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A comparative study of bottom-up and top-down

approaches to speaker diarization
Nicholas Evans, Member, IEEE, Simon Bozonnet, Student Member, IEEE, Dong Wang, Associate Member, IEEE,

Corinne Fredouille and Raphaël Troncy

Abstract—This paper presents a theoretical framework to
analyze the relative merits of the two most general, dominant
approaches to speaker diarization involving bottom-up and top-
down hierarchical clustering. We present an original qualitative
comparison which argues how the two approaches are likely
to exhibit different behavior in speaker inventory optimization
and model training: bottom-up approaches will capture compar-
atively purer models and will thus be more sensitive to nuisance
variation such as that related to the speech content; top-down
approaches, in contrast, will produce less discriminative speaker
models but, importantly, models which are potentially better
normalized against nuisance variation. We report experiments
conducted on two standard, single-channel NIST RT evaluation
datasets which validate our hypotheses. Results show that com-
petitive performance can be achieved with both bottom-up and
top-down approaches (average DERs of 21% and 22%), and
that neither approach is superior. Speaker purification, which
aims to improve speaker discrimination, gives more consistent
improvements with the top-down system than with the bottom-up
system (average DERs of 19% and 25%), thereby confirming that
the top-down system is less discriminative and that the bottom-
up system is less stable. Finally, we report a new combination
strategy that exploits the merits of the two approaches. Combina-
tion delivers an average DER of 17% and confirms the intrinsic
complementary of the two approaches.

Index Terms—speaker diarization, segmentation, clustering,
rich transcription

I. INTRODUCTION

THE ever-expanding volume of available audio and mul-

timedia data has elevated technologies related to content

indexing and structuring to the forefront of research. Speaker

diarization [1], [2], commonly referred to as the ‘who spoke

when?’ task, is one such example. Speaker diarization involves

identifying the number of speakers within an acoustic stream

and the labeling of intervals when each speaker is active.

Stemming partly from the internationally competitive Rich

Transcription (RT) evaluations [3] administered by the Na-

tional Institute for Standards and Technology (NIST) in the

U.S., speaker diarization has emerged as a prominent, core

enabling technology in the wider speech processing research

community.

A general speaker diarization system schematic is illustrated

in Fig. 1. The first system elements involve noise reduction and
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beamforming, with the latter only being applied to obtain a sin-

gle pseudo channel when multiple input channels are available.

Following feature extraction speech activity detection is then

normally performed to remove non-speech segments before

the core stage of the general speaker diarization system which

involves segmentation and clustering.

Whilst there are examples that do not match this dichotomy,

two general approaches to segmentation and clustering have

come to prominence through the official NIST RT evaluations

and now dominate the literature. They involve bottom-up

and top-down approaches to hierarchical clustering [2]. All

the speaker diarization systems submitted to the NIST RT

evaluations fit into one of these two categories which are the

focus throughout this paper. Bottom-up systems are initialized

with a large number of clusters which are gradually merged

whereas the top-down systems are initialized with a single

cluster before more are introduced through cluster splitting.

Both processes are iterative and are repeated until the optimal

number of speakers is reached. The bottom-up approach is

an example of agglomerative hierarchical clustering whereas

the top-down approach is an example of divisive hierarchical

clustering.

The bottom-up approach is by far the most popular and

systems based on this approach have consistently achieved the

best levels of performance in the NIST RT evaluations, e.g. [4],

[5], although top-down systems also achieve respectable re-

sults [6]. While some have reported that bottom-up approaches

are more robust than their top-down counterparts [1] our

own work [7] shows that the two approaches give compa-

rable results, with neither being consistently superior to the

other. Purification techniques which aim to ‘purify’ clusters

of speech from all but the dominant speaker, are reported

by many to give significant and consistent improvements

with bottom-up approaches [8], [9], [10]. Our experience,

however, shows that performance can sometimes deteriorate

when purification is applied to bottom-up strategies but that

it leads to consistent improvements in top-down systems [7].

These observations led us to investigate the two diarization

approaches more thoroughly and to study their relative merits.

In this paper, we present an original theoretical framework

for speaker diarization and use it to compare the bottom-up

and top-down approaches to speaker diarization. The study

shows that the two clustering approaches are similarly effective

in searching for the optimal number of speakers but behave

differently in discriminating between individual speakers and

in normalizing unwanted acoustic variation, i.e. that which

does not pertain to different speakers. This can make top-down
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Fig. 1. An overview of a typical speaker diarization system with one or multiple input channels.

systems more stable but less discriminative, and vice versa for

bottom-up systems. We also explain why purification works

well with top-down approaches but why it can degrade results

when applied to bottom-up systems. Finally, the study leads

to a combined approach to speaker diarization which exploits

the benefits of both bottom-up and top-down approaches.

The remainder of this paper is organized as follows. In

Section II we present a theoretical framework for bottom-up

and top-down hierarchical clustering approaches to speaker

diarization. This includes a formal definition of the task and an

analysis of the challenges that must be addressed by practical

speaker diarization systems. The generalized bottom-up and

top-down approaches are reviewed and compared on a quali-

tative basis in Section III. In Section IV, we describe our own

specific bottom-up and top-down experimental systems and

approaches to purification and system combination. Results are

reported in Section V before conclusions and some thoughts

for future work are presented in Section VI.

II. SPEAKER DIARIZATION: A THEORETICAL FRAMEWORK

In this section we propose a theoretical framework for the

speaker diarization task. Although it is not the only possible

approach, the formulation presented is representative of state-

of-the-art technologies based on probabilistic modeling. All

the assumptions made in theory development are consistent

with modern speaker diarization systems that have been en-

tered into the official NIST RT evaluations [3].

