
HAL Id: hal-00733381
https://hal.science/hal-00733381

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Free Viewpoint Video from Uncalibrated
Cameras Using Plan e-Sweep Algorithm
Songkran Jarusirisawad, Hideo Saito, Vincent Nozick

To cite this version:
Songkran Jarusirisawad, Hideo Saito, Vincent Nozick. Real-Time Free Viewpoint Video from Uncali-
brated Cameras Using Plan e-Sweep Algorithm. 3DIM, 2009 IEEE 12th International Conference on
Computer Vision Workshops, Oct 2009, Japan. pp.1740-1747. �hal-00733381�

https://hal.science/hal-00733381
https://hal.archives-ouvertes.fr

Real-Time Free Viewpoint Video from Uncalibrated Cameras Using

Plane-Sweep Algorithm

Songkran Jarusirisawad and Hideo Saito

Keio University,

3-14-1 Hiyoshi, Kohoku-ku,

Yokohama, 223-8522, Japan

songkran,saito@hvrl.ics.keio.ac.jp

Vicent Nozick

Université Paris-Est Marne-la-Vallée,

Cité DESCARTES, 5 boulevard Descartes,

77454 Marne-la-Vallée CEDEX 2, France

vnozick@univ-mlv.fr

Abstract

In this paper, we present a new online video-based ren-

dering (VBR) method that creates new views of a scene from

uncalibrated cameras. Our method does not require infor-

mation about the cameras intrinsic parameters. For ob-

taining a geometrical relation among the cameras, we use

projective grid space (PGS) which is 3D space defined by

epipolar geometry between two basis cameras. The other

cameras are registered to the same 3D space by trifocal

tensors between these basis cameras. We simultaneously re-

construct and render novel view using our proposed plane-

sweep algorithm in PGS. To achieve real-time performance,

we implemented the proposed algorithm in graphics pro-

cessing unit (GPU). We succeed to create novel view im-

ages in real-time from uncalibrated cameras and the results

show the efficiency of our proposed method.

1. Introduction

Conventional 2D video provides a fixed viewpoint of the

recorded event that viewers can only see a video playback

passively. Viewpoint of a video playback is always the same

as how the scene was recorded. In contrast, free viewpoint

video is a system for viewing a video of a real-world event,

allowing the user to control the viewpoint and generate new

views of a dynamic scene from the desired 3D position.

This means that each viewer of the same content may be

observing from a unique viewpoint.

Most of the proposed video-based rendering (VBR)

methods for creating free viewpoint video usually assume

that cameras are strongly calibrated, i.e. cameras’ internal

parameters such as optical axis, focal length are assumed to

be known.

In this paper, we present a new online VBR method that

creates new views of the scene from uncalibrated cameras.

We obtain geometrical relation among the cameras from

projective grid space (PGS)[18] framework. Our proposed

plane-sweep algorithm in PGS, which is implemented on

graphics processing unit (GPU), can create new views in

real-time. In the conventional plane-sweep algorithm for

strongly calibrated cameras, the near and far planes that

bound the reconstructed volume are measured and defined

from the actual 3D positions of a scene. The advantage of

our proposed plane-sweep algorithm in PGS is that these

planes are easily defined and can be visualized from the im-

age of basis camera 2.

In the next section we firstly review the previous works

on VBR methods. Then projective grid space framework

that we use for weak camera calibration is explained in sec-

tion 3. We describe conventional plane-sweep algorithm

in the Euclidean space and our proposed plane-sweep al-

gorithm in PGS in section 4 and 5, respectively. Section

6 presents the implementation detail in GPU. Finally, we

show the experimental results and conclusion.

2. Previous Works

We may categorize video based rendering (VBR) tech-

niques into off-line and online methods. The online VBRs

are the ones that can recover 3D shapes and rendering new

views from live or prerecorded input videos in real-time,

while the off-line VBRs are the ones that cannot. Normally,

the computation time of 3D reconstruction is longer than

the rendering. Thus, some of the off-line VBRs can provide

an interactive frames rate of the new views rendering, from

the prerecorded videos, by doing 3D reconstruction before

hand as a preprocessing step.

