
HAL Id: hal-00733296
https://hal.science/hal-00733296

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XTalk: A middleware for personalized service discovery
in Future Internet

Preston Rodrigues, Soraya Ait Chellouche, Yérom-David Bromberg, Laurent
Réveillère, Daniel Négru

To cite this version:
Preston Rodrigues, Soraya Ait Chellouche, Yérom-David Bromberg, Laurent Réveillère, Daniel Négru.
XTalk: A middleware for personalized service discovery in Future Internet. 5th IEEE International
Conference on Telecommunications and Multimedia (TEMU), Jul 2012, Heraklion, Crete„ Greece.
pp.83-88, �10.1109/TEMU.2012.6294738�. �hal-00733296�

https://hal.science/hal-00733296
https://hal.archives-ouvertes.fr

XTalk: a Middleware for personalized service
discovery in Future Internet

Preston Rodrigues, Soraya Ait Chellouche,Yérom-David Bromberg, Laurent Réveillère, and Daniel Négru
LaBRI – University of Bordeaux

Abstract—
Future Internet is envisioned to cater to a wide range of

multimedia services allowing their access through heterogeneous
devices like laptops, TVs, PDAs and 3G mobile phones and inter-
connected via wired and wireless networking technologies. Such
a heterogeneous environment (device and network) reinforces
the need of a system that enable context-aware provisioning of
multimedia resources to realize the some of the needs of FI like
personalized media services and better end-user experience.

In this paper, we present XTalk : a context-aware multimedia
service provisioning middleware. The XTalk middleware make
use of a wide range of context information modeled using
ontology and uses policies to automate the process of service
discovery and service personalization.

I. INTRODUCTION

Over the last few years, with the improvements in com-

munication technologies; anytime, anywhere connectivity for
anyone has rapidly changed to connectivity for anything. This

has given rise to a new envision of a global infrastructure con-

nected by different devices, and commonly known as Internet

of Things (IoT). In this era of IoT, devices travel along with

their users and form new pervasive infrastructures consisting of

both fixed and mobile heterogeneous devices. However, these

devices have not been designed to interact seamlessly with

each other. For instance, a user cannot make directly available

the video captured by his camera to any member of his family

independently of their devices’ characteristics, their network

locations and technologies.

The current trend of social networking and user generated

multimedia content has been heavily responsible for a substan-

tial increase in multimedia services available over the Internet.

One way to access these services is to classify devices as

either service providers or consumers. In either case, to provide

seamless interaction, these devices need a mechanism to dis-

cover any available services in its local environments. Further,

by utilizing the current context information, these devices can

adapt to consumer situations and provide personalized services

with better Quality of Experience (QoE) to the consumer. To

this end, Service Discovery Protocols (SDPs) have been very

popular and effective. However, they lack the means to utilize

the available context information. Furthermore, SDPs such as

SLP [1], WS-Discovery [2], and UPnP [3] do not allow service

providers to be discovered and accessed anymore if they move

from one network to another.

Towards this objective, we have identified three main issues

that current SDPs should resolve to provide context-aware

service discovery in the large: (i) service identification, (ii)

service interoperability, and (iii) personalized service aggre-

gation. Service identification becomes an issue since available

services may appear back and forth across different networks.

A service must be identified during its life cycle independently

of the network it belongs to at a given time. However,

information provided by current SDPs in request/response

mechanism is not sufficient to uniquely identify a service.

Furthermore, since Future Internet is seen as the aggregation

of highly heterogeneous networks scattered around the globe,

different SDPs may be used simultaneously. For instance,

for each aggregated network, a different SDP may be used,

making service interoperability an issue. Moreover, due to

high consumer expectations for quality services, discovering

remote multimedia services across many networks may pro-

duce responses, that may need to be adapted according to

consumer and network preferences. Hence, different strategies

should be explored and took in charge by the underlying

infrastructure to provide consumers the most adequate and

personalized services according to their preference and context

information such as geographic locations, end-to-end delays,

or available bandwidth. Therefore, personalized service aggre-

gation becomes an issue.