Based on the probabilistic framework, we analyze the main

challenges that must be addressed in related practical systems.

This analysis leads naturally to the two principal approaches

to speaker diarization, namely the bottom-up and top-down

approaches that are studied and compared later in this paper.

A. Task definition

Speaker diarization can be defined as an optimization task

on the space of speakers given the audio stream that is under

evaluation. We first assume that non-speech segments have

been removed from the acoustic stream and that features

are extracted such that the remaining speech information is

represented by a stream of acoustic features O. Letting S
represent a speaker sequence and G a segmentation of the

audio stream by S, then the task of speaker diarization can be

formally defined as follows:

(S̃, G̃) = argmax
S,G

P (S, G|O), (1)

where S̃ and G̃ represent respectively the optimized speaker

sequence and segmentation, i.e. who (S) spoke when (G). We

can factorize (1) into a posterior probability by applying the

Bayesian rule:

(S̃, G̃) = argmax
S,G

P (S, G)P (O|S, G)

P (O)
(2)

= argmax
S,G

P (S, G)P (O|S, G),

where P (O) is suppressed since it is independent of S and G.

(2) shows that two models are required in order to solve the

optimization task: acoustic models which describe the acoustic

attributes of each speaker, constituting P (O|S, G), and speaker

turn models which describes the probability of a turn between

speakers with a given segmentation, constituting P (S, G).
Usually the acoustic models are implemented as Gaussian

mixture models (GMMs). Letting Si denote the i-th speaker

in S, and Oi the corresponding speech segment according

to G, we have:

P (O|S, G) =
∏

i

P (Oi|λSi
, G), (3)

where λSi
denotes the GMM speaker model for speaker Si.

By applying various different assumptions one can obtain

different forms of the speaker turn model. For example, if

we assume that the speaker labels either side of the turn are

irrelevant and take only the utterance duration into account

then we have the following duration model:

P (S, G) = P (G), (4)

where P (G) can be modeled with a normal or Poisson

distribution for example. Alternatively, and as is common in

practice, one may assume a uniform distribution and thus omit

the turn model entirely. Substituting (3) and (4) into (2) we

obtain:

(S̃, G̃) = argmax
S,G

P (G)
∏

i

P (Oi|λSi
, G), (5)

which provides a full solution to the speaker diarization

problem.

B. Challenges

In practice, the implementation of a practical speaker

diarization system is rather more complex than may first

appear from the basic framework presented above. The first

challenge involves the optimization of the speaker sequence

S in (5). This is not straightforward since the inventory of

S is unknown, i.e. we do not know how many speakers N
there are within the acoustic stream. This means that it is not

possible to optimize the speaker sequence S without a jointly-

optimized speaker inventory. Second, although we suppose that

a set of acoustic models can reliably represent the acoustical

characteristics of the speakers, the speech signal O is rather
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complex. Whilst the acoustic models depend fundamentally on

the speaker, they also depend on a number of other nuisance

factors such as the linguistic content, for example the words

or phones pronounced, which are not related specifically to

the speaker. In the following we assume for simplicity that

the major nuisance variation relates only to the phone class of

uttered speech, which we denote as Q, though other acoustic

classes are also valid. Due to its significant effect on the speech

signal, Q should appear in the solutions and must be addressed

appropriately.

To formulate a solution which addresses these two chal-

lenges, we first introduce the speaker inventory ∆, and let

Γ(∆) represent all possible speaker sequences. Returning to

(2) we derive the solution as follows:

(S̃, G̃, ∆̃) = argmax
S,G,∆:S∈Γ(∆)

P (S, G|O)

= argmax
S,G,∆:S∈Γ(∆)

P (S, G)
∑

Q

P (O,Q|S, G)

= argmax
S,G,∆:S∈Γ(∆)

P (S, G)
∑

Q

P (O|S, G,Q)P (Q|S)

= argmax
S,G,∆:S∈Γ(∆)

P (S, G)
∑

Q

P (O|S, G,Q)P (Q), (6)

where Q is naturally independent of G and we have further

assumed it to be independent of S. The solution reveals two

important issues that any practical speaker diarization system

must address. First, the speaker inventory ∆ must be optimized

together, not only with the speaker sequence S, but also

the segmentation G. There is no analytical solution for ∆
and so a trial-and-error search is typically conducted. This

search can be either from a smaller inventory to a larger

inventory, or from a larger inventory to a smaller inventory.

These strategies correspond respectively to the top-down and

bottom-up approaches to speaker diarization. Secondly, when

comparing (2) and (6), we see that:

P (O|S, G) =
∑

Q

P (O|S, G,Q)P (Q). (7)

This means that in the optimization task one should either use

a phone-independent model P (O|S, G) and apply (2), or a

phone-dependent model P (O|S, G,Q) with prior knowledge

of P (Q) and apply (6). Due to its simplicity and effec-

tiveness, most speaker diarization systems nowadays adopt

the former approach. For such a system P (O|S, G) must be

trained with speech material containing all possible phones,

otherwise Q will be not marginalized. In other words, for a

phone-independent system, acoustic speaker models must be

normalized across phones Q to ensure that the resulting model

is phone-independent, otherwise optimization according to (2)

will be suboptimal.

In summary, a practical diarization system should incor-

porate an effective search strategy to optimize the speaker

inventory ∆, and a set of well-trained speaker models to

infer the speaker sequence S and segmentation G. Ideally,

the models should be most discriminative for speakers and

fully normalized across phones. From this perspective, the

direction in which the optimal speaker inventory is searched

for (bottom-up or top-down) is inconsequential. Searching

from either direction will in any case arrive at the optimal

inventory1. However, the merging (bottom-up) or splitting

(top-down) operations in the search process are likely to im-

pact upon the discriminative power and phone-normalization

of the intermediate and final speaker models. Therefore, the

two approaches will exhibit different behaviors and relative

strengths and shortcomings in practice. This is the starting

point of our analysis for these two approaches.