2.1. Off-line Video-Based Rendering

One of the earliest VBR method is the Virtualized Real-

ity proposed by Kanade et al. [7]. In that research, 51 cam-

eras are placed around hemispherical dome called 3D Room

to transcribe a scene. 3D structure of a moving human is

1740

2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops
978-1-4244-4441-0/09/$25.00 ©2009 IEEE

extracted using multi-baseline stereo [17]. Then free view-

point video is synthesized from the recovered 3D model.

Immersive Video system proposed by Moezzi et al [13]

use three to six synchronized cameras to capture differ-

ent viewpoints of a scene. The static portion of the

scene(background) is first manually built. Dynamic objects

are extracted as voxel representations using volume inter-

section technique. All models construction in this system is

done offline.

Carranza et al. [1] recover human motion at off-line pro-

cess by fitting a human shaped model to multiple view sil-

houettes. Multi-view texturing is employed during render-

ing and it can run at real-time frame rates using conven-

tional graphics hardware. Starck and Hilton [19] also re-

cover a human model using silhouettes together with stereo

correspondences and feature cues which are manually se-

lected from the image.

Several methods of free viewpoint video from uncali-

brated cameras have been proposed. Yaguchi and Saito [22]

use projective grid space (PGS) [18], a weak cameras cal-

ibration framework, to define the geometrical relation be-

tween uncalibrated static cameras. The 3D model of the

actor in PGS is reconstructed using shape from silhouettes

for new views rendering.

Ito and Saito [5] extend the proposed method in [22]

to the moving cameras case, where the 2D-2D correspon-

dences for weak cameras calibration are tracked from the

arbitrary placed markers in the scene. Songkran and Saito

[6] improve the stability of weak calibration in PGS by us-

ing trifocal tensors for finding the projection of 3D points in

PGS instead of fundamental matrices. They also proposed

the method to dynamically calibrate the rotating and zoom-

ing cameras from the natural features in the scene without

special markers.

Proposed systems in off-line VBR category cannot get a

real-time processing for the whole process mainly because

they are dealing with a large number of cameras (rang-

ing from tens to hundred) [7, 14], manual preprocessing is

needed [13, 19, 6], or they are focusing on the quality of the

generated image rather than the processing time [1].

2.2. Online Video-Based Rendering

Only a few VBR methods reach online rendering. Com-

plex algorithms used in off-line methods are simply too

slow for real-time implementation. Therefore, the gener-

ated new view images from online methods might have less

accuracy comparing to the off-line ones.

One of the popular online VBR methods is the visual

hulls algorithm. The 3D shape of the object is approximated

by the intersection of the projected silhouettes. There are

some online implementations of the visual hulls algorithm

[9, 10, 21, 12]. Among all these visual hulls methods, the

image-based visual hulls presented by Matusik et al.[12] is

a VBR method from uncalibrated cameras. This method re-

construct visual hull of the object using epipolar geometry

in an image space instead of the 3D space. The main draw-

backs of all visual hulls methods are the impossibilities to

reconstruct concave objects and handle the background of

the scene.

Yang et al. [23] use a distributed light field for online

rendering from 64-camera device based on a client-server

scheme. The cameras are clustered into groups controlled

by several computers. These computers are connected to a

main server and transfer only the image fragments needed

to compute the requested new view. This method provides

real-time rendering but requires at least 8 computers for 64

cameras and additional hardware.

Some plane-sweep implementations achieve online ren-

dering using graphics processing unit (GPU). The plane-

sweep algorithm introduced by Collins[2] was adapted to

online rendering by Yang et al. [24]. They computed new

views in real-time from five cameras using four computers.

