarizes recent work in all of ¢hes
employ some variations on this particular issue. areas.

An alternative approach to clustering involves majority
voting [82], [83] whereby short windows of frames are erire 5 Time-Delay Features

assigned to the closest clusteée. that which attracts the . .
most frames during decoding. This technique leads to saving EStimates of inter-channel delay may be used not only for
in computation but is more suited to online or live speak 'ay'a”_("s“'_“ beamformlng of multiple microphone ch_aa;]nel
diarization systems. as described in Section IlI-A, but also for speaker loc#ilira .
If we assume that speakers do not move, or that appropri-
) i ate tracking algorithms are used, then estimates of speaker
E. One-Step Segmentation and Clustering location may thus be used as alternative features, which
Most state-of-the-art speaker diarization engines urtify thave nowadays become extremely popular. Much of the early
segmentation and clustering tasks into one step. In theserk, e.g. [87], requires explicit knowledge of microphone
systems, segmentation and clustering are performed mandglacement. However, as is the case with NIST evaluations,
hand in one loop. Such a method was initially proposed tsuch a priori information is not always available. The first
ICSI for a bottom-up system [31] and has subsequently beanrk [88] that does not rely on microphone locations led
adopted by many others [9], [41], [52], [84]-[86]. For topto promising results, even if error rates were considerably
down algorithms it was initially proposed by LIA [14] as usedhigher than that achieved with acoustic features. Earlyref
in their latest system [16]. to combine acoustic features and estimates of inter-channe
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delay clearly demonstrated their potentialg. [89], though C. Overlap Detection

this work again relied upon known microphone locations. A fyndamental limitation of most current speaker diarizati

More recent work, and specifically in the context of NISTystems is that only one speaker is assigned to each segment.
evalqatlons, reports the successful combination of a@usfy,e presence of overlapped speech, though, is common in
and inter-channel delay features [86], [90], [91] when theyiiparty meetings and, consequently, presents a signific
are combined at the weighted log-likelihood level, thoughyg|lenge to automatic systems. Specifically, in regionsreh
optimum weights were found to vary across meetings. Betigfore than one speaker is active, missed speech errors will
results are reported in [42] where automatic weighting 8asge incurred and, given the high performance of some state-of
on an entropy-based metric is used for cluster compagije_art systems, this can be a substantial fraction of tieeativ
son in a bottom-up speaker diarization system. A compleigyrization error. A less direct, but also significant, effef
front-end for speaker diarization with multiple micropesn o erlapped speech in diarization pertains to speakereriost
was proposed in [42]. Here a two-step TDOA Viterbi postyng modeling. Segments which contain speech from more than
processing algorithm together with a dynamic output signgl single speaker should not be assigned to any individual
weighting algorithm were shown to greatly improve speak@heaker cluster nor included in any individual speaker ode
diarization accuracy and the robustness of inter-chanelelyd poing so adversely affects the purity of speaker modelschvhi
estimates to noise and reverberation, which commonly &ffligitimately reduces diarization performance. Approaches t
source localization algorithms. More recently an appro@ch oyerlap detection were thoroughly assessed in [97], [98] an
the unsupervised discriminant analysis of inter-chanetyd ayen whilst applied to ASR as opposed to speaker diarization
features was proposed in [92] and results of approximatgjy|y a small number of systems actually detects overlapping
20% DER were reported using delay features alone. speech well enough to improve error rates [99]-[101].

In the most recent NIST RT evaluation, in 2009, all but |nitially, the authors in [102] demonstrated a theoretical
one entry used estimates of inter-channel delay both fgfnrovement in diarization performance by adding a second
beamforming and as features. Since comparative expesmegfeaker during overlap regions using a simple strategy of
are rarely reported it is not possible to assess the Coliibu a5signing speaker labels according to the labels of thehneig
of delay features to diarization performance. Howeverséhoporing segments, as well as by excluding overlap regioms fro
who do use delay features report significant improvementsjfe jnput to the diarization system. However, this inititaidy
diarization performance and the success of these systemgdymed ground-truth overlap detection. In [100] a reallape
NIST RT evaluations would seem to support their use.  detection system was developed, as well as a better heuristi
that computed posterior probabilities from diarizationptmst
process the output and include a second speaker on overlap
regions. The main bottleneck of the achieved performanice ga