III. APPROACHES TO SPEAKER DIARIZATION

In this section we review the general bottom-up and top-

down approaches to speaker diarization. The two approaches

constitute the segmentation and clustering component in Fig. 1

and encapsulate the trial-and-error search for an optimal

speaker inventory ∆ and thus the optimization of S and G.

The presentation in this section relates to the most general of

bottom-up and top-down approaches to hierarchical clustering

and, for the most part, it expressly avoids any relation to

specific systems. Details of our own implementations are

presented in Section IV.

Following the presentation of the two different approaches

we outline some additional assumptions which infer new

hypotheses related to their relative merits and shortcomings.

They are discussed in this section in a purely qualitative

context. In Section V the aim is then to compare the behavior

of our specific implementations to the hypotheses presented

here.

In both approaches presented below the aim is to model

each of the N true speakers with a single GMM. Speaker

turns are represented by transitions between models thus

forming an ergodic hidden Markov model (HMM) in which

each state represents a speaker and where all states are fully

connected. The difference between the bottom-up and top-

down approaches lies in where the trial-and-error search starts

from and how an optimal set of GMM speaker models is

derived.

A. Bottom-up

The bottom-up approach is often referred to as agglomera-

tive hierarchical clustering (AHC). The procedure is illustrated

to the left of Fig. 2 which shows how clustering begins with

a larger speaker inventory (bottom) before similar clusters are

merged to obtain a smaller, more optimal size (top). Only a

single iteration is illustrated in Fig. 2 and in this example the

process stops when two clusters are obtained. The resulting

diarization hypotheses are illustrated in the left column with

the corresponding ergodic HMMs in the middle column.

The search procedure starts with a model initialization

which involves over-segmenting and under-clustering the

acoustic stream into a larger number of clusters than the

assumed number of true speakers, and training a GMM model

on the acoustic data in each cluster. Various approaches can

1We assume that the number of speakers is known approximately so that
the bottom-up approach is initialized with more clusters than true speakers in
order to avoid the risk of over-clustering.
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Fig. 2. An illustration of the bottom-up (left) and top-down (right) approaches
to speaker diarization. Here there are N = 2 true speakers and the bottom-up
approach is initialized with 3 clusters.

be applied to formulate the initial segmentation but linear

segmentation is commonly used [11]. In the artificial example

illustrated in Fig. 2 we assume that there are not more than

N = 2 true speakers. Initialization produces 3 GMMs which

are connected to form a 3-state, ergodic HMM2. Using the

initial HMM/GMMs the acoustic stream is re-segmented by

Viterbi realignment before the models are refined according

to the new segmentation. New models are re-estimated with

an expectation maximization (EM) procedure which converges

to a stable segmentation and a set of locally optimized GMMs

after several iterations. Next, the new models are examined in a

pairwise fashion, and the two most similar are merged together

to form a new GMM. Various distance metrics can be used to

estimate model similarity and hence control merging. The most

popular approaches involve the Bayesian information criterion

(BIC) [12] and its variants. After a number of iterations

of realignment and re-estimation a new, stable diarization

hypothesis is obtained before the next cycle of model merging

is considered. This process is repeated until an optimal speaker

inventory (2 speakers in Fig. 2) is obtained according to

some stopping criteria, which may also be based upon a BIC

criterion. In each iteration, the number of speakers is reduced

by one, and the speaker sequence (S) and segmentation (G)

are optimized according to (1).

The bottom-up approach is the most popular and has

achieved general success in the NIST RT evaluations [13],

[14], [15], [16], [17] in addition to data from other do-

mains [18], [19]. Nonetheless, some authors report that in-

stabilities related to initialization [20], model merging and

the sensitivity of the stopping criterion [21] might degrade

its performance.

B. Top-down

The top-down approach operates from a smaller speaker

inventory to a larger speaker inventory and is a form of divisive

hierarchical clustering (DHC). In the example shown to the

right of Fig. 2, the approach starts with a single general

2In practice the number of initial clusters would be much greater than the
assumed number of true speakers.

speaker model and constructs an optimal speaker inventory

by introducing new speakers one-by-one.

Initialization involves the training of a general speaker

model, denoted by S0, with all the available acoustic data.

A new speaker model, denoted by S1, is then introduced

and trained with some appropriate data from the general

speaker model. Various approaches may be used to select the

segment but the single largest segment identified from the

speech activity detection (SAD) output has proved to give

the most consistent performance [6]. As with the bottom-up

approach, several iterations of Viterbi realignment and EM

training are applied to iteratively refine the model, until a

stable segmentation is obtained. New speakers are then added

in the same way by the repeated splitting of existing models

followed by several iterations of Viterbi realignment and EM

training. The process continues until the optimal speaker

inventory is obtained according to some stopping criteria, e.g.

when there is no longer sufficient data with which to introduce

a new speaker or when an upper limit on the size of the speaker

inventory is reached. This process is illustrated in Fig. 2, where

the process starts with a single general speaker model and

stops with an inventory containing N = 2 speakers.

