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Abstract

In this paper, the quantification of uncertainty effects lo@ variability of the non-linear re-
sponse in rotor systems with multi-faults (such as unb&aasymmetric shaft, bow, parallel and
angular misalignments) is investigated. To take accounnogértainties in this kind of non linear
problem, it is proposed to use the Harmonic Balance MethdéiMiHwith a Polynomial Chaos
Expansion (PCE). The efficiency and robustness of the peaposethodology is demonstrated by
comparison with Monte Carlo Simulations (MCS) for diffeté&smds and levels of uncertainties.
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1 Introduction

During a phase of preliminary design of dynamic systems sigctotors, many physical parameters
can have a significant influence on the vibration responseso$ystem. Also, some features (such as
unbalance, misalignment, bow, asymmetric shaft, etc)ddwaigenerate linear or non-linear responses
need to be taken into account to avoid unexpected vibrdtaonplitudes and worst design for a rotor
system. A state of the art of faults in rotating machinery barfound in [1]:

e Rotor unbalance is one of the most current faults in a rotoadyics problem. This phenomenon
is due to the fact that the center of mass of a disc or a shaftezieis not on the axis of rotation
of the system. It is generally modeled by an eccentric masshadenerates a synchronous
force.

e Misalignment in coupling is a common fault in rotating mawdry, nevertheless this phe-
nomenon remains incompletely understood. It can be notedtiiere are two cases of mis-
alignment, firstly the parallel misalignment occurs whem hafts have a relative displace-
ment, secondly the angular misalignment occurs when it®xis angular fault between two



shafts of a rotor system. The presence of a misalignmentrgesereactions forces and mo-
ments in the coupling which are source of vibrations. Couneatly the dynamic behavior of
the system depends of the characteristics of the couplingther distinction have to be done
between flexible coupling (such as universal joint) anddrigpupling. Xu and Marangoni [2, 3]
present a theoretical model and experimental validatioa fitexible coupling. Theoretical de-
velopment for a rigid coupling can also be found in [4]. An@tmodeling has been developed
in [5, 6]: Lees presents a simple model of a rigid couplingteyswith a parallel fault and
investigates the influence of misalignment on the dynamabier of the system.

e The asymmetry is an other common fault in a rotor problem. dllguthis fault can be due
to the geometry of the shaft or due to the presence of a crackndxous studies have been
done to take account of the presence of a crack, and the brgdtbhavior of the cracked rotor
[7,8]. Mathematical development for an asymmetric shafssfsection has been developed by
Oncescu et al. in rotating frame [9] or by Lalanne and Fesrarifixed frame [10].

e The bow is an initial deformation of the rotor which can bes=aiby different factors. In [11],
Pennacchi presents different sources of bow such as greffdgts on off-line machines or
thermal effects. An asymmetric thermal distribution candzalized on an element (local bow)
or all parts of the rotor (extended bow). Darpe [12] propdsesvestigate the influence of a
bow on the dynamic response of the rotor system with othed<skof faults such as unbalance
and crack.

e Other kinds of faults exist, such as rubs or ovalizationmr{t3], but they will not be studied
in this paper.

As previously mentioned, all these faults can significangiguce the life time of a rotating ma-
chine. Even if usually the main aim of research studies iotate individual faults in machine
operation, this study proposes to demonstrate the capyatailinclude the treatment of uncertainties
in multi-faults in the dynamic analysis of a rotor systemljdang that this goal should be useful in
the design stage of a machine. For example, some physi@heéers may vary in an uncertain way
during the manufacturing monitoring or the use procese (light or others) and so the response may
change also in one uncertain way. So, the novelty of the ptemper is to propose a formulation of
dynamical systems such as rotor with multi-faults, whictludes uncertainties in physical parame-
ters. Thus, the goal is to allow an estimate of the overallinear dynamic responses generated by
these considerations. Considering this, there are differeethods to take account of uncertainties
in this kind of problem such as perturbation method, Montddsimulations or Polynomial Chaos
Expansion. The perturbation and Neumann methods baseectasy on the expansion of random
guantities into Taylor series [14] and Neumann series [fh,drovide acceptable results for small
random fluctuations but are not adapted for solving a dyngmablem close to resonance frequency.
The Monte Carlo simulations (MCS) is well adapted to includeertainties in a deterministic finite
element model by generating samples of the random paraniNseertheless MCS have a high com-
putational cost due to the fact that a high number of samplesc¢essary to have convergence of this
method. The Polynomial Chaos Expansion (PCE) [17] is a nttblased on the representation of the
stochastic processes and variables in a set of orthogosastlud random variables. This method has



shown to be a successful approach to solve uncertainty ifjaatiobn problems that is why it is used
in the present study.

So the objective of the present study is to propose a metbggdb undertake the effects of un-
certainties on the non-linear dynamic response of a rg@atiachinery with multi-faults. The present
paper is organized as follows: in a first part, a brief deswipof the rotor system is given. Then the
different faults in rotating machine studied in this paper presented. As previously explained, the
novelty in the attempted work appears in the formulationuaisrotor system model that includes the
uncertainties in physical parameters. So the second p#reqfaper presents the methodology of the
Polynomial Chaos Expansion (PCE) with the Harmonic Baldvieéhod in order to estimate evolu-
tions of the n« amplitudes and the global non-linear responses of a rogtesywith multi-faults and
uncertainties. Then, the expansions of the random quesfivrr all the models of faults of the rotor
system are presented. Finally the efficiency of the methddmsonstrated through various numerical
simulations and a comparison of the results obtained vigriohial Chaos Expansion (PCE) and via
Monte Carlo Simulation (MCS).

2 Rotor system

2.1 General equation of a rotor system

The system under study is illustrated in Figure 1. The rotorsists of a shaft with two discs. The

shaft is discretized into 10 Euler beam finite elements watlr fdegrees of freedom at each node,
with an asymmetrical section on the elements 3, 4 and 5 andstantt circular section on the other

elements. Two bearing supports are added at each end oftthe Adl the values of the parameters

are given in Table 1.