In this paper, we make the following contribution

• We propose the XTalk middleware which enhance the

core components proposed in ZigZag middleware archi-

tecture [4] to enable context-awareness.

• We introduce two new building blocks namely; the con-

text manager and the policy framework. Their aim is to

utilize the context information and operate filtering and

aggregation strategies using policies to enables service

consumers to find the most adequate remote services

according to their search criteria and preferences.

The rest of this paper is organized as follows. Section II

introduces our architecture. Section III highlights importance

of context in Future Internet. Section IV presents the XTalk

middleware. Section V discusses the related works. Finally,

Section VI concludes and presents future work.

II. ARCHITECTURE

The continuous and rapidly growing popularity of multi-

media services along with high consumer expectations for

quality personalized services, places stringent requirement on

the Internet. Currently, IP networks have to scale fully to

handle ubiquitous high quality multimedia services. To ease

this burden on the Internet, industry in collaboration with

researchers has suggested several new architectures to redesign

2012 International Conference on Telecommunications and Multimedia (TEMU)

978-1-4673-2781-7/12/$31.00 ©2012 IEEE 83

the Internet of the future [5] [6] [7]. One common design
decision is to promote an architectural split into two main
planes, decoupling services from transport infrastructure. More
precisely, one plane is dedicated to upper layers to provide
functions that control and manage service resources for service
providers and consumers. The other plane is dedicated to lower
layers to provide functions that control and manage transport
resources to carry out data exchanges among service providers
and consumers across heterogeneous networks. This architec-
tural split enables functions dedicated to services and the ones
dedicated to transport to evolve separately and independently.
As a result, Future Internet offers users unrestricted access
to quality personalized services outside their own network
boundaries. However, this opportunity raises an issue related to
personalized service discovery as envisioned in Future Internet
project [8]. As service personalization and media adaption
heavily relies on context information. To enable personalized
service discovery in Future Internet we need to manage the
heterogeneity among SDPs support by both service providers
and service consumers.

WS-D

UPnP SLP

SLP

WS-D

Bonjour UDDI

Bonjour

WS-D

Future
Internet

XTalk

XTalk XTalk

Virtual Service
Directory

Virtual Service
Directory

Virtual Service
Directory

Fig. 1. XTalk Approach

To overcome the issues of personalized service discovery
in Future Internet, we introduce the XTalk middleware. XTalk
has been designed to enrich the upper layers proposed by
Future Internet architectures while leveraging on the facilities
available at the lower network layers. As illustrated in Fig-
ure 1, an instance of XTalk is deployed in each isolated local
area network. Each network has one or more service providers
and/or service consumers supporting different SDPs running
simultaneously. The XTalk nodes monitor their own network
and maintain a list of SDPs currently used by different service
provides. This enables the XTalk nodes to uniquely identify
service advertisements from consumer requests. Further, it
uses the SDP list to detect and identify all the media services
available within their network. Moreover, the XTalk nodes
also keep track of the context information within their isolated
local area network that enables them to personalize services

based on the current context and service consumer search
request. In order to promote the most popular services each
XTalk node maintains a shared context-aware cache of most
consumed services. This shared cache acts as a virtual service
directory and is used by the XTalk nodes to search for all
available services. All XTalk nodes communicate together
thanks to the functions provided by the underlying Future
Internet project [8].

When an XTalk node detects a request from a service
consumer, it forwards the request to remote XTalk nodes.
Based on the current user context and preferences, XTalk
nodes then instantiate appropriate connectors to translate
requests and responses from the protocol used by the service
consumer to the one used by the service provider and
vice versa. Once responses are received by XTalk node
for a particular service request, they are personalized and
aggregated prior to being returned to the consumer. For
instance, if a remote XTalk node is not able to perform the
needed translation, the translation request is forwarded to the
most able XTalk node in the network. The functionalities
performed by the XTalk nodes to provide personalized
services are controlled and accomplished with the help of
context management and policy framework.

The next section explains the importance of context infor-
mation for personalization of services.