The top-down approach to speaker diarization is less popular

than its bottom-up counterpart but has nonetheless been shown

to give competitive performance in NIST RT evaluations [6],

[22]. Compared to the bottom-up approach, which reduces the

number of models at each iteration through cluster merging,

the top-down approach increases the number at each iteration

through cluster splitting. In the artificial example illustrated

in Fig. 2 the diarization hypothesis obtained with the two

approaches is the same and thus the differences between the

two approaches may seem insignificant. In practice, however,

they cause distinctly different behavior in terms of diarization

performance and system stability, as we now discuss.

C. A qualitative comparison

The bottom-up and top-down approaches to speaker di-

arization are fundamentally opposing strategies. The bottom-

up approach is a specific-to-general strategy whereas the top-

down approach is general-to-specific. The latter will produce

more reliably trained models as relatively more data are

available for training. However, the models are likely to be

less discriminative until sufficient speakers and their data

are liberated to form distinct speaker models. The bottom-

up approach, in contrast, is initialized with a larger number of

models and is there more likely to discover specific speakers

earlier in the process, however the models may be weakly

trained until sufficient clusters are merged.

The two approaches thus have their own strengths and weak-

nesses and are therefore likely to exhibit different behavior and

results. In the following we discuss some particular character-

istics in further detail with the aim of better illuminating their

potential merits.

1) Discrimination and purification: A particular advantage

of the bottom-up approach rests in the fact that it is likely

to capture comparatively purer models. Whilst they may

correspond to a single speaker, they may also correspond
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to some other acoustic unit, for example a particular phone

class. This is particularly true when short-term cepstral-based

features are used, though recent work with prosodic features

has potential to encourage convergence specifically toward

speakers [23]. In contrast, since it initially trains only a small

number of models using relatively larger quantities of data,

the top-down approach effectively normalizes phone classes,

but it also normalizes speakers at the same time. To achieve

the best discriminative power across speakers, a purification

step becomes essential for both approaches: for the bottom-

up approach, it is necessary to purify the resulting models

of interference from phone variation, whereas for the top-

down approach it is necessary to purify the resulting mod-

els of data from other speakers. Purifying phones involves

phone recognition which is usually rather costly; purifying

speakers, however, is much easier with some straightforward

assumptions. We have achieved significant improvements in

diarization performance using purification in our top-down

approach. This recent work is presented in Section IV-D.

2) Normalization and initialization: Theoretically, the EM

algorithm ensures that both the bottom-up and top-down

approaches will converge to a local maximum of the objective

function for a fixed size ∆. If the differences between speakers

is the dominant influence in the acoustic space then we can

safely assume that the local maximum represents an optimal

diarization on speakers, as opposed to any other acoustic class.

In this case, initial models are not predominantly important,

and thus both bottom-up and top-down approaches will tend

to provide similar diarization results. However, in addition to

the speaker the acoustic signal bears a significant influence

from the linguistic contents, and more specifically the phones.

Therefore, the local maximums of the objective function

may correspond to phones Q instead of speakers S if the

speaker models are not well normalized, i.e. Q is not fully

marginalized. This analysis highlights a major advantage of

the top-down approach to speaker diarization: by drawing

new speakers from a potentially well-normalized background

model, newly introduced speaker models are potentially more

reliable than those generated by linear initialization and model

merging in the bottom-up approach.

An interesting point derived from the above analysis is

that the bottom-up and top-down approaches, which possess

distinct properties in terms of model reliability and discrimi-

nation, are likely to result in different local maximums of the

objective function, suggesting that their combination may thus

provide for more reliable diarization. Previous work would

seem to support this observation [24]. We report our recent

work on system combination in Section IV-E.

IV. EXPERIMENTAL SYSTEMS

Given a probabilistic approach and stated assumptions the

framework presented in Section II led to the two hierarchical

clustering approaches to speaker diarization. They are de-

scribed in their most general form in Section III and it is the

aim of the work presented later in this paper to validate the hy-

pothesized characteristics presented therein. Whilst this work

aims to compare the two approaches in a general manner it is

TABLE I
SAD PERFORMANCE ON THE RT‘07 AND RT‘09 DATASETS.

Dataset FA Miss Total

RT‘07 4.7 1.1 5.8

RT‘09 7.2 1.8 9.0

impossible that the experimental validation entirely avoids any

dependency on specific system implementations. Described in

this section are the two different systems that we implemented

in order to undertake the experimental work reported in this

paper. The two systems are as general as is possible and are

based on speaker diarization systems that have achieved state-

of-the-art performance in the NIST RT evaluations.

Both baseline systems comprise a common SAD component

and a segmentation and clustering component. In both cases

the latter is a two-stage strategy involving an EM based

segmentation and clustering process to generate an initial,

coarse diarization and then a maximum a posteriori (MAP)

based re-segmentation with feature normalization to refine the

diarization hypothesis. Also described here is our approach to

speaker purification and system combination. Both bottom-up

and top-down speaker diarization systems were implemented

with the ALIZE toolkit [25], which ensures that the compar-

ative study better reflects core differences in the clustering

and segmentation strategies instead of any nuances related to

difference in estimation, decoding or adaptation algorithms.

A. Speech activity detection

SAD is a fundamental pre-processing step in all speaker

diarization systems and aims to remove non-speech segments

from the audio stream so that downstream speaker segmenta-

tion and clustering concentrates only on segments containing

speech; furthermore, it provides an effective initialization for

the top-down approach as we will discuss shortly. Our SAD

system follows standard noise suppression [26] and is a simple

model-based approach involving the alignment of the acoustic

data to a two-state HMM in which the two states represent

speech and non-speech data respectively. A large amount of

speech and non-speech data from a separate development

dataset, mostly from the AMI conference meeting corpus [27],

are used to train the two 32-component GMMs with an EM-

based algorithm. An ergodic HMM is formed by connecting

the two GMMs with transition probabilities of 0.5. Key to

good SAD performance is the sequential application of Viterbi

realignment and model re-estimation which are applied itera-

tively to ensure that the models adjust to the prevailing ambient

conditions. To ensure a realistic segmentation, some heuristic

rules are applied to prohibit rapid transitions between speech

and non-speech states. Table I illustrates SAD performance for

the RT‘07 and RT‘09 datasets in terms of average false alarm

(FA) and missed (Miss) speech rates. The fourth column is the

addition of the FA and Miss rates and indicates overall SAD

performance. Scores of 5.8% and 9.0% on the two datasets

respectively show that, despite its simplicity, this approach

performs well compared to other systems submitted to the

NIST RT evaluations.