Y
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Figure 1: Rotor system

After assembling the shaft elements, the discs and therlgeamipports, the equation of motion of
the complete rotor system is given by:

Mx+ (C+wG)x+ (K +Ky)x =f (1)

whereM andG are the mass and gyroscopic matrices of the syskepandK, are respectively the
stiffness matrices of the asymmetric shaft and the beari@gs the damping matrix of the shaft.
are the forces applied on the system including gravitatitoraes, unbalance forces and forces due
to faults.x, x andx are the acceleration, the velocity and the displacemersofiegrees of freedom
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Parameters dimension

Length of shaftl, Im

Diameter of shaft 0.04 m
Position of disc 1 0.6 m

Position of disc 2 0.8 m

Outer diameter of disc 1 0.2m

Outer diameter of disc 2 0.4m

Inner diameter ofdiscs1and 2 0.04 m
Thickness of discs 1 and 2 0.02m

Young modulus of elasticity 2.1 x 10* Nm?
Shear modulus’ 8.0 x 101 Nm?
Poisson ratiov 0.3

Densityp 7800 kg m—3
Mass unbalance 0.059g
Eccentricity of the mass unbalanc®.01 m
Damping coefficienty, 2.5 x 107
Damping coefficieng, 2.8

Depth of the asymmetry 0.002m
Phase of the asymmetry, 0°

Phase of the bow, 0°

Axial stiffness of boltk 5.2 x 103 Nm~!
Transversal stiffness of bol, 13 x 10> Nm~!

Table 1: Model parameters

of the rotor systemw is the rotating speed of the shatft. It should be noted thaha#ie matrices are
expressed in the fixed frame, their construction will be dietiein the following parts of the paper.

2.2 Faults in rotating machinery

In this paper it has been chosen to investigate the mostrduaelts in a rotor system. Four kinds of
faults are studied here: an unbalance rotor, an asymméiait sross section, a bended shaft and a
misalignment fault.

In this section the rotating and fixed frames are respegtivetledR(X, Y, z) andRy(z, y, z), and are
linked by the following basis change matrix defined as

cos(wt) —sin(wt) 0
Pr_pr, = | sin(wt) cos(wt) 0 2
0 0 1



Y WY mass m,
Xu
% du \ X
\wt x

Figure 2: Unbalance disc

2.2.1 Unbalance

The unbalance is one of the most common fault in a rotor probl# appears when the center of
mass of a shaft element or a disc is not on the axis of rotatidheosystem. So this fault is usually
modeled by an eccentric mass on a disc or on the shaft, asalled in Figure 2.

For the degrees of freedom w 6 |7 of a disc, the eccentric mass can be modeled by the
following forces system

¢ = [mede.w? cos(wt + 1) Mmedew?sin(wt +1,) 0 0]F (3)

wherem,. andd, are respectively the mass unbalance and the eccentrigifydefines the initial
angular position in relation to z-axis.

2.2.2 Rotor asymmetry

The shaft cross-section of the elements 3, 4 and 5 is asynemBte geometry of the section is given
in Figure 3.

Consequently the asymmetric section has different prailcippments of inertia in rotating frame
(X,,Y,, z) which are given by the following expressions

Iy = / / Y2ds ()

Iy = / X2dS (5)
After calculations, we obtain
4 : 2
Iy = %(a - Sm(Q ) 4 VIR IE(R — h)? (6)
4 : _ 23 .
I — %(a N 81n(22a)) N (2hR h3) (R—h) @



Figure 4: Coordinates in fixed frame and rotating frame

wherea, R andh define the angle, the radius and the depth of the asymmettioses illustrated in
Figure 3.

In the following part of this section, the stiffness and massgrices due to this rotor asymmetry
will be calculated by using expressions of the strain anétkirenergies.

Strain energy The nodal displacement vector is defineddas = [v; wy 61 11 v2 wa B2 )T in
fixed frame ors,,; = [Vi W1 ©, ¥, Vo, W, ©, U,]T in rotating frame (see Figure 4).



The strain energy of the shaft element is defined as

l
U= % / Elx(V")? + EIy(W")?dz (8)
0

whereV andWW are the displacements in rotating framiés the length of the elemenk is the Young
modulus. Shear effects are neglected.
By using the following relations

V' = cos(wt + 1,)v + sin(wt + ¥, )w )
W = —sin(wt + 1,)v + cos(wt + Y,)w
with v andw the displacements in fixed frame, the strain energy can bettewas follows
1/t 1/t
U=-— / ElL, (v +w")dz + / EI(v"? — w") cos(2wt + 21, )dz

I
+ / EIp"w" sin(2wt 4 21,)dz
0

wherel,, andl; are the mean and deviatoric moments of the area and are eqlialt % and

I, = iy

This energy can be calculated by using classical shapeifunsdtLl0] defined as

v Nyvy + Navg + N3y + Nytpo (11)
w Nl’LUl + N2w2 — Ngel — N492

2 3 2 3 2 3 2
whereN; =1 —32 4+ 22 N, =32 22 Ny = —» 42 _ 2 andN, = & — %

After calculations, the strain energy can be expressedlasvid
U= 05K b (12)
where the stiffness matriK® is defined in fixed frame as
K° = K{ + K¢ cos(2wt + 2¢,) + K¢ sin(2wt + 21),) (13)
The expressions d&K§, K¢ andK¢ are given by
12 0 0 -6/ —12 0 0 —61 ]

12 61 0 0 —-12 6l 0
420 0 -6 2> 0

. EI, 42 61 0 0 22
Ko="T7" 2 0 0 6l (14)

12 -6l 0

Sym. 42 0

e




12 0 0 -6/ —12 0 0 —6l]
—12 -6l 0 0 12 —-61 0
—41* 0 0 6/ —21* 0
. FEl 412 6l 0 0 2P
K=" 12 0 0 6l (15)
—12 6l 0
Sym. -4 0
- 4l2 -
[0 12 61 0 0 —-12 6l 0
0O 0 —-6I —12 0 0 -6l
0 —4> -6l 0 0 —21?
. FEl 0 0 6/ -2 0
Ko=7 0 12 -6/ 0 (16)
0 0 6l
Sym. 0 —4?
- 0 -
wherel is the length of the shaft element.
Kinetic energy The kinetic energy of the shaft element is defined as
1 : 22 g o2 1 : 2 2 2
T = épS (0% + w?)dz + 3 (Ixwk + Iywy + 2I,wy)dz (17)
0 0

wherewy, wy andw are the angular velocities of the shaft element and can b@xippated as [10]

wx = Osin(wt + ,) — P sin(wt 4 1,)
wy = 1) cos(wt + ,) + ésin(wt +1,) (18)
Wz =W+ w@

After calculations, the kinetic energy can be rewritten@kivs

l l
TzlpS/ (@2+w2)dz+1p1m/ (6% +¥?)d=
2 0 2 0

1 Lo, ) 1 L,
+ ipfd/ (0% + ¥?) cos(2wt + 2¢,)dz + ép]d/ YO sin (2wt + 29,)dz (19)
0 0

l
+ plw / Vldz
0

By using the shape functions and after integration of the@iptes equation, it leads to express the

gyroscopic matrix and the mass matrices.