The use of prosodic features for both speaker detectigmainly due to errors in overlap detection, and more work on
and diarization is emerging as a reaction to the theoreéinhancing its precision and recall is reported in [99], [101
cal inconsistency derived from using MFCC features botthe main approach consists of a three state HMM-GMM
for speaker recognition (which requires invariance adainsystem (non-speech, non-overlapped speech, and ovedlappe
words) and speech recognition (which requires invariangpeech), and the best feature combination is MFCC and
against speakers) [93]. In [84] the authors present a sysedulation spectrogram features [103], although comparab
tematic investigation of the speaker discriminability dd 7results were achieved with other features such as root mean
long-term features, most of them prosodic features. Theguared energy, spectral flatness, or harmonic energy. ratio
provide evidence that despite the dominance of short-teffhe reported performance of the overlap detection is 82%
cepstral features in speaker recognition, a number of longrecision and 21% recall, and yielded a relative improvemen
term features can provide significant information for sgakof 11% DER. However, assuming reference overlap detection,
discrimination. As already suggested in [94], the consitlen the relative DER improvement goes up to 37%. This way, this
of patterns derived from larger segments of speech canlreva@a has potential for future research efforts.
individual characteristics of the speakers’ voices as \asll
their speaking behavior, information which cannot be cagutu L o
using a short-term, frame-based cepstral analysis. Theeut D- Audiovisual Diarization
use Fisher LDA as a ranking methodology and sort the 70 [104] presents an empirical study to review definitions of
prosodic and long-term features by speaker discrimirtgbiliaudiovisual synchrony and examine their empirical betravio
The combination of the top-ten ranked prosodic and longrterThe results provide justifications for the application oflau
features combined with regular MFCCs leads to a 30% relativesual synchrony techniques to the problem of active speake
improvementin terms of DER compared to the top-performirigcalization in broadcast video. The authors of [105] pnése
system of the NIST RT evaluation in 2007. An extension & multi-modal speaker localization method using a spe&dli
the work is provided in [95]. The article presents a noveatellite microphone and an omni-directional camera. §hou
adaptive initialization scheme that can be applied to steshd the results seem comparable to the state-of-the-art, theso
bottom-up diarization algorithms. The initialization rhetl requires specialized hardware. The work presented in [106]
is a combination of the recently proposed ‘adaptive seconidsegrates audiovisual features for on-line audiovispalaker
per Gaussian’ (ASPG) method [96] and a new pre-clusteridgarization using a dynamic Bayesian network (DBN) but
method in addition to a new strategy which automaticalligsts were limited to discussions with two to three people
estimates an appropriate number of initial clusters based @n two short test scenarios. Another use of DBN, also called
prosodic features. It outperforms previous cluster ititidion factorial HMMs [107], is proposed in [108] as an audiovisual
algorithms by up to 67% (relative). framework. The factorial HMM arises by forming a dynamic