6 JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

B. Bottom-up

Except for a novel progressive training approach to model

initialization, which was proposed in [28] and referred to

as sequential EM, the first stage EM-based segmentation

and clustering process is a conventional AHC approach as

described in Section III-A. GMM speaker models contain 4

components but, in an otherwise standard AHC approach, they

are initially trained using only a small fraction of the available

data before several steps of re-estimation are performed with

an increasing amount of data at each step. This process is

repeated until all the data are used in the final training cycle.

New speaker models with 16 components are then estimated

and used for the remaining merging steps. In our experience

progressive training can lead to significant improvements in

performance over a conventional AHC system. Cluster merg-

ing is controlled with the modified Information Change Rate

(ICR) criterion [21] and continues until the stopping criterion

is met. In contrast to the exemplary, state-of-the-art system

presented in [28], we find that the Ts stopping criterion gives

better results than the Rho criterion as used in [28], [29].

The second, MAP-based re-segmentation stage is common

to both bottom-up and top-down approaches. The diarization

hypothesis from the EM stage is used to train a new model for

each speaker through the MAP adaptation of a generic back-

ground model which is trained on a large amount of external

data. Speaker models now contain 128 components and are

more complex than for the first EM-based segmentation and

clustering stage. With the initial coarse segmentation from the

EM-stage, the MAP-based adaptation tends to deliver more

reliable performance. As in the EM stage, several iterations

of Viterbi realignment and adaptation are applied to obtain a

stable diarization hypothesis. Speaker clusters with too few

speech data (less than 8 seconds) are removed. A final stage

of re-segmentation is then applied in exactly the same way

but with features that are normalized to have zero mean and

unity variance, i.e. cepstral mean and variance normalization.

We acknowledge that this setup potentially detracts from the

independence of the assessment reported here since bottom-

up and top-down segmentation and clustering algorithms are

arguably used to initialize re-segmentation rather than being

used for speaker diarization directly. In all of our experiments,

however, MAP-based re-segmentation leads to consistent im-

provements in performance for both systems and as such its

application has minimal impact on the comparative aspects of

the study and does not alter the conclusions reported here.

C. Top-down

The top-down system is a DHC approach according to the

general procedure described in Section III-B. It is based on the

evolutive hidden Markov model (E-HMM) that was originally

proposed in [30]. The current system has evolved significantly

from the original work and, with significant improvements to

speaker modeling, the system was used for LIA-EURECOM’s

submission to the most recent NIST RT‘09 evaluation. As is

the case for the bottom-up system there are two stages. The

first generates an initial, coarse diarization hypothesis through

an EM stage which is refined through a second MAP stage.

The latter is identical to that used in the bottom-up system.

Initialization involves the training of a single, 16-component

root speaker model S0 with an EM algorithm. New speakers

are added to the model one-by-one by training new models

with an EM algorithm using the single longest segment of

speech that is assigned to S0 at any iteration. Following

the addition of each speaker several iterations of Viterbi

realignment and model re-estimation are used to refine the

speaker models and diarization hypothesis. The quantity of

data assigned to any new speaker must be sufficient to indicate

a significant speaker; newly added speaker models that are

assigned less than 8 seconds of data are rejected. In this case

the system reverts to the previous hypothesis and the next

largest segment is used to add a new speaker. This process

continues until no more segments of greater than 6 seconds in

length remain assigned to the root model, S0.

D. Purification

Purification is a data filtering technique; the central idea

is to remove noisy data so that models are trained on data

that is indicative of the target class only and not of unwanted

variation. Purification techniques have been extensively stud-

ied within bottom-up approaches to speaker diarization [8] but

there is comparatively very little work in the context of top-

down approaches.

Our purification algorithm is based on the original work

in [28] and is very similar to the progressive training approach

described in Section IV-B. The algorithm operates between

the first EM stage and the second MAP re-segmentation

stage. Each hypothesized cluster is split into sub-segments of

500ms in length. The 55% of segments which best fit the

corresponding GMM model are then used to estimate new

models with EM training. The process is repeated ten times

where at each iteration 45% of the data with the smallest

likelihood are always discarded before being reassigned to

their nearest cluster with Viterbi decoding. The diarization

hypothesis obtained in the final iteration is then used in the

final MAP-based resegmentation stage described above. Note

that since purification is applied before the second stage MAP-

based resegmentation it can influence the number of clusters

in the final diarization hypothesis.

E. Combination

As outlined above the bottom-up and top-down clustering

strategies are likely to produce different diarization outputs and

it is thus of interest to combine their outputs. We hypothesize

that for both approaches, some models may reliably represent

specific, individual speakers, whereas others may be relatively

unreliable. They may correspond to multiple speakers or to

local maxima of the objective function which are not related to

differences between speakers but to some other acoustic phe-

nomena. If it is possible to identify reliable models then better

diarization performance may be achieved by re-clustering the

data assigned to the unreliable models.