The gyroscopic matrix is defined as

[0 —-36 -3l 0 0 3 -3 0
0 0 -3l =36 0 0 =3l
0 —4* =31 0 0 I?
e phn 0 0 =3 =* 0
& =T 0 -36 31 0 (20)
0 0 3l
skew-sym. 0 —4l?
-~ 0 -
The elementary mass matrix is defined in fixed frame as
M¢ = Mtg + Mrg + M cos(2wt + 21),) + MS sin (2wt + 21),) (21)
The expressiotMt;, Mrg, M¢S andMc¢ are given by
(156 0 0 —221 54 0 0 130 ]
156 221 0 0 54 —131 0
4120 0 131 =3 0
. pSl 4 -130 0 0 =3P
Mt = 50 156 0 0 22 (22)
156 =221 0
Sym. 47> 0
4% |
36 0 0 -3l -36 0 0 =3l
36 30 0 0 -3 30 0
412 0 0 =31 —-* 0
e pln 42 30 0 0 =7
Mry =357 36 0 0 3l (23)
36 =30 0
Sym. 42 0
- 4l2 -
36 0 0 -3l =36 0 0 =30
—-36 -3 O 0 36 -3l 0
—41%> 0 0 3l I? 0
e Pla 41% 3l 0 0 =
M. =50 36 0 0 3l (24)
—-36 3l 0
Sym. —41*> 0
417



Figure 5: Coordinate system of the bow

[0 -36 -3l 0 0 36 -3l 0
0 0 3l 36 O 0 3l
0 41 31 0 0 -0

. ply 0 0 -3 =2 0
M. =30 0 —36 3l 0 (25)
0 0 -3l
Sym. 0 472
0

wherep is the density.

2.2.3 Rotor bow

In this section, the study of the rotor in the presence of @almeformation of the shaft is proposed.
This deformation that is illustrated in Figure 5, is definedixed frame ax,,., so the equation of the
dynamics problem is given by

M, %, + D,x, + K, (x, — xq,) = f, (26)

whereM,, D, andK, are respectively the mass, the damping and the stiffnesscemexpressed
in the rotating frame. The subscriptdenotes the fact that the quantity is expressed in the ngtati
frame. For the reader comprehension, the deformatigrin rotating frameR,(X,, Y;, z) is defined
as

xor = [xo o %o o x0T (27)

wherex,\" are the displacements of th& node ink,.
Consequently the initial deformation can be modeled asaefdefined by

f;} = KTXOT (28)

In the present paper, it has been chosen to study a bowedwbich has the geometric properties
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Figure 6: Model of parallel misalignment

presented in Figure 5. Consequently

xo) =[V® 0 0 oW

. k—1 Ro’/T k—1
—[Robln(n_lﬂ') 0 0 7 cos(n_lﬂ

)" (29)

where Ry is the maximum of amplitude of the bow.

Finally the forcef? is expressed in the fixed frame by using the basis changeaeatietween the
rotating framesk,(X,, Vs, 2) and Ry(x, y, 2). So after calculations this ford& can be rewritten as
synchronous rotating forces defined in the fixed frame by

2 = £° cos(wt + W) + fsin(wt + W) (30)

2.2.4 Misalignment

Parallel misalignment In this part, the modeling proposed by Lees in [6] is used. ddwepling of
the two parallel rotors of relative displacemeptis composed ofN bolts. On the first shaft the bolts
are distributed on a circle of radius on the second rotor the bolts are distributed on a sameecircl
with an offsets, from the axis of rotation. This configuration is illustrated Figure 6.

In the present study it will be considered that the two rotyesacting at the same rotation speed.
So the torsional deflection is not taking into account. Thatres displacement is only considered in
the vertical direction. The initial configuration of the qgiing composed ofV = 3 bolts is defined in
Figure 7.

Due to the geometry of the coupling the extremities of eadhHave different trajectories. Con-
sequently during a rotation of the coupling system, thegnstored in each bolt will evolve. This
energy can be calculated with the trajectories of the bdteexities and depends on the stiffnégs
of bolt in z-direction and they-direction.

For the first disc, the trajector9, M of the j*" bolt (for j = 1, 2 or 3) is defined in rotating frame
as

_ —-T Sln(¢j)
O\ M = | rcos(¢;) (31)
0

11



Figure 7: Initial positions of bolts

where¢; = (j — 1)%r is the angle between two consecutive bol¥sdefines the number of bolts).
By introducing the basis change and the degrees of freddomw,. 6. .7 of the shaft ex-
tremity, these trajectories can be rewritten as

N Ve —rsin(wt + ¢;)

OM] = | w, + 7 cos(wt + ¢;) (32)
0 Ja, r cos(wt + ¢;) + rsin(wt + ¢;) |

For the second disc, the trajectory of tfie bolt (for j = 1, 2 or 3) is defined in rotating frame as

N —7sin(¢;)
O M3 = | 0, + rcos(¢;)
0 R

(33)

or in fixed frame as
; [ —rsin(¢;) j| —rsin(wt + ¢;) — 6, sin(wt)
R

O;Mj = Pr_,g, | 0, + rcos(¢;) = [ 1 cos(wt + ¢;) + 0, cos(wt) ] (34)
0
Ro

0
and

OM] = | rcos(wt + ¢;) — ,(1 — cos(wt))
0

. —rsin(wt + ¢;) — 0, sin(wt)
Ro

12



Figure 8: Model of angular misalignment

By using the previous equations, the strain energy can bessed as

N
U = o 1(OM] — OM).F] + [(OM] - OI). 7T (36)
1 v
= ka Z(vc + 6, sin(wt))? + (w. + 6,(1 — cos(wt)))? (37)

j=1

After summation on each bolt of the same properties, the sttain energy due to the parallel
misalignment can be rewritten as