B. Use of Prosodic Features in Diarization
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Bayesian belief network composed of several layers. Eachtofrefine boundaries (referred to as ‘hybridization’ or g
the layers has independent dynamics but the final obsenvatgystems in [122]). In [123] for instance, the authors corabin
vector depends upon the state in each of the layers. In [1@@p different algorithms based on the Information Bottlee
the authors demonstrate that the different shapes the maaoth framework. In [124], the best components of two different
take when speaking facilitate word recognition under tightspeaker diarization systems implemented by two different
constrained test conditions.{.frontal position of the subject French laboratories (LIUM and IRIT) are merged and/or used
with respect to the camera while reading digits). sequentially, which leads to a performance gain compared
Common approaches to audiovisual speaker identificatitm results from individual systems. An original approach is
involve identifying lip motion from frontal faces.g. [110]- proposed in [125], based on a ‘real’ system combinationeHer
[114]. Therefore, the underlying assumption is that moticen couple of systems uniquely differentiated by their input
from a person comes predominantly from the motion of tHeatures (parameterizations based on Gaussianized fgains
lower half of their face. In addition, gestural or other nonron-Gaussianized MFCCs) are combined for the speaker
verbal behaviors associated with natural body motion durinliarization of phone calls conversations. The combination
conversations are artificially suppressedy. for the CUAVE approach relies on both systems identifying some common
database [115]. Most of the techniques involve the ideatificclusters which are then considered as the most relevarthéll
tion of one or two people in a single video camera only wheszgments not belonging to these common clusters are ldbelle
short term synchrony of lip motion and speech are the basis &5 misclassified and are involved in a new re-classification
audiovisual localization. In a real scenario the subjebigvéor step based on a GMM modeling of the common clusters and
is not controlled and, consequently, the correct deteatibn a maximum likelihood-based decision.
the mouth is not always feasible. Therefore, other forms of
body behavior,e.g. head gestures, which are also visibl :
manifestations of speech [116] are used. While there h%sAIternatlve models.
been relatively little work on using global body movements Among the clustering structures recently developed some
for inferring speaking status, some studies have beenecariliffer from the standard HMM insofar as they are fully
out [82], [117]-[119] that show promising initial results. ~ nonparametric (that is, the number of parameters of the
However, until the work presented in [120], approach&ystem depends on the obsgrvauons). The D.|r|chlet process
have never considered audiovisual diarization as a singf®P) [126] allows for converting the systems into Bayesian
unsupervised joint optimization problem. The work in [1,20[gnd nonparametric systems. The DP mixture model produces
though, relies on multiple cameras. The first article thafinite Gaussian mixtures and defines the number of compo-
discusses joint audiovisual diarization using only a sinfgw- Nents by a measure over distributions. The authors of [127]
resolution overview camera and also tests on meeting sosnafllustrate the use of the Dirichlet process mixtures, shmgwi
where the participants are able to move around freely in tR8 improvement compared to other classical methods. [128]
room is [121]. The algorithm relies on very few assumptiorfgfopose another nonparametric Bayesian approach, in which
and is able to cope with an arbitrary amount of camerasStochastic hierarchical Dirichlet process (HDP) defines a
and subframes. Most importantly, as a result of training R{ior distribution on transition matrices over countabifinite
combined audiovisual model, the authors found that speakéfte spaces, that is, no fixed number of speakers is assumed,
diarization algorithms can result in speaker localizatisrside nor found through either split or merging approaches using
information. This way joint audiovisual speaker diaripatcan classical model selection approaches (such as the BIG crite
answer the question “who spoken when and from where”. THi®N). Instead, this prior measure is placed over distiunst
solution to the localization problem has properties thay macalled a random measure), which is integrated out using
not be observed either by audio-only diarization nor by wide likelihood-prior conjugacy. The resulting HDP-HMM leads t
only localization, such as increased robustness againisirga @ data-driven learning algorithm which infers postericstigi
issues present in the channel. In addition, in contrast tioau butions over the number of states. This posterior unceytain
only speaker diarization, this solution provides a means f6an be integrated out when making predictions effectively
identifying speakers beyond clustering numbers by astngia averaging over models of varying complexity. The HDP-

video regions with the clusters. HMM has shown promise in diarization [129], yielding simila
performance to the standard agglomerative HMM with GMM
E. System combination emissions, while requiring very little hyperparameteritign

Svst t bination is oft ted i tand providing a statistically sound model. Globally, these
_ Systém or component combination IS often reported in lH‘;(‘)n parametric Bayesian approaches did not bring a major
literature as an effective means for improving performaince

improvement compared to classical systems as presented in

ies related to speaker diarization have been reported 'erntecléecmn lll. However, they may be promising insofar as they d
years. This could be due to the inherent difficulty of mergi not necessarily need to be optimized for certain data coeapar

multiple output segmentations. Combination strategie® ha " methods cited in Section I Furthermore, they provide

accommodate differences in temporal synchronizatiorpuiat ﬁuﬁzggfl())lfl|Zt|<;;Et6errsp)Jretatlon on posterior distributofe.g.
with different number of speakers, and the matching of speak P '

labels. Moreover, systems involved in the combination have

exhibit segmentation outputs that are sufficiently orthadn V. PERFORMANCEEVALUATION

order to ensure significant gains in performance when com-In this section we report an analysis of speaker diarization
bined. Some of the combination strategies proposed carfsisperformance as reported during the four most recent NIST
applying different algorithms/components sequentiddgsed RT evaluations. The analysis focuses solely on conference
on the segmentation outputs of the previous steps in ordeeetings which are the core evaluation condition. We also
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present an analysis of the ground-truth references in daderas missed overlap (when fewer speakers than the real number
underline the characteristics of the data with respect tetimg are hypothesized) and false alarm overlap (when too many
sources and the different evaluation campaigns. Finally wpeakers are hypothesized). In the NIST evaluations up to
show state-of-the-art system results, collated from folBTN overlapping speakers are considered in the scoring.