Geys et al.[3] also used a plane-sweep approach to recover

the scene geometry and rendered new views in real-time

from three cameras and one computer. Nozick and Saito

[15] introduced a plane-sweep implementation for moving

camera where all the input cameras are calibrated in real-

time using ARToolkit [8] markers.

Our method belongs to the online VBR group based on

plane-sweep algorithm. The main difference is that in the

previous works [2, 24, 3, 15] they assume that cameras are

strongly calibrated. This paper present a new method for

online video-based rendering from uncalibrated cameras us-

ing our proposed plane-sweep algorithm in projective grid

space.

3. Projective Grid Space

This section describes weak cameras calibration frame-

work for our plane-sweep method. To implement the plane-

sweep algorithm, we need to project 3D points into image

frame of each camera including the virtual one. Projective

grid space allow us to define that 3D space and find the

projection without knowing cameras intrinsic parameters or

Euclidean information of a scene.

Projective grid space (PGS) [18] is a 3D space defined by

image coordinate of two arbitrarily selected cameras called

basis camera 1 and basis camera 2. To distinguish this 3D

space from the Euclidean one, we denote the coordinate sys-

tem in PGS by P-Q-R axis. Figure 1 shows the definition of

PGS. x and y axis in the image of basis camera 1 corre-

sponds to the P and Q axis, while x axis of the basis camera

2 corresponds to the R axis in PGS.

Homogeneous coordinate X = (p, q, r, 1)T in PGS is

projected on image coordinate x = (p, q, 1) and x
′ =

(r, s, 1) of the basis camera 1 and the basis camera 2 re-

spectively. Because x and x
′ are the projection of the same

1741

P

Q

R

P

Q

R

X (p,q,r,1)

x (p,q,1)

x‘ (r,s,1)

basis camera 1

basis camera 2

l‘ = Fxe

Figure 1. Definition of Projective Grid Space.

3D point, x′ must lie on the epipolar line of x. Thus, s coor-

dinate of x
′ is determined from x

′T Fx = 0 where F is the

fundamental matrix from basis camera 1 to basis camera 2.

Other cameras (non-basis cameras) are said to be weakly

calibrated once we can find the projection of 3D point from

the same PGS to those cameras. Either fundamental matri-

ces or trifocal tensor between basis cameras and non-basis

camera can be used for that task. The key idea is that 3D

points in PGS will be projected onto both two basis cameras

first to make 2D-2D point correspondence. Then, this cor-

respondence is transfered to a non-basis camera by either

intersection of epipolar lines computed from fundamental

matrices or point transfer by trifocal tensor (figure 2).

R

basis camera 1 non-basis

camera

basis

camera 2

R

P

X (p,q,r,1)

x (p,q,1)

x‘ (r,s,1)

x‘’

l‘ = Fx
e

l‘

Figure 2. Weakly calibrating non-basis camera using trifocal ten-

sor.

However point transfer using fundamental matrices gives

less accuracy if a 3D point lies near the trifocal plane (plane

that defined by three camera centers). For example, if three

cameras are in the same horizontal line, 3D points in front

of cameras will lie on trifocal plane. Even in the less se-

vere case, transfered point will also become inaccurate for

the points lying near this plane. Thus, trifocal tensors are

used for weakly calibrating non-basis cameras in our im-

plementation of PGS. For more detail of using fundamental

matrices for point transfer please refer to [18].

3.1. Weakly calibrating non-basis camera using tri-
focal tensor

Trifocal tensor τ
jk
i is a homogeneous 3×3×3 array (27

elements) that satisfies

li = l′j l
′′

kτ
jk
i (1)

where li,l
′

j and l′′k are corresponding lines in the first, second

and third image respectively.

Trifocal tensor can be estimate from point correspon-

dences or line correspondences between three images. In

case of using only points correspondences, at least 7 point

correspondences are necessary to estimate the trifocal ten-

sor using the normalized linear algorithm [4].