A number of combination approaches have been proposed

previously, at the clustering stage [24], [31] or at the output
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stage [32], [33], [34]. Better performance is usually obtained

but, with the exception of [35], none of the previous work

considered the combination of both bottom-up and top-down

system outputs without further re-segmentation. In our work,

to leverage the respective merits of both the bottom-up and

top-down approaches, we treat the top-down output as a base

segmentation and apply the bottom-up output to purify it.

Specifically, for each cluster contained in the top-down system

output Ci a cluster contained in the bottom-up system Cn

is chosen as a matching cluster if (i) they share a sufficient

proportion of frames and (ii) among all other clusters con-

tained in the bottom-up system Cn is the closest to Ci, where

the inter-cluster distance is measured in terms of ICR. Each

matched cluster pair is accepted as a reliable speaker and is

retrained with only those frames that are common to both Ci

and Cn. This set of reliable, matching clusters is denoted Ξ.

All unreliable, or unmatched clusters are then compared to Ξ
in order to identify additional reliable clusters, as follows:

Ξ← Cm (8)

if

ℓ(Cm,Ξ) = max
k

ℓ(Ck,Ξ) Ck /∈ Ξ (9)

and

ℓ(Cm,Ξ) > θ (10)

where θ is a tunable threshold, and where ℓ is the minimum

ICR distance defined by:

ℓ(Ck,Ξ) = min
t

ICR(Ck, Ct) Ck /∈ Ξ, Ct ∈ Ξ. (11)

Additionally there is no significant overlap between Cm and

any of the clusters in set Ξ. This procedure is conducted

iteratively until no further reliable clusters remain. For each

new added cluster, the 50% best-fitting frames (according

to likelihood) are used to re-estimate a new speaker model.

In contrast to previous work [35] the outputs of both the

bottom-up and top-down systems are utilised in order to select

frames for re-estimating new speaker models in the case of

un-matched clusters. This acts to purify the speaker models.

Further purification is achieved by training models using

only the best fitting data and thus better speaker diarization

performance is expected. This approach can be regarded as

an extension to the work in [33], [35] which accepts matched

clusters only.

V. RESULTS AND DISCUSSION

In this section we present our experimental work. Whilst

results give significant insight into the behavior of the two

approaches we acknowledge that they pertain to the specific

systems described in Section IV. Even though the systems are

largely standard the observations should not be considered to

be absolutely general.

We first introduce the standard evaluation protocols and

performance metrics that are used in the NIST RT evaluations,

and then the different datasets that were used for development

and evaluation. We then report speaker diarization experi-

ments for the baseline systems and the same systems with

purification. Finally we analyze the results in terms of phone

normalization and cluster purity.

A. Protocols and metrics

The NIST RT evaluations [3] have an instrumental role in

assessing the state-of-the-art and in providing standard eval-

uation protocols, performance metrics and common datasets.

Each evaluation involves various experimental conditions in-

volving different microphone configurations. In order to assess

the core segmentation and clustering components indepen-

dently from beamforming [36], [37] or integrated inter channel

delay features [38], [39], all experiments reported here involve

the single distance microphone (SDM) condition; we expect

that the observations and conclusions apply equally well to

the core, multiple distant microphone (MDM) condition.

To evaluate the performance of a speaker diarization system,

NIST defines a time-based metric known as the diarization

error rate (DER). This is calculated as the fraction of speaker

time that is not correctly attributed based on the optimal

mapping between speakers in the reference and those hypoth-

esized by the speaker diarization system. The DER is formally

defined as:

DER =

∑

i{D
R
i · (max(NR

i , NS
i )−NC

i )}
∑

i{D
R
i ·N

R
i }

(12)

where DR
i denotes the duration of the i-th reference segment,

and where NR
i and NS

i are respectively the number of

speakers according to the reference or the number of speakers

hypothesized by the diarization system. NC
i is the number of

speakers that are correctly matched by the diarization system.

Note that with overlapping speech, both NR and NS can

be larger than one. Our speaker diarization systems are not

capable of detecting overlapping speech, and thus NS is either

zero or one. While NIST defines protocols to evaluate per-

formance with or without the scoring of overlapping speech,

the primary metric includes overlap. Consequently all results

discussed in the text involve the scoring of overlapping speech.

Corresponding results where overlapping speech is not scored

are included in the tables for comparative purposes only.

B. Datasets

Following the protocols and metrics discussed above, our

experimental systems were optimized on a development

dataset of 23 meetings from the NIST RT‘04, ‘05 and ‘06

evaluation datasets. Performance was then assessed on the

independent RT‘07 and RT‘09 evaluation datasets. There is

no overlap between development and evaluation datasets and

in all cases no prior knowledge is available except an approxi-

mate idea of the number of speakers. This is used solely in the

case of the bottom-up system and only so that the system is

initialized with a number of clusters that exceeds the maximum

number of true speakers. In all cases we report only results

obtained on the evaluation datasets.

It should be noted that the experimental work reported

in this paper relates specifically to meeting domain data.

However, the hypothesis and observations are expected to be
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TABLE II
DERS WITH (OV) AND WITHOUT (NOV) THE SCORING OF OVERLAPPING

SPEECH, WITH AND WITHOUT PURIFICATION.

RT‘07 RT‘09

System OV NOV OV NOV

Bottom-up 23.8 20.8 19.1 13.5

Bottom-up + Pur. 22.7 19.6 27.0 21.8

Top-down 18.3 15.0 26.0 21.5

Top-down + Pur. 17.8 14.4 21.1 16.0

Combined 16.1 12.8 17.8 12.3

general and apply to different data so long as the assumptions

still hold. A review of data characteristics and their effect on

speaker diarization has been reported previously [2], [40] and

thus it is not discussed further in this article. An assessment

of our speaker diarization systems on television chat show

data was reported in previous work [7]. Given that the same

assumptions also apply in this context it is of no surprise that

behavior was observed to be consistent to that reported later in

this paper and indicates a certain level of generality to different

data.