RT‘07 and RT'09 evaluation participants, which aim at giyin  Note that as the DER is time-weighted, it ascribes little

a baseline for future research. importance to the diarization quality of speakers whoseailve
speaking time is small. Additionally, a non-scoring coltr
A. Benchmarking Evaluations 250ms is generally applied either side of the ground-truth

Since 2004, NIST has organized a series of benchmark eV%Efgment boundaries to account for inevitable inconsigenc

; o . L : IN precise start and end point labeling. When comparing the
tuhagl?gsskvswits\llrc])It\t]eeszlcga-ll;:earnggrlig t;%gﬁ;ﬁ%g}gi??;g;g system outputs with the ground-truth, and given that theltab
peat . . : ifientifying the speakers are just relative identifiers,gbering
A common characteristic of these evaluations is that thg on

a priori knowledge available to the participants relateshi® algorithm first computes an optimum mapping between both

recording scenario/source.§.conference meetings, IecturessztgoﬁfnL%be;icigrgadertgoaObSt?aiP] dt:r?i %ESAJ.TS Irso nrc;rr:anzlllr)]/
or coffee breaks for the meetings domain), the language (F_pq ithm defined ;) gNIST y IC prog N9
glish), and the formats of the input and output files. Evaturat algonthm detined by :
participants may use external or background data for mgldi
yvorld quels an_d/or for normalization purposes bu.t no ar_pricB_ Ground-Truth Analysis
information relating to speakers in the recordings is add. . o
The number of speakers is also not known. Groyr]ql-truth ref.erence.s for evaluatmg_speaker diaonati

In recent years, the NIST RT evaluations have focussed Wg'e initially obtained via manual labeling of the acous-
the conference meeting domain, where the spontaneous-sp&4k data, however, high variations between different label
ing style presents a considerable challenge for speakezatia €S Proved to be problematic. Therefore, more recently, an
tion. Each meeting used in the evaluations was recordeg usfttomatically generated forced alignment has been used in
multiple microphones (of different types and quality) whic order to extract more reliable speaker start and end points
are positioned on the participants or in different locagiort'SINg an automatic speech recognition (ASR) system, human-
around the meeting room. By grouping these microphonesirﬁ@ated transcriptions, and the audio from individual head
different classes, NIST created several contrastive atial Microphones (IHM). _
conditions. These include: individual headphone microiso _AS meeting data come from a variety of sources some
(IHM), single distant microphones (SDM), multiple distanglﬁerencgs betwgen them are expected._ Furthermore, .Iarge
microphones (MDM), multiple mark 1l arrays (MM3A) and changes in the final DER scores from different evaluations
all distant microphones (ADM). MM3A microphones argvould suggest that there are differences bet\/\_/een the sets
those exclusively found within the arrays built and prodde®f meetings used each year. To gauge the differences we
by NIST. These are usually not included within the MmpDMhave analyzed ovel0 different parameters computed on the
condition, they are included within the ADM condition. Irigh 9ground-truth data. In Table | we repattof these parameters,
section we show results for the MDM and SDM condition¥/hich we found most interesting, and group results by mgetin
since we consider them to be the most representative Surce and by evaluation year.
standard meeting room recording equipment. These conditio

have also proven to be the most popular among evaluation Turn durations

participants. < > = >
Participating teams are required to submit a hypothesis of ‘ Spkr 1 }

speaker activity including start-stop times of speech ssgm

with speaker labels, which are used solely to identify the | Spkr 2 | Spkr2

multiple interventions of a given speaker, but do not need to _ .

reflect the speaker’s real identity. These system outpwds ar € € >

compared to the ground-truth reference in order to obtaén th Speaker durations

overall DER. The DER metric is the sum of three sources

of error: missed speech (percentage of speech in the grouRd-2. Examples of turn and speaker durations in the presehoverlapped
truth but not in the hypothesis), false alarm speech (péagen SPeech and silences.