Given point correspondence x and x
′, we can find corre-

sponding point x′′ in the third camera by equation (2).

x′′k = xil′jτ
jk
i (2)

where l
′ is the line in the second camera which pass though

point x′.

We can choose any line l
′ which pass point x

′ except

the epipolar line corresponding to x. If l
′ is selected as the

epipolar line corresponding to x, then point x′′ is undefined

because xil′jτ
jk
i = 0k. A convenient choice for selecting

the line l
′ is to choose the line perpendicular to epipolar

line of x.

To summarize, considering figure 2, given a 3D point

X = (p, q, r, 1)T in PGS and tensor τ defined by basis cam-

era 1, basis camera 2 and non-basis camera we can project

point X to non-basis camera as the following

1. Project X = (p, q, r, 1)T to x = (p, q, 1)T and x
′ =

(r, s, 1)T on basis camera 1 and basis camera 2 respec-

tively. s is found by solving x
′T Fx = 0.

2. Compute epipolar line l
′

e = (l1, l2, l3)
T of x on basis

camera 2 from l
′

e = Fx.

3. Compute line l
′ which pass x

′ and perpendicular to l
′

e

by l
′ = (l2,−l1,−rl2 + sl1)

T .

4. The transfered point in non-basis camera is x′′k =
xil′jτ

jk
i .

4. Plane-Sweep in The Euclidean Space

This section explains the general idea of conventional

plane-sweep algorithms in the Euclidean space of the cal-

ibrated cameras. Then, we present our proposed one for

using with projective grid space in the section 5.

The plane-sweep algorithm creates novel views of a

scene from several input images. Considering a scene where

the objects are exclusively Lambertian surfaces, the viewer

should place the virtual camera camx somewhere around

1742

the real video cameras and define a near plane and a far

plane such that every object of the scene lies between these

two planes. Then, the space between near and far planes is

divided into several parallel planes πk as depicted in figure

3.

P

cam1

cam2

camx

cam3
cam4

near

far

P’

Figure 3. Plane-sweep algorithm in the Euclidean space.

Plane-sweep algorithm is based on the following as-

sumption: a point lying on a plane πk whose projection on

every input camera provides a similar color will potentially

correspond to the surface of an object. Considering a visible

object of the scene lying on one of these plane πk at a point

P , this point will be seen by every camera with the same

color, i.e., the object color. Now consider another point P ′

lying on a plane but not on the surface of the visible object,

this point will probably not be seen by the capturing cam-

eras with the same color. Figure 3 illustrates this principal

idea of the plane-sweep algorithm.

During the new view creation process, every plane πk is

computed in a back to front order. Each point P of a plane

πk is projected onto the input images. A score and a repre-

sentative color are the computed according to the matching

of the colors found. A good score means every cameras see

a similar color. The computed scores and colors are pro-

jected onto the virtual camera camx . The pixel color in the

virtual view will be updated only if the projected point p

provides a better score than the current one. Then the next

plane πk+1 is computed. The final new view image is ob-

tained once every plane has been computed. This method is

detailed on [16].

5. Plane-Sweep in Projective Grid Space

To do plane-sweep in PGS, we need to define a posi-

tion of virtual camera, define planes in 3D space and then

compute a new view image from the defined planes. In this

section we describe the detail of each step.

5.1. Defining Virtual Camera Position

To perform plane-sweep algorithm, 3D point on a plane

must be able to projected to a virtual camera. In the cali-

brated cameras cases, projection matrix of a virtual camera

can be defined from camera’s pose (extrinsic parameters)

because intrinsic camera parameters are known. This al-

lows virtual camera to be moved anywhere around a scene.

In our case where PGS is used, intrinsic parameters of

any camera are unknown. Method for defining virtual cam-

era in calibrated case is not applicable to our case. In our

method, the position of the virtual camera is limited to only

between two real reference cameras. A ratio r from 0 to 1

is used for defining distance between these reference cam-

eras. Figure 4 illustrate this definition. In figure 4, a ratio

r equals to 0 (respectively 1) means the virtual camera has

the same position as camera 1 (respectively camera 2).