III. CONTEXT MODELING

With the emergence of mobile computing in the 90’s, uti-
lizing context information and designing context models have
gained a lot of attention. The main purpose of context models
are to analyze the current situation a user is in, and provide
the user with personalized services that can adapt to his
current context. Context can be users’ personal characteristics
(preferences, age etc.,), current location, time and device or
network capabilities. A good context model helps to reduce
the complexity of context-aware applications and improve
their maintainability. However, defining and modeling context
information is a complex and difficult task, since gathering of
context information relies on combination of different sensory
data and no formal way to describe relation among them. To
this end, Ontologies provides the means to model a domain
with the definition of objects and/or concepts, their properties
and relations.

A. Ontology-based context model

Ontology provides a formal description and semantic for
context information in term of objects, concepts, properties
and relations. Hence, is a widely accepted tool for modeling
context information in pervasive computing domain. The main
reason for their acceptance is the popularity and maturity of
Semantic Web Languages. For our Ontology based context
model we choose Web Ontology Language (OWL) [9]. OWL
has been successfully used by developer for applications
needing a classification hierarchy, simple constrain feature and
maximum expressiveness without losing any computational

84

completeness. In our model we identified 4 interrelated en-
tities that are generic to any domain: namely;(i) the user,
(ii) device, (iii) network, and (iv) service. These entities
are modeled as owl:Class elements and the relations as
owl:ObjectProperty. Each owl:Class is character-
ized by different owl:DataProperty that are considered
relevant to the domain.

The User entity is described in different profiles:
• The GeneralProfile contains general information

about the user such as name, age, etc..
• The SubscriptionProfile contains information on

the different services for which the user have subscribed
and the services that he may access.

• The ContactProfile contains the contact informa-
tion of the user such as his address, phone number, SIP
URI, etc.

• The Affiliationprofile contains information
about the different organization to which the user is
affiliated.

• The AuthenticationProfile contains information
that allows the user to be authenticated.

• The PreferenceProfile contains the user-defined
preferences or the deduced preferences from usage. The
user preferences could be generic and applied to any
service or situation or they could target a specific service
or context entity and thus be applied only when the latter
is involved.

The Device entity is described as two sub-entities namely:
(i) HardwarePlatform and (ii) Softwareplatform.
The HardwarePlatform entity is modeled in a hierarchical
way since the components can be either atomic or composite.
On the other hand the Softwareplatform entity repre-
sents User and System software’s that runs on the device. For
example, audio/video codec or players.

The description of the Network entity comprises of infor-
mation such as the name of the network and the theoretical
parameters that characterize it. For instance, user location or a
loss or error rate experienced in a multimedia session within
a related network. These parameters are either reported by
monitoring modules or evaluated using subjective techniques.

The Service entity represents the different services that
the user can access. Any entity that provides a service is repre-
sented within this entity. The service entity is modeled using
OWL-S [10] Service Profile that relies on Inputs, Outputs,
Preconditions and Effects (IOPEs) as modeling parameters.

B. context-aware service personalization and adaptation

The main advantage of service personalization and adapta-
tion is to provide to the user the optimal variant of content
based on the current context information in its local environ-
ment. To this end, we have developed XTalk: a context-aware
policy based middleware. In the example below we show how
policy is enforced to accomplish a particular task.

The following policy selects the category and video
resolution according to the user preferences, location and
device. The policy states that when user John is at his office

premises, he prefers to get the match highlights of recently
played football matches when he requests for a VoD service.
As John’s office has a very good network bandwidth the
policy selects the High Definition (HD) resolution video for
John. The simple policy that is generated using John’s current
context information for HD content streaming is shown below.

User(John) ∧ Service(VoD) ∧ location
(fixed, Office) ∧ Device(Laptop)
∧ PrefProfile(John, Office)∧

VideoStart(00:00) ⇒ allow(Football
highlights,HD)

However, user John now wants to continue viewing the
same VoD service from his mobile device on this way home.
He now logs in from his mobile phone and accesses the same
VOD service. At this point the network entity detects the
John’s bandwidth is not enough to consume HD content and
hence updates the policy to stream SD resolution optimized
from mobile viewing. Furthermore, the video starts to stream
from the same position that John paused on the office
computer. The updated policy is shown below.