of speech in the hypothesis but not in the ground-truth) and )

speaker error (percentage of speech assigned to the wront the left side of the table we report average speaker
speaker). The speaker error can be further classified i@@d turn durations. As exemplified in Fig. 2, the average
incorrectly assigned speakers and speaker overlap errorSpeaker duration refers to the average time during which a
the first case the hypothesized speaker does not correspongPeaker is activei.e. a single line in the RTTM reference
the real (ground-truth) speaker. Speaker overlap errerseb files). Conversely, the average turn duration refers to the
the case when the wrong number of speakers is hypothesi@¥grage time during which there is no change in speaker
when multiple speakers speak at the same time. The inclus@fiivity and is thus always smaller than the average speaker
of overlapping speech error in the evaluation was resttitie duration. The difference between_the two statistics refldoe

a contrastive metric in the initial RT evaluations but hasrbe degree of overlap and spontaneity. Without any overlap and

the primary metric since 2006. Overlap errors can be claskifid Pause between each speaker exchange the average speaker
and turn durations would be identical. Increases in overlap

3See http:/nist.gov/speechitests/rt. and spontaneity will result in a larger speaker/turn rakio.



FIRST DRAFT SUBMITTED TO IEEE TASLP: 19 AUGUST 2010

10

Av. speaker duration 7 Av. turn duration silence / overlap
Meeting Source| # meetings|| RT'05 RT06 RT07 RT'09 RT05 RT06 RT07 RT'09

AMI 2 2.7s/2.3s - - - 10.7%/11.4% -I- -I- -I-

CMU 6 2.0s/1.8s| 1.7s/1.2s| 1.8s/1.6s - 6.8%/21.6% | 20.1%03.6% | 29.6%8.8% -/-

ICSI 2 2.5s/2.2s - - - 8.4%/20.7% -/- -/- -/-
NIST 9 2.3s/1.9s| 2.8s/1.6s| 2.1s/1.5s| 1.6s/1.3s|| 8.0%/21.0% | 36.0%/5.8% | 21.7%/6.6% | 11.0%20.5%

VT 6 3.0s/2.5s| 2.8s/1.3s| 2.3s/1.6s - 17.6%/5.4% | 44.8%/6.0% | 23.9%/5.6% -/-
EDI 6 - 2.1s/1.4s| 2.0s/1.4s| 1.8s/1.2s -/- 27.4%/6.4% | 24.2%/9.4% | 27.3%/8.3%

TNO 1 2.1s/1.5s - - -/- 26.5%/6.0% -/- -/-
IDI 2 - - - 2.2s/1.7s -/- -/- -/- 17.4%/8.6%
Average - 2.5sP.1s | 2.3s/1.4s| 2.0s/1.5s| 1.8s/1.4s]|| 10.3%16.0% 31.5%/7.7% | 24.9%/7.6% | 17.5%13.6%

TABLE |

GROUND-TRUTH ANALYSIS FOR THE DATASETS OF THE LAST FOUR SPEAKER DIARATION EVALUATION CAMPAIGNS (RT‘05TO RT'09) AND MEETING
SOURCE COMPARISONS ARE BASED ON THE AVERAGE SPEAKER AND TURN DURATINS (LEFT HALF SIDE) AND THE PERCENTAGE OF SILENCE AND
OVERLAPPING SPEECHRIGHT HALF SIDE).

the right side of Table | we report the percentage of silent¢e reliably interpret results and hence also difficult tovdra
and of overlapping speech. meaningful conclusions.

For RT'05 the average speaker segment duratiof.jis. Comparisons with the work of the speech and speaker
This value decreases continuously for subsequent datasetognition communities highlight the rapid acceleratian
(2.3s for RT'06, 2.0s for RT'07 and1.8s for RT'09). This research effort and progress stemming from the availgbilit
tendency leads to increasingly more frequent speaker amds of huge datasets. Advances in sophisticated modeling and
increases the chances of miss-classifying a speech segmeotmalization strategies have revolutionized researdhése
The average turn segment duration2ids for RT'05. This related fields over recent years. It becomes apparent that
value falls tol.4s for RT‘06 and remains stable for RT‘07 andhe fundamental lack of larger speaker diarization dasaset
RT‘09 (1.5s and1.4s respectively). The consistent decreasghich makes it difficult to assess novel algorithms, is a
in speaker/turn duration ratio highlights a general trefid aritical barrier to further research in our field. Signifitgn
increasing spontaneity and helps to explain the differendarger datasets are needed in order to obtain more robust
in results from one dataset to another. There are no distimetd meaningful performance estimates and comparisons. As
differences across different meeting sites. a result of processing more data, faster algorithms wilb als