P

Q

R

cam1 cam2

cam
x

1-rr

x1 x3 x2x2 x1

X

Figure 4. Defining virtual camera in Projective Grid Space.

To find the projection of 3D point X in PGS on a virtual

camera, 3D point X is projected onto both real reference

cameras first. The position of the same 3D point in the vir-

tual camera is calculated using linear interpolation. If the

projected points in the real reference camera 1 and 2 are

x1 and x2 respectively, the projected point x3 in a virtual

camera is calculated from (3) as in figure 4.

x3 = (1 − r)x1 + rx2 (3)

5.2. Defining Planes in PGS

Any arbitrary near and far planes in PGS can be defined

for doing plane-sweep. In our method we define the planes

along the R axis (x image coordinate of basis camera 2) as

shown in figure 5. This approach makes the 3D near and

far planes adjustment become easy since we can visualize

them directly from the image of basis camera 2. This is im-

possible for the case of the normal plane-sweep algorithm

in the Euclidean space in which full calibration is used. In

that case, actual depth of a scene has to be measured so that

near and far planes cover all volume of interest.

1743

In our approach, basis camera 2 will not be used for the

color consistency testing in plane-sweep algorithm because

every planes would be projected as a line in this image. So

the basis camera 2 is needed only for weakly calibrated

cameras to PGS, after that we can disable it to save CPU

time.

Basis camera1

camx

Basis camera2

near

far

p

P

Basis camera1

camx

Basis camera2

near

far

p

P

Figure 5. Defining planes for doing plane-sweep in Projective Grid

Space.

5.3. Computing New View Images

In this section, we explain how we implemented the

plane-sweep algorithm after defining the virtual camera’s

position and planes in PGS. If pixel p in a virtual camera

is back projected to a plane πk on a point P , we want to

find the projection of P on every input image for the score

computation step. As illustrated in Figure 6, the projection

of 3D point P lying on πk on the input image i can be per-

formed by a homography Hi. Thus, the projection pi of a

3D point P on the camera i is calculated from

xi = HiH
−1
x x (4)

where x and xi are the position of the pixel p and pi respec-

tively.

Homography Hi, where i is a camera number, can be

estimated from at least four point correspondences. In our

situation, we select four points defined as the image corners

of the basis camera 1 as shown in figure 6. Then, we project

these points onto every real cameras as described in sec-

tion 3 for making 2D-2D point correspondences. Then, all

homographies used for the plane-sweep method can be esti-

mated from these correspondences. During the score com-

putation, we estimate these homographies instead of pro-

jecting every 3D points one by one for computation time

purpose.

Algorithm 1 summarizes our plane-sweep algorithm in

PGS.

P

Q

R

cam1 cam2 cam3

P

Q cam
x

r 1-r

H
1

H
x H

2
H
3

Figure 6. Estimating homography matrices for plane-sweep

Reset color consistency score of the virtual camera to

the max value.

foreach plane πk in PGS do

foreach pixel p in camx do
• project pixel p to n input images excluding

basis camera 2 . cj is the color from this

projection on the j-th camera

• compute average color :

colorp = 1

n

∑
j=1..n cj

• compute color consistency score from

variance: scorep =
∑

j=1..n(cj − colorp)
2

if scorep is lower than current score of pixel p

then
update score and color on virtual camera to

scorep and colorp.

end

end

end

Algorithm 1: Plane-sweep algorithm in Projective Grid

Space.

In algorithm 1, we use the score function proposed in

[16].

6. Implementing Real-Time Plane-Sweep on

GPU

To achieve real-time computation, we implement our

plane-sweep algorithm in projective grid space on GPU. Be-

cause GPU has a massive parallel processing, using GPU

can give much more computation power in many applica-

tion comparing to CPU. This section gives some details

about our implementation. We use OpenGL for the ren-

dering part. Input images that will be used for color con-

sistency checking are transfer to GPU as multi-textures. In

drawing function we loop though each plane in PGS from

near to far plane. Homographies for warping points on vir-

tual camera to the other cameras are sent to GPU as texture

matrices.