C. Diarization performance

Speaker diarization performance using a bottom-up ap-

proach is illustrated on row 3 of Table II in which results

are presented with (OV) and without (NOV) the scoring of

overlapping speech. DER scores of 23.8% and 19.1% are

obtained on the RT‘07 and RT‘09 datasets respectively. Of

note is the large difference in performance with and without

the scoring of overlapping speech for the RT‘09 dataset. This

is due to the high degree of overlapping speech in this dataset

(13.6% for RT‘09 cf. 7.6% for RT‘07) which is well known to

have a significant impact on the performance of state-of-the-art

speaker diarization systems [41].

Speaker diarization performance using a top-down approach

is illustrated on row 5 of Table II. DERs of 18.3% and 26.0%

are obtained on the RT‘07 and RT‘09 datasets respectively and

thus indicate an inconsistency in the comparative performance

of top-down and bottom-up approaches: the top-down system

gives superior performance for the RT‘07 dataset whereas

the bottom-up system is superior for the RT‘09 dataset. The

hypothesis is that factors unrelated to differences between

speakers lead to unstable performance. This hypothesis is

discussed further in Section V-D. First though, we report the

impact of purification on both system outputs.

The performance of the bottom-up system with purification

is illustrated on row 4 of Table II. DERs of 22.7% and

27.0% show that, while there is a small improvement over

the baseline bottom-up system for the RT‘07 dataset, there is

a marked degradation in performance for the RT‘09 dataset.

The performance of the top-down system with purification

is illustrated on row 6. DERs of 17.8% and 21.1% show

a consistent improvement over the baseline top-down sys-

tem. This suggests that, although purification may provide

performance improvement for both the bottom-up and top-

down systems, it is rather unstable with the bottom-up sys-

tem and can lead to a degradation in performance in some

cases. Comparatively, the top-down system achieves stable

and consistent performance gains with purification, which

supports our conjecture that (i) clusters identified by top-down

systems are less discriminative and thus require purification,

and (ii) those identified by bottom-up systems are less well

normalized and that performance cannot always be improved

through purification.

Upon comparison of results for the best bottom-up and

top-down systems, we observe an inconsistency in perfor-

mance. With purification, the top-down system outperforms

the bottom-up system for the RT‘07 dataset whereas it gives

poorer results for the RT‘09 dataset. This lends further support

to the idea of combining the outputs of the two different

systems. Diarization results with the combined system are

illustrated on row 7 of Table II. They correspond to the

combination of the outputs of the baseline bottom-up system

and the top-down system with purification. DERs of 16.1%

and 17.8% for the RT‘07 and RT‘09 datasets respectively

show improved performance over both single systems. The

combination strategy is thus successful in exploiting the merits

of each approach.

D. Phone normalization

In this section we aim to account for the inconsistencies

in system performance outlined above. According to the

arguments presented in Section III-C bottom-up approaches

are relatively more likely than top-down approaches to con-

vergence to sub-optimal local maxima of (3). These are likely

to correspond to nuisance variation and, whilst other acoustic

classes are also relevant, we hypothesize here that the phones

uttered are among the most significant competing influences

in the acoustic space.

To help confirm this, or otherwise, we measured the differ-

ence in the phone distribution between each pair of clusters in

the diarization hypothesis. The phone distribution is computed

as the fraction of speech time attributed to each phone and thus

requires a phone-level reference to determine the phone class

of each frame. This was accomplished by a forced alignment

of the phone transcription of each word in the reference

annotation to the corresponding speech. The phone distribution

of each cluster is used to calculate the average inter-cluster

distance D as follows:

D =

(

N

2

)−1 N
∑

n=1

N
∑

m=n+1

DKL2(Cn||Cm),

where N is the size of the speaker inventory ∆, i.e. the

number of clusters, and where the binomial coefficient
(

N

2

)

is the number of unique cluster pairs. DKL2(Cn||Cm) is

the symmetrical Kullback-Leibler (KL) distance between the

phone distributions for clusters Cn and Cm, defined as:

DKL2(Cn||Cm) =
1

2

(

DKL(Cn||Cm) + DKL(Cm||Cn)
)

where DKL(Cn||Cm) is the KL divergence of Cn from Cm.

We note that the symmetrical KL metric has been used for the

segmentation and clustering of broadcast news [42].
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TABLE III
INTER-CLUSTER PHONE DISTRIBUTION DISTANCES.

Mean Variance

System RT‘07 RT‘09 RT‘07 RT‘09

Bottom-up 0.17 0.14 0.167 0.013

Bottom-up + Pur. 0.13 0.12 0.017 0.005

Top-down 0.11 0.10 0.006 0.004

Top-down + Pur. 0.07 0.08 0.001 0.002

Combined 0.07 0.07 0.001 0.001

In the case where clusters are well normalized against phone

variation then the average inter-cluster distance is expected

to be small, since the clusters should have similar phone

distributions. Significant differences between distributions,

however, indicate poor phone normalization and possibly a

sub-optimal local maximum of (3). This latter case might

reflect a higher degree of convergence toward phones, or other

acoustic classes, rather than toward speakers.

The mean and the variance of the inter-cluster distances are

presented in columns 2 and 3 of Table III for the RT‘07 and

RT‘09 datasets respectively. For the baseline bottom-up system

average inter-cluster distances of 0.17 and 0.14 are obtained.