There are also noticeable differences in silence and qverlaeed to be investigated for research in speaker diarization
statistics. The percentage of silence is lower for the RT'0%e feasible with standard computing resources.
and RT'09 datasets than it is for the RT‘06 and RT‘'09 datasets
(10.3% and 17.5% cf. 31.5% and 24.9%). However, the RT'05 i
and RT'09 datasets have a higher overlap rate than the RT©6 Evaluation Results
and RT'07 datasets (16.0% and 13.6% cf. 7.7% and 7.6%).To assess the current state-of-the-art and provide a baseli
This is primarily due to3 meetings (from CMU, ICSI and for future research we present results for the RT‘07 (Fig.
NIST sites) which have overlap rates ov&5% (note that 3 left half) and RT'09 (Fig. 3 right half) NIST evaluations
values in Table | are averaged across sites, and do not reffegtthe MDM (Fig. 3a) and SDM (Fig. 3b) conditions. Both
individual meeting scores). In the case of the RT'09 datasgjures have been compiled from a comparison of results from
the slightly high average overlap a8% is due to a single four of the participating sites (LIA/Eurecdiml2R/NTU, ICSI
meeting (recorded by NIST) in which the overlap reacli®$. and UPC) and by selecting the result with lowest DER for
Listening to this meeting we concluded that the reason df sugach meeting recording. Given the volatility of the results
overlap is that it is not a professional meeting but a socigkscribed and studied in [3], by selecting the best result
rendez-vous. Conversely, RT'05 and RT'09 have in average each case we hypothesize that these results are a more
a lower percentage of silenc&0% and17%) compared to meaningful estimation of the state-of-the-art perforneairc
RT’06 and RT'07 §1% and25%). A lower silence rate and speaker diarization for conference meeting data than tiedec
higher overlap might indicate that these meetings are mai results from any single system output. To illustrate the
dynamic, with less idle time and more discussion, althouglariation in performance for different meetings we provide
this does not mean that they are more spontaneous, as thedults for individual meetings. In both figures errors are
speech and speaker segment lengths are still high compatedomposed into the speaker error (Spkr error), overlay err
to the RT'09 dataset. (OVL error), false alarm speech error (FA speech) and missed

Overall we see that, although all recordings belong to tR@eech error (MISS speech).
same task, there are large differences between the datasets For the MDM condition (Fig. 3)(a) the average DER for

for each evaluation campaign, as well as between recordingg RT‘07 and RT‘09 datasets 7s5% and10.1% respectively.
from the same source (recording site), but from differeerformance varies betwe&®% and 15.7% for the RT‘07
datasets. This emphasizes the need for robust systems whigthset whereas for the RT‘09 dataset performance varies
perform well regardless of particular dataset charadiesis betweers.3% and22.2%. For the SDM condition the average

It is important to note, however, that the NIST RT datasefSER is 11.6% and17.7% for the RT‘07 and RT‘09 datasets,
discussed here typically contain around 8 meetings pesefatarespectively. Performance is always poorer than that fer th

each of them contributing to a single DER score. RandogiDM condition and varies betweeh7% and19.9% for the
variations on any meeting from these small datasets have

a significant impact on average results. It is then difficult “Eurecom was associated with the LIA for the RT‘09 campaigly.on
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B Spkr error 31.79%
OVL error .
FA speech
B MISS speech

B Spkr error
EovL error
FA speech

20 | EMISS speech

(a) (b)

Fig. 3. DERs for the RT'07 and RT'09 (a) in multiple distantamiphone (MDM) condition, and (b) single distant micropbdi®DM) condition (note that
spkr_error in meeting NIST20080201-1405 has been trimmed to fit the screen, with a epeaikor of 31.79% and a total DER of 49.65%)