We use Orthographic projection and draw square to

1744

cover the whole image of virtual camera. In fragment

shader, we apply the homography and compute the color

consistency score as described in algorithm1. Fragment

color is assigned to be an average color from all views.

The score of fragment is sent to the next rendering

pipeline(frame buffer operation) via gl FragDepth while

the average color is sent via gl FragColor. Then we let

OpenGL select the best scores with the z-test and update

the color in the frame buffer. When rendering is done for all

planes, we get novel view in the frame buffer.

7. Experimental Results

We tested our proposed method on PC Intel(R)

Core(TM) 2 Duo 2.00 GHz CPU with graphic card NVIDIA

GeForce 8600M GT. Five Logitech fusion webcams with a

resolution 320x240 are used to capture input videos. The

camera setting is as figure 7. We select two cameras for

defining Projective Grid Space as figure 7.

 basis

camera 1

 basis

camera 2

cam1

cam2

cam3

cam4

cam5

Figure 7. Camera configuration.

Fundamental matrix between camera 1 and 5, three trifo-

cal tensors defined by camera 1,5,2, camera 1,5,3 and cam-

era 1,5,4 are estimated for weakly calibrating cameras to

PGS. 2D-2D correspondences for estimating fundamental

matrix and trifocal tensors can be automatically extracted

from natural feature points in a scene. In our experiment,

we wave marker around a scene and track features for accu-

rate 2D-2D correspondence. We use the code for estimating

trifocal tensors from [11].

7.1. Running time

Running time and quality of new view image rendering

depend on complexity of a scene and the number of planes

used in plane-sweep algorithm. The appropriate number of

planes varies depending on the complexity of a scene. Us-

ing more number of planes makes processing time become

longer but usually gives a better result. In our experiment,

it is shown that using 40 planes or more makes the visual

result become satisfied.

Table 1 shows the number of planes and the running time

for rendering new view images using 5 webcams imple-

mented on CPU and GPU. Both implementations are tested

on Intel(R) Core(TM) 2 Duo 2.00 GHz CPU with graphic

card NVIDIA GeForce 8600M GT. Implementation of our

proposed plane-sweep algorithm on GPU is significantly

faster than on CPU. Our system gives the same frame rates

as the input webcams (30 fps.) when using 60 planes or less

for scene reconstruction. When implementing plane-sweep

algorithm on GPU, most of the computation is done by the

graphic card, hence the CPU is free for the video stream

acquisition and the virtual camera control.

Number of planes

40 50 60 70 80 90

CPU 0.096 0.078 0.066 0.057 0.050 0.046

GPU 30.54 30.06 29.58 20.71 20.68 15.96
Table 1. Frame rates (frame/sec.) of our plane-sweep algorithm

implemented on CPU and GPU.

7.2. Qualitative Evaluation

We do our plane-sweep algorithm in PGS as described

in section 5. In our experiment, planes are defined from x

axis of basis camera 2 (corresponds to R axis in PGS). near

and far planes are adjusted so that all objects in the other

cameras lie between these planes.

Figure 8 shows the result new view video at several view

point from the selected one input frames. We use 80 planes

for reconstructing the scene and our implementation can

reach 20 fps using this configuration. The ratio written un-

der each figure is a virtual camera position between two real

reference cameras as described in section 5.1. The result

shows that our method give a good visual quality and fast

enough for online VBR applications.

Some artifacts in the rendered view come from planes

discretization. The object that lies between two planes is

sometimes reconstructed at the plane that is far from the

actual one, so this object will be noticed as artifacts in the

rendered view. One possible solution to reduce this errors

is to increase the number of planes used in plane-sweep al-

gorithm.