User(John) ∧ Service(VoD) ∧ location
(mobile, travel) ∧ Device(Phone)
∧ PrefProfile(John, travel) ∧

VideoStart(3:12) ⇒ allow(Football
highlights,SD_M)

The next section explains in details our context-aware policy
based XTalk middleware.

IV. THE XTALK MIDDLEWARE

We now present an overview of ZigZag middleware high-
lighting its functional and architectural advantage in enabling
service discovery in the large.

A. ZigZag middleware Overview

SLP to UPnP

SLP to WS-D

Bonjour to UPnP

UPnP to SLP

C
on

ne
ct

or
 M

an
ag

em
en

t
 C

om
p

on
en

t

SDP
Monitor

Component

Aggregator
Component

Network
Link

Component

Fig. 2. ZigZag Middleware

The ZigZag middleware [4] enables SDPs initially designed
for local area networks to work across highly heterogeneous
networks targeting the needs of Future Internet. ZigZag ap-
proach is based on protocol translation to enable service dis-
covery irrespectively of their underlying SDP. As illustrated in
Figure 2, the ZigZag middleware is architectured around 4 core
components, namely: (i) a SDP Monitor Component to detect
the current SDPs being used, (ii) a Connectors Management

85

Component to instantiate the adequate SDP translator, (iii)
a Network Link Component to maintain connections among
ZigZag nodes, and (iv) an Aggregator Component to apply
aggregation strategies. The core functionalities of each com-
ponent are briefly explained below.

SDP Monitor Component: The SDP monitor checks the
availability of different SDPs in once local environment. The
SDP monitor is designed to identify all SDPs currently used
in the network. Furthermore, it can uniquely identify service
advertisements from consumer requests, this enables the SDP
monitor to locally cache service advertisements and map them
to a Universally Unique IDentifier (UUID) so that services can
be identified uniquely across different ZigZag nodes.

Connectors Management Component: A Connector
translates one SDP to another SDP. It is specific to a pair of
SDPs. Thus, there exists as many connectors as there exists dif-
ferent pair of SDPs between which interoperability is required.
Currently, the Connectors Management Component supports
on the fly instantiation of one or more z2z gateways [11] that
act as connectors. We particularly choose z2z as provides an
optimized runtime system and facilities for describing network
protocol behaviors, message structures, and translation logic.
Additionally, the Connectors Management Component collects
statistics about SDPs being used to take in charge a fine
grained life cycle of instantiated connectors. It can start,
stop, pause or resume connectors according to the most often
detected SDPs.

Network Link Component: ZigZag nodes are directly
connected to each other irrespectively of the underlying net-
work infrastructure supported by the Future Internet. Network
Link Component implements a simple protocol for building
a data distribution tree among ZigZag nodes enabling them
to exchange multicast messages about discovered SDPs, and
services across each isolated local area network.

Aggregator Component: The Aggregator Component col-
lects a bunch of messages coming back and forth from
several connectors instantiated by the Connectors Management
Component. More specifically, the Aggregator Component
accumulates all SDPs responses coming from different remote
ZigZag nodes, and selects the one that matches best the criteria
of the associated request, and then forwards it to the service
requester.

The XTalk middleware leverages on the components of
ZigZag and enhance them to provide context-awareness with
the help of policies. The XTalk middleware architecture is
explained in details in the following subsection.

B. XTalk Architecture

The context-adaptive XTalk middleware takes advantage
of the modular component designed proposed in ZigZag
middleware [4] and enhance them to utilize the state of the
art context-awareness with the help of policies. The policies
enable XTalk middleware to provide necessary media service
adaptation for personalized services. The XTalk middleware
architecture consists of 3 main components, namely: (i) the
context manager (ii) the policy framework and (iii) the core

C
o
re

C
o
m

p
o
n
e
n
t

Activity
Handler

Policy
Generator

Context
Manger

Policy
Enforcer

Fig. 3. XTalk Architecture

components. As depicted in Figure 3, these component are
plugged together to provide media adaptation by utilizing the
available context information. Furthermore, these components
work in tandem to provide the needed interoperability by
utilizing the state of the art translation process so that users can
consume highly personalized multimedia services. The core
functionalities of each component and their sub-components
are deeply explained below:

Policy
files

SDP Monitor
Module

Aggregator
Module

Connector
Module

Network Link
Module

Context
Knowledge {

[

Core
Components

Activity
Handler

Policy
Generator

Policy
Enforcer

Context
Formatter

Policy
Framework

Context
Manager

Fig. 4. XTalk Modules

1) Policy Framework: As depicted in Figure 4, the Policy
Framework consists of 3 modules, namely: (i) the activity
handler (ii) the policy generator and (iii) the policy enforcer.
The functionalities of these modules are explained below.

Activity handler: The Activity handler is an event man-
ager that monitors various events that can occur in the system
at runtime. Furthermore, it is also used to define new events
as required by the core component modules to enable new
functionality. Further, it ensures that events are assigned proper
priority during system runtime. For instance, if a request by
a consumer has more then one response messages then the
aggregate event is triggered. However, if this XTalk node
is not able to translate the messages in order to aggregate
them, it triggers a system specific event. In such a case
the activity handler assigns a higher priority to this event
(system specific). This helps the XTalk node to take
advantage of the distributed translation mechanism supported
by the middleware.

Policy generator: Is a dedicated compiler which can
translate context information modeled using ontologies into
the representations required to implement policies. The Policy
generator, generates separate polices as required by different
core component modules. These files are then dynamically

86

loaded by the concerned modules. Furthermore, it is also
responsible for informing the policy enforcer about the any
new generation of policy files so that the policy enforcer can
update its process.

Policy enforcer: The policy enforcer has three main
functionality. Firstly, it is used to describe the process by
which a new dynamic service flow is created in the system
upon a resource request. Secondly, it is used to validate the
policies depending on the resources present in the system and
finally it authorizes the process to enable a smooth system
flow. For instance, if a consumer explicitly wants to view a HD
resolution video content in SD resolution even though he has
all the resources to view it in HD, the policy enforcer adheres
to the consumer’s preference and authorize the process.

2) Context Manager: The context manager consists of a
context formatter and context knowledge. The context knowl-
edge consists of generic ontology layer specific to a domain,
in our case it supports multimedia services. On the other hand,
the context formatter is in charge of formatting the raw context
data acquired from the different context providers. The context
providers supply context information as a simple XML file.
The context formatter uses this XML file to generate a context
model with the help of XML Stylesheet Language Trans-
formation (XSLT) tools. This enables the context formatter
to abstract the heterogeneity from the acquired context data.
XSLT uses an XSLT transformation template to transform the
XML file into a context model so that it can be utilized
by other components of the middleware. To support other
context description standards, a different XSLT transformation
template can be loaded into the context formatter. Furthermore,
the context manager is in-charge of the notification process
that supplies the Context Consumers with needed context
information. It is also responsible for maintaining the set of
context providers that supply the context knowledge through
sensing information.

V. RELATED WORK

The proliferation of SDPs to discover various services
across different networks is the source of a major heterogeneity
issue. Service consumers must be able to discover anytime
anywhere remote services irrespectively of their underlying
SDPs. Over the past decade, many solutions have emerged to
provide interoperable service discovery such as ReMMoc [12],
INDISS [13], z2z [11] and Starlink [14]. ReMMoc
is a reflective middleware that provides a specific API to
hide to applications the underlying SDPs currently used in
the local network environment. However, ReMMoC require
developers to redesign all existing applications to make them
compliant with the ReMMoC API, which is quite a daunting
task. This particular constraint is overcome with INDISS that
is a transparent middleware that provides interoperability to
existing applications without altering them. Although INDISS
and ReMMoC could be considered as one step forward in the
challenge of interoperable service discovery, these last years
have seen two other approaches, z2z and Starlink, that

have brought many facilities to enable transparent transla-
tion of one protocol to another. More precisely, z2z and
Starlink provide an optimized runtime system and facilities
for describing network protocol behaviors, message structures,
and translation logics. Such facilities come from the fact that
they rely on a high-level definition language that hides low
level network details and highlights only key properties of
protocols to translate.