1
Ui = §Nkb[(vc + 8, sin(wt))? + (w, + §,(1 — cos(wt)))?] (38)
Finally the Lagrange’s equation is applied to the degreesgfdom{v. w. 6. 1.|” ofthe shaft
extremity. Consequently after calculations, it resulit e presence of a coupling with a parallel
misalignment leads to add to the previous system: a stéfoesiponent due to the coupling which is
defined as

1
K™ — Nk, | © . (39)
0
and a synchronous force due to the misalignment
f™ = Nkyd,[sin(wt) 1—cos(wt) 0 07 (40)

Angular misalignment The proposed model of angular misalignment is illustrateBigure 8. It
is composed of two discs with an angular fau)t and N = 3 bolts. The first bolt has a stiffness
k + k' in z-direction and the others bolts have a stiffness

In the following part, an_ap}proach similar to these devetbipghe case of a parallel misalignment

is proposed. The positiof M/] of the left extremity of thej** bolt (with j = 1, 2 or 3) is identical to

13



j kK 9,
1 kE+kK O
2 k 21/3
3k Ar/3

Table 2: Coupling parameters

the development given in Equation (32). Then, the seconfd sage an angular fault,, in z-axis as
illustrated in Figure 8. Consequently the position)/] can be defined as
; |: — sin(wt + ¢;) ]
R,

O, M} =1 | cos(wt + ¢;) cos(ayy,)
cos(wt + ¢,) sin(ayy,)

(41)

Assuming that the angulat,, is small, the following approximation®s(ca,,,) ~ 1 andsin(«,,) ~ a,,
can be done. So the positimMg can be rewritten as

N — sin(wt + ¢;)
O, M3 = cos(wt + ¢;) (42)
Qm cos(wt + ¢;) R
Consequently the strain energy of one bolt can be rewritten a
i _ 1 ) 5 >
Una = ékj[(OM1 - OMQ)-7] (43)
1
= 51@7"2[(9 — ) cos(wt + @) + P sin(wt + ¢;)]? (44)
So the strain energy for all bolts is defined as
N
Unz =Y _Uj (45)
i=j
which after calculations gives the following expression
1
U = 7 (3k + K12 (atm — 0)2 + 97
(46)

+ ZH ({0 — 0 +47) cos(2u1) — 2ty — 6) sin(21)]

Finally by using the Lagrange’s equation, it is possiblettovg that an angular misalignment fault
can be modeled with a parametric stiffness and a force coemoThe expression of the stiffness

14



matrix is similar to the development for an asymmetric shatie final expression of this stiffness
matrix K2 is defined as follows

0 0
1 0 1 0
me __ nN,.2 iy
K™= 2 (3% + K)r 1 + Qk " cos(2wt)  sin(2wt) (47)
1 sin(2wt) — cos(2wt)
The angular misalignment force is given by
1
2 = —iamTQ[O 0 3k+K + Kk cos(2wt) K sin(2wt)]” (48)

2.3 Final expression

Finally the equation of motion of the complete system, theg heen previously defined in Equa-
tion (1), is rewritten as

Mx +Dx+Kx =f (49)
with
M = M, + M. cos(2wt) + M sin(2wt) (50)
K = K + K, cos(2wt) + K sin(2wt) (51)
D=C+uwG (52)

M, K andD are the global mass, stiffness and damping matrices. Tlegleterminated by assem-

bling the shaft elementary matricadd®, C¢, G¢, K¢, K™ andK™2. f is defined by assembling the

different sources of external forces such as unbalancealignmenent reaction force, bow and gravity.
In this study, the damping is given as follows

C = a4Ko + 8aMy (53)

whereay and 3, are the damping coefficients allis the Rayleigh damping matrix. For the inter-
ested reader, it may be remained that the damping is ovemvhgly in the bearings in large machines
on oil film bearings. In this case, more complex represamtatof damping need to be taken into ac-
count [18].

3 Non-linear dynamic response of the rotor system with uncer
tainties

The fault parameters can be partly unknown, consequentipadel them correctly, the choice has
been to take these uncertainties in the model of each ondogeekein the previous section. Then,
the response is uncertain and we chose to model it via thenBuiial Chaos Expansion. So, the
aim of this section is to mix the Harmonic Balance Method dmel Polynomial Chaos Expansion
to obtain the non-linear response of a rotor with uncertairameters. In a first part the Harmonic

15



Balance Method which is one of the mathematical approach&slve equations with nonlinear terms
is presented. In a second part, the random character of tiedarameters will be investigated
through stochastic model of each fault. Then a methodologybe proposed to take into account
the uncertainties in this kind of problem by using a Polynaimiihaos Expansion with the Harmonic
Balance Method.

3.1 Deterministic problem

Due to the presence of faults, the rotor system is subjectgebtiodic excitation. So the response
x(t) and the excitatiofi(t) can be expressed as finite Fourier series of ond§t9]

m

x(t) = Z(An cos(nwt) + By, sin(nwt)) (54)
and ;
f(t) = Z(Sn cos(nwt) + T, sin(nwt)) (55)

Consequently the amplitude of thé' response is defined &4, + iB,,| with i the complex number.
By substituting the previous equations in the rotor systemaéions, it leads to solve a linear
system of siz&¢2m + 1)ng,s Wheren,, is the number of degrees of freedom

LX =f (56)

with L, X andf are defined as
L= +1L+1; (57)
f=[Sy S T, .. S, T,]* (59)

I, I, andIs are respectively the contributions due to the constantgethe parametric terms of
the stiffness and the parametric terms of the mass.

In our study, some coupling terms appear due to the parasstifiness (see Section 3.1.2). So
an excitation ofn x induces an evolution of the — 2 andn + 2 super harmonic responses. Conse-
guently the truncation order of the non-linear responsg (&% to be chosen in order to show this
phenomenon. In this paper thé” order is equal to 4.

In the following sections, definitions of the terrhs I, andls are investigated.