7.3. Quantitative Evaluation

This section gives objective quality measurements of our

result. One camera is selected as a ground-truth reference

and excluded from the plane-sweep algorithm. View at

ground-truth camera is then synthesized to measure visual

errors. Two metrics d90 proposed in [20] and PSNR (Peak

Signal to Noise Ratio) are computed to measure the errors

in the synthesized images. d90 tells us about the overall dis-

tance of misaligned pixels between synthesized image and

ground-truth reference. The lower the value of d90, the bet-

ter the quality of the output in new view images.

If the rendered image is much different from the ground-

truth, then there will likely be visual artifacts or blurred tex-

tures in the synthesized image. We measure these values for

100 consecutive input frames using camera 2 as a ground-

truth reference. Camera 2 is leaved-out from plane-sweep

1745

camera 1 0.2 : 0.8 0.4 : 0.6 0.6 : 0.4 0.8: 0.2

camera 2 0.2 : 0.8 0.4 : 0.6 0.6 : 0.4 0.8: 0.2

camera 3 0.2 : 0.8 0.4 : 0.6 0.6 : 0.4 0.8: 0.2

camera 4 camera 5

(defining planes)

Figure 8. Result new view images from our proposed plane-sweep algorithm in projective grid space using 80 planes.

algorithm and views at that camera are synthesized. Figures

9 and 10 show each error metric of our new view images us-

ing the different number of planes for scene reconstruction.

Table 2 shows the average d90 and PSNR values over 100

frames.

0.00

5.00

10.00

15.00

20.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Frame

d

 (

p
ix

e
ls

)

40 Planes 60 Planes 80 Planes

9
0

Figure 9. d
90 registration error of new view images.

0.00

5.00

10.00

15.00

20.00

25.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Frame

P
S

N
R

 (
d

B
)

40 Planes 60 Planes 80 Planes

Figure 10. PSNR registration error of new view images.

8. Conclusion

In this paper, we present a new online VBR method

that using uncalibrated cameras to creates new views of the

scene. Most of previous methods usually assume that cam-

eras are calibrated. By using Projective Grid Space (PGS),

1746

Number of planes d90(pixels) PSNR(dB)
40 planes 11.000 21.738

60 planes 10.929 21.838

80 planes 10.788 21.909
Table 2. Error measurements for the resulting new view images

(average of 100 frames).

our method create new view image in without information

about intrinsic parameters. Near and far planes in PGS for

doing plane-sweep are easily defined and visualized from

basis camera 2. This is impossible for the case of the nor-

mal plane-sweep algorithm in the Euclidean space in which

strong calibration is used. We simultaneously reconstruct

and render novel view using plane-sweep algorithm in PGS.

Our experiment shows convincing results and achieves real-

time performances by implementing our plane-sweep algo-

rithm on GPU.

Acknowledgment

This work has been supported by “Foundation of Tech-

nology Supporting the Creation of Digital Media Contents”

project (CREST, JST), Japan.

References

[1] J. Carranza, C. Theobalt, M. Magnor, and H.-P. Seidel. Free-

viewpoint video of human actors. In Proceedings of ACM

SIGGRAPH’03, pages 569–577, 2003.

[2] R. T. Collins. A space-sweep approach to true multi-image

matching. In Proceedings of IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, pages

358–363, 1996.

[3] I. Geys, S. Roeck, and L. Gool. The augmented auditorium:

Fast interpolated and augmented view generation. In Pro-

ceedings of the 2nd IEE European Conference on Visual Me-

dia Production, pages 94–103, 2005.

[4] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision. Cambridge University Press, ISBN:

0521540518, second edition, 2004.

[5] Y. Ito and H. Saito. Free-viewpoint image synthesis from

multiple-view images taken with uncalibrated moving cam-

eras. In The IEEE International Conference on Image Pro-

cessing (ICIP), pages 29–32, September 2005.