RT'07 dataset and between4% and 49.7% for the RT‘09 now commonplace combined approaches to segmentation and
dataset. Thus, there is a large variation in performancesacrclustering. In particular we believe that important desesa
different meetings and in all cases we observe significant DER will have to come in the near future from systems
overlap errors and their often-dominant impact upon thd finacorporating effective algorithms that can detect andexity
DER. Of particular note is the poor performance obtainexksign overlapping speech.

on the single NIST20080201-1405, which correlates with

th_e part|c_ularly h_|gh percentage of overlapping speech _for V. CONCLUSIONS AND DIRECTIONS FOR FUTURE

this meeting as illustrated in Table I. Hence, the detection RESEARCH

and appropriate treatment of overlapping speech remains an o _
unsolved problem. In fact, the overlap error shown in Figs 3§ Research on speaker diarization has been developed in
entirely due to missed overlap regions, as none of the speali@ny domains, from phone calls conversations within the
diarization systems considered in this analysis included gP&aker recognition evaluations, to broadcast news antt mee
overlap detector. Also of note is the general stability afegh N9 recordings in the NIST Rich Transcription evaluations.
activity detection (SAD) algorithms which achieve impiiees Furthermore, it has been used in many applications such as
levels of performance in both MDM and SDM conditiong( & front-end for speaker and speech recognition, as a meta-
they are robust to the quality of the signal). Values of acburfl@@ extraction tool to aid navigation in broadcast TV, Ueet

1% to 2% missed speech error rates a3 to 3% false alarm recordings, meetings, and video conferences and even for
error rates are currently typical. The main difference e 2PPlications such as media similarity estimation for cagiyr
MDM and SDM performance rests mainly in the speaker errgietection. Also, speaker diarization research has ledrious
Here diarization systems are affected by the reduced sigh¥fProducts. For example, with the availability of recorgt

quality which characterises the SDM condition. using muI_tipIe microphones, a set_of algorithms has been
proposed in recent years both for signal enhancement and to

Overall, the large variations in DER observed among the diake advantage of the extra information that these offer. In
ferent meetings and meeting sets originate from the large vaddition, the availability of other modalities, such asead
ance of many important factors for speaker diarization,cwhi have started to inspire multimodal diarization systemssth
makes the conference meeting domain not as easily tra@ablenerging the visual and the acoustic domains.
more formalized settings such as broadcast news, lectoires, This article provides an overview of the current state-of-
court house trials. Previous work has highlighted the diffic the-art in speaker diarization systems and underlinesraleve
in assessing the performance of speaker diarization &hgosi challenges that need to be addressed in future years. For
with the view of improving performance [130]. As reported irexample, speaker diarization is not yet sufficiently matoe
Section Ill, current approaches to speaker diarizationli®s that methods can be easily ported across different domains,
a sequence of separate stages where each stage takestits agppghown in Section V, where small differences in meeting
from the preceding stage(s). When combined in such a fashidata (recorded at identical sites) lead to large variations
it is exceedingly difficult to assess the performance of eagerformance. In the meantime, larger datasets need to be
system component since every single one is affected by #@mpiled in order for results to become more meaningful
performance of all previous processing stages. Furthexntorand for systems to be more robust to unseen variations.
is not guaranteed that improvements to one stage, for examPff course, with increasing dataset sizes, systems will have
that of segmentation, will lead unequivocally to improventse to become more efficient in order to process such data in
in later stages, for example that of clustering. This makesasonable time. Still, the biggest single challenge iv@ro
the optimization of different system components ratheu-trobly the handling of overlapping speech, which needs to be
blesome. Once again by drawing comparisons to the spe@ttributed to multiple speakers. As a relatively embryonic
and speaker recognition fields, it is reasonable to foressemmunity, at least compared to the more established fields
more unified approaches, as is already in progress with thiespeech and speaker recognition, there are thus outstandi
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opportunities for significant advances and important ckang [15]
to the somewhat ad hoc and heuristic approaches that clyrrent
dominate the field.

Overall, the future of the field seems even broader and
brighter than the present, as more and more people acknovAs]
edge the usefulness of audio methods for many tasks that have
traditionally been thought to be exclusively solvable ire th [17]
visual domain. Speaker diarization is one of the fundanienta
problems underlying virtually any task that involves adass

and the presence of more than one person. [18]
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