With the maturity of Semantic Web Languages several
ontology-based context models have been proposed. A Context
Ontology Language CoOL [15] describes contextual facts
and contextual interrelationships by projecting the conceptual
based model Aspect-Scale-Context information (ASC) [16] to
language elements. CONtext ONtology CONON [17] captures
the general features of basic contextual entities like (location,
user, activity and computational entity) and uses the domain
specific ontology to describes the concepts related to a specific
domain. While COBRA-ONT [18] is a collection of ontologies
expressed in OWL for context-aware systems. A COBRA-ONT
defines concepts associated with four distinctive but related
themes: places, agents, agents’ location and agents’ activity.
SOUPA [19], developed by the same authors as COBRA-ONT,
deals with pervasive computing. SOUPA is composed on two
parts: (i) the SOUPA core that holds ontologies which pro-
vide a common vocabulary for different pervasive computing
environments and (ii) the SOUPA extension which contains
ontologies for different domain specific vocabularies. To over-
come the interoperability issue, SOUPA maps its concepts to
the concepts of several common ontologies such as FOAF [20],
DAMLTime [21], etc. The reported models have shown that
ontologies, by enabling semantic interoperability and logic
inference, offer the necessary means to build efficient context
models.

Policies are goals that allow a system to complete a par-
ticular task. They have the tendency to influence the runtime
behavior of system elements to change dynamically; without
changing or re-starting the system. Therefore, policies have
become a popular approach to cope with the increasing com-
plexity of distributed system. Some examples of policy lan-
guages include ASL (Authorization Specification Language)
[22] PDL (Policy Description Language) [23]. ASL is a
formal logic language for specifying access control policies. It
uses meta-policies called integrity rules to specify application
dependent rules that enable it to limit the range of access
control policies. Although it provides support for role-based
access control, it does not scale well to large systems because
there is no way of grouping rules into structures for reusability.
This is overcome by PDL. PDL is an event-based language
that uses the event-condition-action rule paradigm and consult
active databases to define a policy as a function. These
functions are then mapped to a series of events into a set
of actions. The language has a clearly defined architecture
and semantics. However, PDL does not support access control
policies, nor does it support the composition of policy rules
into roles.

87

VI. CONCLUSION

In this paper, we have identified three challenges that
current SDPs need to resolve in order to provide personalized
service discovery in highly heterogeneous networks like Future
Internet. For this purpose, we have presented the XTalk
middleware. The XTalk middleware uses context modeling
approach and policies to describe the system flow. The context
model uses ontology representation based on the basic context
descriptors. These descriptors are considered as base classes
in the ontology hierarchy to represent domain independent
concepts. Further, the policies are used to dynamically change
the behavior of modules at runtime without restarting the
system.

While XTalk has provided a step forward, there are lim-
itations to the approach that we will investigate further. As
ongoing future work, we are currently investigating privacy,
a key concern in personalized service discovery. Furthermore,
we plan to integrate and configure privacy-specific behavior
using policies within the XTalk middleware architecture.

Although validating the correctness of policies has not been
proven. We have performed custom tests in-house to verify
the outcome with the expected results. Additionally, we would
like to validate the correctness of polices in a large scale
deployment. Currently, we are in the process of deploying
the XTalk middleware in a large scale media provisioning
architecture ALICANTE. This large scale deployment will
enable us to fully evaluate our XTalk middleware by providing
valuable feedback to fine grain the policies. Furthermore, it
will also help us to validate the correctness and performance
of policies in a large scale network.

Acknowledgements

This work is supported by the European research project
ALICANTE within the framework of the EU FP7 in
ICT, under grant agreement No. 248652/ /ICT–ALICANTE/
http://www.ict-alicante.eu

REFERENCES

[1] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location
Protocol (SLP),” http://www.ietf.org/rfc/rfc2608.txt. [Online]. Available:
http://www.ietf.org/rfc/rfc2608.txt

[2] J. Beatty, G. Kakivaya, D. Kemp, and T. Kuehnel, “Web Services
Dynamic Discovery (WS-Discovery),” http://docs.oasis-open.org/ws-
dd/discovery/1.1/wsdd-discovery-1.1-spec.html. [Online]. Available:
http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01

[3] A. Presser, L. Farrell, D. Kemp, and W. Lupton, “Upnp device archi-
tecture 1.1,” www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.1.pdf.