3.1.1 Constant terms - Definition ofl;

Considering the constant terms of the left side of the eqoadf motion of the complete rotor system
defined in Equation (49), it leads to the following ormulatio

Mok + Dx + Kox (60)

16



By using Equations (54-55) in Equation (60) and after caltahs, the formulation can be written
as the linear expressidaX with

Ko
Ko—w?Mj wD
|: —wD Ko—wQMO}
I = : (61)
Ko—m2w?Mj mwD
[ —mwD KO—meQMO}

3.1.2 Parametric terms - Definition ofI, and I

The non-constant terms of the left side of the equation ofienadefined in Equation (49) can be
rewritten such as follows

(K. cos(2wt) + K, sin(2wt)]x (62)
[M.. cos(2wt) 4+ M sin(2wt)|% (63)
The displacement and the acceleratiok can be expressed as truncated Fourier series. By using

the definition ofx(¢) given in Equation (54) in Equation (62), the parametridiséi§s system can be
rewritten as

m

> ((KCAn + K,B,,) cos((n — 2)wt) + (K A, — K,B,,) cos((n + 2)wt)
n=0 (64)
+ (KB, — K A,)sin((n — 2)wt) + (K.B,, + K;A,,) sin((n + Q)wt)) =0

Considering a truncation of ordet, the previous system can be written as the linear sy$ién= 0
where

- KC KS -
K. K; K. K;
Ks K. -Ks K¢
2K,
2K
K. —K;
1 .
12 = — Ks Kc ) (65)
2 K. K
-K; K.
K. —K;
L Ks K¢ -
Similarly, using the following expression of the accelerat
%(t) = —w? Z n*A,, cos(nwt) + n°B,, sin(nwt) (66)

n=0

one development on the parametric mass system can be dowg@atidh (63) which leads to linear
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systeml; X = 0 where

B 4M. 4Ms ]

M. M; IM. IM 5
M; —M. —9M IM.
0
0
M. —M;
w2 M; M
S C
I =—— , , (67)
2 m“M., m*“Mg
—m2M, m2M,

(m—2)2M, —(m—2)2M,
(m—2)2M, (m—2)2M.

3.2 Uncertainties on nx Harmonic response via the Polynomial Chaos Expan-
sion

Since the material and geometrical properties of the rabor the excitation force are taken as un-
certain, we need to model the response in a stochastic waterislleand geometrical properties are
calledM(7), D(7) andK(7), the excitation force is written &), then Equation (56) can then be
rewritten

L(r)X(7) = f(7) (68)
where argument denotes the random character and

L(r) = L(T) + ig(T) + I3(7) (69)

andii(T), 1 = 110 3, depend on the material and geometrical properties of ttoe.ro

Each uncertain quantity (material, geometrical or faulapaeter of the rotor) is modeled by imple-
menting the Karhunen-Loeve expansion in the Galerkin foatan of the finite element method [17],
it gives :

L
a=a+ Z &ay (70)
=1

for one uncertain quantity (scalar or matrix), wherd¢,, ... .} is a set of orthonormal random
variables, the notatioarefers to the mean of the quantéyanda, is its/th Karhunen-Loeve expansion
term. Integrating these models inkdr), quantitiesL,(7) andf(r) can then be expressed on a basis
of orthogonal random variables, the Polynomial Chaos h@astails will be given in the following
subsection) such that

L(r) = ZL%@(T}), (71)
B(r) = >_H0,(E(7) (72)
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whereV;(£(7)) are multidimensional Hermite polynomials and whesg(i = 0 to oo) are obtained
by identification withI; (7), I(7) andI;(7).
Finally, the response has to be also expanded on the Polgh@maos basis such as

= Z X;0;(&(7)) (73)

whereX; is the unknown deterministig” vector associated witl; (£ (7)) and¢ = {¢,} [17,20]. So
the system to be solved, when expanded on the polynomiakdbesis, becomes

> L(1)X;05(4(7)) = (7) (74)

that can be rewritten as

(Srean) (Exeio)-Someen o9

Projecting the system of equations on the subspace spagr{el. b , yields

ZZE{\I}\I} U ILX; = f,E{¥2}  k=0,1,..,00 (76)

=0 75=0

where E{} denotes the operation of mathematical expectation.

It should be noted that, in practice, the expansion can becated after theP* term. P is the
total number of polynomlal chaoses used in the expansiolugxg the0! order term and can be
determined by + 1 = (’;:’T in whichp is the order of homogeneous chaos usedrasdhe number
of random variables. Linear system Equation (76) to be sbinegractice is then given by

~ A

LX =f (77)
with components
P
Ly =) E{UU;}L;, jk=0,.P (78)
=0
and where
X=[X, .. Xp, f=[fE{T2} .. fpE{T2}]" (79)

It should be noted that coefficients{V, ¥, ¥, } and E{¥3} only have to be calculated once.

3.3 Uncertainties in multi-faults rotor system

It is difficult to model accurately faults in a determinist\@y. We then chose to model them in a
stochastic way. Here, we present one model for each treatstd f
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3.3.1 Unbalance

We consider the parameters. and+,, as stochastic. From Equation 70, they can be developed as
following

e (7) = Me(1 4 0mé1) (80)
bu(T) = 0y, (81)

where¢; andé, are Gaussian random variables. Unbalance miasis defined by its meam, and

its variation coefficiend,, ; angular position of the force,, has meart) and standard deviatian,, .

By substituting Equations (80-81) in Equation (3), alsod/ah the stochastic domain, unbalance
forcef? can be rewritten as

£ = Todew?(1 + 6,81 [cos(Wt + 0y, &) sin(wt + oy, &) 0 0]T (82)
Using

cos(wt + 0y, &) = cos(wt) cos(oy, &) — sin(wt) sin(oy, &2) (83)
sin(wt + 0y, &) = sin(wt) cos(oy, &2) + cos(wt) sin(oy, &2) (84)

and assuming that
COS 0¢u§2 = Z 01%52 (85)

1=0
. m (a € )21+1

Sln((fwugg) = Z(—l)l% (86)

=0
the unbalance force can be rewritten such as follows
1 m
f1=2 > fee (87)
k=0 [=0

wheref?, are the unbalance force components in a ba$is{) and are defined as

(04,2)

fd = (—1)1(6m§1)kw([cos(wt) sin(wt) 0 0)F (88)
04,52 . . T
2;:_ 1 [—sin(wt) cos(wt) 0 0]")

Finally, the uncertain loading can be expanded on the pohyalchaos basis as
R ~
f=3 5V,.&) (89)
j=0