These fall to 0.13 and 0.12 with purification indicating im-

proved normalization against phones. For the top-down system

the average distances are 0.11 and 0.10. These fall to 0.07 and

0.08 with purification and are significantly better than for the

bottom-up system. Reassuringly, with combination the values

remain stable at 0.07 and 0.07. Columns 4 and 5 of Table III

show the corresponding variances in all cases and show a

consistent decrease moving down the table: reductions in the

mean are accompanied by reductions in the variation. These

observations suggests that on average, and as predicted, the

clusters identified with the bottom-up system are indeed less

well normalized against phone variation than those identified

with the top-down system and that combination preserves the

normalization of the top-down system.

E. Cluster purity

The observations reported above do not explain why, for the

RT‘09 dataset, the bottom-up system performance deteriorates

with purification even though the phone normalization im-

proves. To help explain this behavior we analyzed the average

speaker purity in each system output. The cluster purity is

the percentage of data in each cluster which are attributed to

the most dominant speaker, as determined from the ground-

truth reference. Average, time-weighted cluster purities are

presented in columns 2 and 3 of Table IV. For the RT‘07

dataset purification leads to marginal improvements: from

80.6% purity to 82.2% for the bottom-up system and from

81.8% to 84.1% for the top-down system. Different behavior is

observed for the RT‘09 dataset. Whereas purification gives an

improvement from 79.1% to 81.4% for the top-down system it

leads to a degradation from 79.2% to 75.2% for the bottom-up

system.

Whilst a reduction in cluster purity may account for the de-

crease in diarization performance it is necessary to consider the

number of clusters in the system output to properly interpret

TABLE IV
AVERAGE CLUSTER PURITY AND NUMBER OF CLUSTERS.

Cluster Purity (%) No. Clusters

System RT‘07 RT‘09 RT‘07 RT‘09

Bottom-up 80.6 79.2 7.0 7.0

Bottom-up + Pur. 82.2 75.2 5.8 6.9

Top-down 81.8 79.1 5.0 6.0

Top-down + Pur. 84.1 81.4 4.8 5.3

Combined 81.7 81.6 4.4 4.6

Ground-truth 100.0 100.0 4.4 5.4

cluster purity and its impact on diarization performance. As

explained in Section IV-D purification influences the number

of identified clusters. A larger number of clusters may be

associated with inherently higher purity (i.e. with a single

cluster for each sample the purity is 100%) and so purity

statistics alone do not fully reflect the effect of purification

on diarization performance. The number of clusters detected

in each system output is illustrated in columns 4 and 5 of

Table IV in which the last row shows the statistics for the

ground-truth reference. All systems over-estimate the number

of speakers and purification always reduces the number toward

the number of true speakers. When coupled with increases in

average purity, then improved diarization performance should

be expected. For the bottom-up system and the RT‘09 dataset

the decrease in the number of clusters when purification is

applied is negligable, whereas the purity also decreases. This

can only result in poorer diarization performance.

Turning to the combination results for the RT‘07 dataset,

even though the average purity decreases to 81.7% (below

that for the top-down system with purification) diarization

performance still improves since the number of clusters more

accurately reflects the true number of speakers. For the RT‘09

dataset the combined system produces clusters which are

marginally more pure than any of the single systems (81.6%)

even though the number of clusters decreases below the true

number of speakers. Further investigation showed that the

missed speakers have relatively low floor time and thus do

not contribute significantly to diarization performance.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a theoretical framework for speaker

diarization. It is used to compare the relative merits of the

bottom-up and top-down approaches to speaker diarization.

We argue that the two approaches are likely to exhibit different

behavior in the face of significant variation from non-speaker-

related factors and that both have the potential to benefit from

purification, particularly the top-down approach. We also argue

that, since the two approaches involve entirely contrasting

search strategies to optimize the speaker inventory, they are

likely to converge to different local maxima of the objective

function and thus there is potential for them to be combined

in order to improve speaker diarization performance.

These hypotheses are validated by experiments performed

on two standard, single-channel NIST RT evaluation datasets.

Results show that, despite the dominance in the literature of

bottom-up systems, the two approaches deliver largely com-
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parable performance, with neither being consistently superior.

With purification consistent improvements are observed with

a top-down system; with a bottom-up system, however, purifi-

cation leads to inconsistent improvements and even degrades

performance for one dataset. This supports our conjecture that

models produced by the top-down approach tend to be less

discriminative and therefore are likely to benefit from purifica-

tion. Finally, the combined approach provides additional and

consistent performance improvements, and demonstrates the

complementarity of the bottom-up and top-down approaches.

This finding highlights the importance of continuing research

with both approaches to speaker diarization.

We acknowledge that the study presented in this paper is

not exhaustive. Although the theoretical framework is general,

it relates to a number of assumptions which lead to specific

implementations. The study is therefore not absolute and does

not include a number of new and emerging techniques based

on different assumptions. e.g. Bayesian treatments. In addition,

we focus on a particular factor, i.e. phonetic nuisance, whereas

other factors may also impact on clustering and segmentation

performance. In addition phonetic nuisance may affect not

only the clustering and segmentation process but also other

components in a typical speaker diarization system. All of

these aspects require further study, even if the conclusions

drawn in this paper are still widely applicable and can be

migrated to other domains if the assumptions supporting the

theory are still satisfied.

Finally, future work should investigate new techniques to

address the respective shortcomings of the two clustering

approaches. More effective purification approaches are needed

to enhance the discrimination of speaker models whereas new

marginalization techniques are required to attenuate nuisance

variation that is unrelated to differences between speakers.

This is particularly important for bottom-up systems.
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