[4] P. Rodrigues, Y. Bromberg, L. Réveillère, and D. Négru, “Zigzag:
a middleware for service discovery in future internet,” in 12th IFIP
International Conference on Distributed Applications and Interoperable
Systems, ser. DisCoTec’12, 2012, pp. 208–221.

[5] “AKARI Architecture Design Project,” http://akari-
project.nict.go.jp/eng/index2.htm.

[6] “Future Networks Projects,” http://cordis.europa.eu/fp7/ict/future-
networks/.

[7] “NSF Future internet architecture project,” http://www.nets-fia.net/.
[8] “ALICANTE: mediA ecosystem depLoyment through ubIquitous

Content-Aware NeTwork Environments,” http://www.ict-alicante.eu/.

[9] D. McGuinness, F. Van Harmelen et al., “Owl web ontology language
overview,” W3C recommendation, vol. 10, pp. 2004–03, 2004.

[10] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne et al., “Owl-s:
Semantic markup for web services,” W3C Member submission, vol. 22,
pp. 2007–04, 2004.

[11] Y. Bromberg, L. Réveillère, J. Lawall, and G. Muller, “Automatic
generation of network protocol gateways,” Middleware 2009, pp. 21–
41, 2009.

[12] P. Grace, G. Blair, and S. Samuel, “ReMMoC: A reflective middleware
to support mobile client interoperability,” On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE, pp. 1170–1187,
2003.

[13] Y.-D. Bromberg and V. Issarny, “Indiss: Interoperable discovery system
for networked services,” in IFIP/ACM/Usenix International Middleware
Conference, 2005, pp. 164–183.

[14] Y.-D. Bromberg, P. Grace, and L. Réveillère, “Starlink: Runtime
interoperability between heterogeneous middleware protocols,” in
Proceedings of the 2011 31st International Conference on Distributed
Computing Systems, ser. ICDCS ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 446–455. [Online]. Available:
http://dx.doi.org/10.1109/ICDCS.2011.65

[15] T. Strang, C. Linnhoff-Popien, and K. Frank, “Cool: A context ontology
language to enable contextual interoperability,” pp. 236–247, 2003.

[16] T. Strang, “Service interoperability in ubiquitous computing envi-
ronments,” Ph.D. dissertation, Ludwig-Maximilians-University Munich,
Oct. 2003.

[17] X. Wang, D. Zhang, T. Gu, and H. Pung, “Ontology based context
modeling and reasoning using owl,” in Pervasive Computing and Com-
munications Workshops, 2004. Proceedings of the Second IEEE Annual
Conference on. Ieee, 2004, pp. 18–22.

[18] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware per-
vasive computing environments,” The Knowledge Engineering Review,
vol. 18, no. 03, pp. 197–207, 2003.

[19] H. Chen, F. Perich, T. Finin, and A. Joshi, “Soupa: Standard ontology
for ubiquitous and pervasive applications,” pp. 258–267, 2004.

[20] D. Brickley and L. Miller, “Foaf vocabulary specification
0.91,” Tech. rep. ILRT Bristol, Nov. 2007. ur l: http://xmlns.
com/foaf/spec/20071002. html, Tech. Rep., 2000.

[21] F. Pan and J. Hobbs, “Time in owl-s,” in Proceedings of AAAI-04 Spring
Symposium on Semantic Web Services, 2004.

[22] S. Jajodia, P. Samarati, and V. Subrahmanian, “A logical language for
expressing authorizations,” in Security and Privacy, 1997. Proceedings.,
1997 IEEE Symposium on. IEEE, 1997, pp. 31–42.

[23] J. Lobo, “Apolicy description language,” 1999.

88