~d ~
whereR is the number of the polynomial chaoses and paraméfease deduced fronf;, after one
identification procedure betweeh; (&, &) basis andg}, ¢.) basis (see Table 3 for the case of Two-
Dimensional Polynomial Chaoses).
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Table 3: Expression cﬁf{gg in polynomial chaos basis for order 2 of the expansion

3.3.2 Rotor asymmetry

Material parameters and geometrical properties can ba sfibject to uncertainties. Then, we can
model Young modulus and the stochastic depth of the asyrgragtrandom.
From Equation (70), we can write :

E(r) = E(1+ 6pés) (90)

where&; is one Gaussian random variable anddy is the mean and the variation coefficient of the
Young modulus respectively.
The uncertain geometrical property considered here is bagacteristic of the asymmetric shaft cross
section : the depth of the asymmetry, as illustrated in FEgur

Then, following again Equation (70), we have :

h(r) = h(1 + 6,&s) (91)

whereé, is one random Gaussian variableand §, the mean and the variation coefficient of the
depth. Let us denote

(1) = honta (92)

since we can write Equation (91) &ér) = h + k. h and}’ are presented in Figure 9 for oge
given. Consequently, the moments of inertia are stochgeaatities and are defined by

- bh'? h' - h'b3
]X(T)ZIX—'— +Qbh/(R—h—§), ]y(T)Z]y—l- G (93)
with
b= 2v2hR — h2 (94)
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Figure 9: Uncertainty on the shaft section

Ix and I are deterministic moments defined by Equations (6-7). $ubsg Equation (92) in
Equation (93) and after developing these equations, we have

. - hoy, b3
Ix(7) = Ix + 2bh(R — h)6,&, — bh28,2E62 + ?5,135;}, Iy(r) =TIy + ——¢&  (95)
which can also be expanded as
3 ~ . ~ 1 ~
=) Ixé& L(n)=> Iy (96)
=0 1=0

After one identification procedure between Equation (9%) Bquation (96), we obtain components

Ix, and Iy, given by

N 8 - - bh?
Ix,=1Ix , Ix, =20h(R—h)o, , Ix,=—bh%8> |, Ix, = —5h : (97)
. - hopb®

Iy=1y , Iy = g . (98)

It yields the stochastic expressions of the mean and deigatmments of inertia

Ln(7) = Ix(7) + Iy (1) = ) (Ix, + Iv,)& = mel@ (99)
Li(m) = Ix(1) = Iy(7) = ) (Ix, — Iy)& = Zfdifi (100)



Introducing stochastic expressiohs I,, and 1, (Equations (90), (99), (100)) in the deterministic ex-
pressions of the elementary stiffness matrices given byatgus (14-16) and also valid for stochastic
guantities, the stochastic elementary stiffness matacegjiven by

3 1
LG KE=) )

3 1 3 1
K= > K&, K=} ) K K€ (o)
=0 7=0 =0 7=0 =0 5=0
with Ke Ke Ke
K¢ = Bl —2 ¢ =Byl =5 ¢ =Bl =2 102
035 E i E-[m7 Cij Etd; E]d7 Sij Etd; EId ( )

3 3 1 3 1
Ko=) > Ko,&¢, Ko=) > K&, Ko=) » K.,&4 (103)

i=0 j=0 i=0 =0 i=0 j=0

where the componenfﬁoij, K andK ; are constructed by assembling the matrih’@s K6 ~and

e

Cij

Rei\;\/riting the developments of the stiffness matrices (Equg103)) onto a polynomial chaos basis
yields

Z KO 637 64 I~<c = Z I:<Cj qjj (537 54)7 KS = Z IZ{S;‘ qjj (537 64) (104)
=0 =0

wheren is the number of Hermite polynomialK,, K., andK,, are the rearrangement K, , K.,
andf{sij on the polynomial chaos basis and are obtain after one fde=titon procedure between the

two bases.

Similarly, we obtain from the deterministic expressionstlod elementary mass matrices given by
Equations (23-25) and also valid in the stochastic domhefdllowing expressions of the stochastic

mass matrices
- 3 - B 3 ~ R 3 )
Mr, =3 Mr& , Mi=) M& . Mi=) Mg (105)
=0 i=0 i=0

where coefficients of the expansions are given by

e I, - I, ~ Iy,
Mr, = 2“Mrj M = I‘ZM , M = ]‘ZM (106)

After assembly and identification procedures, the massiceatcan completely be defined by

n n n

My =Y Mo W(6.6) .« Me=Y M Uj(6.&) . Mo=Y M, U(6.6)  (107)

=0 =0 i=0
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Finally, the linear system to solve is given by Equation (6&h Equation (69). However, Equa-
tion (69) can be rewritten as

Lir) = > L;¥,(r) (108)

j=0

wheref,j = ilj + izj + igj. Componentij , i = 1to 3, can be constructed by one identification
procedure between Equation (69) with Equations (61), (@) also valid in the stochastic domain
and the following expansions &f , : = 1 to 3, on the Polynomial Chaos basis :

ZL (63,60) 212 (E5,60) Zlgj (€5,€0)  (109)

3.3.3 Rotor bow

In this model of bowed shaft, the parameters which seem th& subjected to uncertainties are
the amplitude and the phase of the bow. Considering the taiucges on the phase of the bow, a
mathematical development similar to that exposed for tHealamce force can be used. Then, we
chose to investigate the random character of the amplitadenpeter?, alone defined by

Ro(1) = 0r & (110)

where&; is one random Gaussian variable anglis the standard deviation of the amplitude of the
bow. We know that the deterministic equivalent fofféeis expressed as one linear function ®f
from Equation (30) with Equations (28) and (29). Therefcﬁ%r) verifies the same relation with
Ry(7) in the stochastic domain :

f*=aR, |, (111)
fb(T) = OéRO(T) (112)
Substituting Equation (110) into Equation (112) and usirfgom Equation (111) gives

f'(r) = £¢  with ‘E‘f:%f” (113)
0

3.3.4 Misalignment

Parallel misalignment The uncertain parameter in this modeling is the relativqi)ldis—:-menﬁp
which can be defined as

0,(7) = 035, &6 (114)

where& is a random Gaussian variable ang is the standard deviation of the amplitude of parallel
displacement. Substituting Equation (114) in Equatior),(# synchronous force due to the parallel
misalignment can be defined by