[6] S. Jarusirisawad and H. Saito. 3DTV view generation us-

ing uncalibrated pure rotating and zooming cameras. Image

Communication, 24(1–2):17–30, January 2009.

[7] T. Kanade, P. W. Rander, and P. J. Narayanan. Virtualized

reality: concepts and early results. In IEEE Workshop on

Representation of Visual Scenes, pages 69–76, 1995.

[8] H. Kato and M. Billinghurst. Marker tracking and hmd cal-

ibration for a video-based augmented reality conferencing

system. In Proceedings of the 2nd IEEE and ACM Interna-

tional Workshop on Augmented Reality, pages 85–94, 1999.

[9] M. Li, M. Magnor, and H. peter Seidel. Hardware-

accelerated visual hull reconstruction and rendering. In Pro-

ceedings of Graphics Interface 2003, pages 65–71, 2003.

[10] M. Li, M. Magnor, and H. Seidel. Online accelerated ren-

dering of visual hulls in real scenes. Journal of WSCG,

11(2):290–297, 2003.

[11] B. Matei and P. Meer. A general method for errors-in-

variables problems in computer vision. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, volume 2, pages 18–25, 2000.

[12] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and

L. McMillan. Image-based visual hulls. In Proceedings of

ACM SIGGRPAH’00, pages 369–374, 2000.

[13] S. Moezzi, A. Katkere, D. Y. Kuramura, and R. Jain. Reality

modeling and visualization from multiple video sequences.

IEEE Computer Graphics and Applications, 16(6):58–63,

1996.

[14] S. Moezzi, L.C.Tai, and P.Gerard. Virtual view generation

for 3D digital video. IEEE Transaction on MultiMedia,

4(1):18–26, 1997.

[15] V. Nozick and H. Saito. Real-time free viewpoint from mul-

tiple moving cameras. In Advanced Concepts for Intelligent

Vision Systems (ACIVS), pages 72–83, 2007.

[16] V. Nozick and H. Saito. On-line free-viewpoint video : From

single to multiple view rendering. International Journal of

Automation and Computing (IJAC), 5(3):257–267, 2008.

[17] M. Okutomi and T. Kanade. A multiple-baseline stereo.

IEEE Trans. on Pattern Analysis and Machine Intelligence,

15(4):353–363, 1993.

[18] H. Saito and T. Kanade. Shape reconstruction in projective

grid space from large number of images. In Proceedings of

the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’99), volume 2, pages 49–54,

June 1999.

[19] J. Starck and A. Hilton. Model-based multiple view recon-

struction of people. In Proceedings of IEEE International

Conference on Computer Vision (ICCV’03), pages 915–922,

Washington, DC, USA, 2003. IEEE Computer Society.

[20] J. Starck, J. Kilner, and A. Hilton. Objective quality assess-

ment in free-viewpoint video production. In Proceedings of

the 3DTV Conference: The True Vision - Capture, Transmis-

sion and Display of 3D Video, pages 225–228, May 2008.

[21] C. Theobalt, M. Li, M. Magnor, and H.-P. Seidel. A flexible

and versatile studio for multi-view video recording. In Pro-

ceedings of Vision, Video and Graphics 2003, pages 9–16,

Bath, UK, July 2003.

[22] S. Yaguchi and H. Saito. Arbitrary viewpoint video synthe-

sis from multiple uncalibrated cameras. IEEE Transactions

on Systems, Man, and Cybernetics, Part B, 34(1):430–439,

2004.

[23] J. Yang, M. Everett, C. Buehler, and L. McMillan. A real-

time distributed light field camera. In Proceedings of the 13th

Eurographics Workshop on Rendering, pages 77–86, 2002.

[24] R. Yang, G. Welch, and G. Bishop. Real-time consensus-

based scene reconstruction using commodity graphics hard-

ware. In Proceedings of the 10th Pacific Conference on

Computer Graphics and Applications (PG 2002), page 225,

Washington, DC, USA, 2002. IEEE Computer Society.

1747