71 (1) = fmgg (115)
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where B
" = Nkyos, [sin(wt) 1—cos(wt) 0 0] (116)

Angular misalignment Uncertainties can also occur in the determination of theurdault «,,,
which needs to be modeled in a stochastic way.&dte one random Gaussian variable, the angular
fault @, is defined by

i (T) = 0o & (117)

where o, . is the standard deviation of the angular fault. Finally, ®itbting Equation (117) in
Equation (48), the moment due to the coupling misalignmantie expressed as

f72(7) = ¢ (118)

where

~ 1
" = —§aamr2 [0 0 3k+k + K cos(2wt) Kk sin(2wt)]” (119)

4 Numerical results

In this section, the effects of uncertainties on the dynamesgponse of a rotor system with faults are
guantified via the Polynomial Chaos Expansion method. Thdaa dynamic response of the rotor
system is defined by its mean value and its variance, bedigesrivelope of the random response
is presented. It is constructed by calculating the maximuah the minimum of all the responses
computed by the PCE approach from samples generated falipthie random law of each input
parameter.

The basic deterministic parameters used in all cases ae@ givTable 1. For the reader compre-
hension, the initial deterministic rotor system includesltirfaults such as unbalance, asymmetric
shaft, bow, parallel and angular misalignments. In additmthis deterministic formulation, uncer-
tainties on the different sources of fault are investigdseg Table 4 for the values of parameters and
the order of the PCE taken). For the reference solution ceetpiuiom the Monte Carlo Simulations
the number of samples is taken equal to 1000. The PCE envislapastructed with 20000 samples.
All the results detailed in this section are presented fatarrfrequency evolution from 5 Hz to 275
Hz with 400 points of discretization.

4.1 Stiffness uncertainties

In this part, we consider the uncertainty present on thinssk properties of the rotor. The variation
coefficient on the Young modulus is taken @s = 5%. Computations are done with the MCS
and the PCE approaches. Figure 10 presents the mean andceaghthe Frequency Response
Functions (FRF) of the x amplitudes (for n=1,2,3 and 4) and the global non-lineapoese (at
node 6 inz-direction) for case 1. It is observed that the mean and neeaf the n-FRF, obtained
by applying the PCE, are very similar to those of the MCS. Fedld presents all the FRF samples
obtained by MCS compared to the envelope built by PCE. It eamdbed that the contributions 0k3
and 4x super-harmonic components are very small (respectively m and10~? m of maximum
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0 Om  Oyy 0, OR s, Ca, Chaos order
Casel 5% - - - - - - 2
Case2 - 5% 0.06rad - - - - 2
Case3 - - - 2% - - - 2
Case4 - - - - 10°m - - 2
Case5 - - - - - 107*m - 2
Case 6 - - - - - - 5x107%rad 2
Case7 2% 2% 0.03rad 1% 107°m - - 2
Case8 5% 5% 0.06rad 2% 10°m 107*m 5x10~%rad 2

Table 4: Sets of parameters

amplitude), so the global response is mainly due to tkehairmonic and the 2 super-harmonic
components (respectively)=2 m and10~* m of maximum amplitude) as illustrated in Figure 11(f).
For this example the computational cost of the two methods baen compared and it shows that
the Polynomial Chaos Expansiondis times faster that the Monte Carlo Simulations.

In this study, the PCE calculations are done with a chaos @qigal to 2. It is observed that the
difference between both PCE and MCS methods for this ordeotisignificant either for the mean
or the variance. However, a better accuracy on the modekedlyearound critical speeds, will be
obtained with a higher order than 2, but it would increasaificantly the CPU time. Therefore, we
consider the PCE approach with order 2 sufficient and it vallised for all computations.

4.2 Uncertainties in the unbalance force

The effects of uncertainties in the unbalance force are nodied. Variation of 5% on the mass
unbalance {,,) and variation of0.06 rad on the angular position)() are considered. Figure 12
shows the mean and the variance of the MCS and the PCE resutteefnx amplitudes of the rotor
system (with n=1,2,3 and 4) and the global non-linear respors previously observed for case 1,
the results obtained by the PCE formulation are similar wséhof the MCS. Due to the fact that
comparisons of the mean and the variance for the MCS and tlefP&esses will give the same
results for the cases 3, 4, 5 and 6 (i.e. the mean and the garfanthe MCS and PCE results will
be similar), these representations will not be given in tilliving part of the paper in order to avoid
repetitive informations.

Then, Figure 13 shows the Frequency Response Functionsd@ldbal non-linear response and
the nx super-harmonic component (far = 1,...,4) for both MCS and PCE methods. A very
good agreement is obtained between the results from the M@3he PCE: all the MCS results
are bounded by the lower and upper envelopes that have beaimad by applying the PCE pro-
cess. As expected, these random parameters influence ntlanfix response. However, due to
the coupling terms of asymmetry, evolution of the 3uper harmonic components is also observed.
Indeed, coupling terms between the &nd 3x contributions are presents in the expressiong,of
and/; (see Equations (65) and (67)). So a variation on the termslodlance causes a variation on
the terms of order 3 (see Figure 13(b) and (d)). These faetalap clearly illustrated in Figures 12
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Figure 10: Frequency Response Functions (Case 1); Mean amah¥e of the FRF with PCE (red
solid line) and MCS (black dashed line): (a) static compdn@r) 1x harmonic component; (c)»2
super-harmonic component; (dx3super-harmonic component; (ex4uper-harmonic component;
(f) global non-linear response.
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where it is shown that variations of thexcramplitudes are only present for the first and third orders of
the response. For the static component, the second anth foaiers, the variations of the response
amplitudes are negligible (equal to zero if we consider tlnmerical errors inherent in calculations).
Figure 13(f) indicates also that small variations of the Amges around the critical speeds of the
1x harmonic component are present in the global non-linea@omese of the rotor system. The range
of amplitude is2.2 x 1072 m1t02.7 x 1073 m, 5.4 x 107 mto 1.6 x 1073 m and3.2 x 1073 m to
4.0 x 1073 m for the first critical speed (28.7 Hz), the second critiqgaged (99.0 Hz) and the third
critical speed (241.8 Hz) respectively.

4.3 Uncertainties in the asymmetric section properties

In this subsection, we are interested in the effect of viamat on the properties of the shaft cross-
section that is through the depth of the asymmetry angequal ta3% is taken. Figure 14 shows the
n-FRF for both the Monte Carlo simulations and the lower appen envelopes that have been cal-
culated by the PCE method. Figures 14(a), 14(c), 14(d) a(&) Ehow variations of thex0), 2x, 3x
and 4x harmonic components. Figure 14(b) indicates that vanatiaf the x harmonic component
are very small. Consequently, Figure 14(e) shows that tirang on the global non-linear response
are small too due to the fact thaklharmonic component represents the predominant vibrafitdmeo
global non-linear response. Indeed, it is interesting tte iere that a variation in the depth of the
asymmetry causes significant changes to the contributibiie anatrix 7, (see Equation (65)), while

it has little impact on the responses of order 1 because iitgibation in the expression of the matrix
I, (see Equation (61)) is not predominant. We recall here ttegptesence and the variations observed
for the Ox, 2x, 3x and 4x harmonics are due to the relations between the differerttibomions (i.e.
static terms and the terms of orders 2, 3 and 4 given in the/acall expressions of Equation (65)).

4.4 Uncertainties in bow characteristics

Now, we present the impact of the presence of uncertaintiethe parameters characterizing the
extended bow. A variation of the bow amplitudig is considered with a standard deviatiep of
107> m.

Figure 15 shows the n-FRF for the MCS and the PCE method (with233 and 4). Figures 15(a),
15(c) and 15(e) indicate no variability on the«02x and 4x super harmonic components whereas
Figures 15(b) and 15(d) show a high variability on the 4nd 3x super harmonic components due
to uncertainties in bow characteristics. For the readergrefrension, it is recalled that deterministic
multi-faults such as unbalance, asymmetric shaft, bovallghand angular misalignments are present
in the initial rotor system. Indeed, coupling between theahd 3x harmonic components exists, as
indicated in the expressions &f and /3 (see Equations (65) and (67)). So a variation of the bow
characteristics that generates a variation of thke(ds previously indicated in Equation (40)) causes
also a variation on the terms of order 3. For example, at tisé Tix critical speed (28.7 Hz), it is
observed variation frorf.3 x 107> mto4.5 x 10~2 m for the 1x harmonic component and variation
from 2.4 x 107'* mto 1.2 x 102 m for the 3x harmonic component. Interpretations of these results
are similar to the explanations given for unbalance foroe tduthe fact that the forces that model the
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Figure 12: Frequency Response Functions (Case 2); Mean amghve of the FRF with PCE (red
solid line) and MCS (black dashed line): (a) static compdn@r) 1x harmonic component; (c)»2
super-harmonic component; (dx3super-harmonic component; (ex4uper-harmonic component;
(f) global non-linear response.
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bow are acting as:d component and consequently affect thednd 3x non-linear responses via the
coupling terms between odd terms of Equation (65).

Moreover, a high variation of the antiresonance positi@bserved (as illustrated in Figure 15(b)).
It illustrates the fact that the addition of an initial defaation modifies the dynamic response and
particularly the position of the minimum of amplitude on thleaft, especially when the initial bow
is opposed to the deformation due to unbalance. This phemamis illustrated on the first critical
speed on the Monte Carlo Simulations : for higher amplituties deterministic response, there is
no antiresonance (same direction for bow and dynamic defboms) while for lower amplitudes, an
antiresonance appears (opposite direction for bow andrdina@eformations).

4.5 Uncertainties in misalignment

In this part two cases are studied: the first case deals witimeertainty on the parallel misalignment
fault 9, for a standard deviatiom;, of 10~ m and the second case deals with an angular misalignment
., for a standard deviatiom, of 5 x 10~ rad.

Figure 16 gives the x super harmonic components (with n=1,2,3 and 4) and the bhaalinear
response by using the Monte-Carlo simulations. The uppet@amer envelopes that have been calcu-
lated by applying the PCE method are also indicated. Fjratgmall variability of the X harmonic
component is observed, due to the excitation of the firstrayoken by the parallel misalignment (see
Equation 40). Secondly, a very small variation of the FreqyeResponse Functions of order 3 ap-
pears. As explained in the previous paragraphs, the origini® phenomenon is due to the coupling
terms between the first and third orders in the matrigeend /3, as seen in Equations (65) and (67).

Then, Figure 17 shows thexnharmonic components (n=1,2,3 and 4) and the global nomdline
response for a parallel misalignment via Monte-Carlo satiahs for an angular misalignment. The
lower and upper envelopes via the PCE method are also giveall fine Frequency Response Func-
tions of the nx super-harmonic components &€ 1, ..., 4) and the global non-linear response. Here
again, the PCE approach is validated by the Monte-Carlolsitions. It is clearly shown that the2
super harmonic component has a high variability due to tbetfeat the angular misalignment forces
are acting as  component (see Equation 48). Moreover, variabilities ef@k and 4x harmonic
components can be observed due to the coupling terms iniBgeg65) and (67) between the static
components, the second and fourth orders.

Finally, differences between the results obtained for theability of the parallel misalignment
and angular misalignment fault are clearly observed (sgerés 16(a), (c) and (e) and Figures 17(a),
(c) and (e)). It can be concluded that the variability of agwdar misalignment has important ef-
fects on the contributions of thex) 2x, and 4x super-harmonic components, whereas an parallel
misalignment affects only slightly the<lresponses of the rotor system.

4.6 Uncertainties in multi-faults

The main objective of this part of the paper is to demonstitageefficiency of the new procedure
(i.e. the combination of the Harmonic Balance Method andStexhastic Finite Element Method
using the Polynomial Chaos Expansion) when uncertain guemtome from all the parameters
simultaneously. Case 7 deals with variations of mechamegperties of the shaft (with a variation
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Figure 15: Frequency Response Functions (Case 4); Lowar@ret envelopes (red solid line); MCS
(gray dotted line); Deterministic response (black dottadleed line): (a) static component; (b} 1
harmonic component; (c)>2super-harmonic component; (dx3uper-harmonic component; (ex4
super-harmonic component; (f) global non-linear response
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36



coefficient of the Young modulus; = 2%), an unbalance excitation (with a variation coefficient
mass unbalancg, = 2% and a standard deviation of the angular positign = 0.03 rad) and a
bow amplitude (with a standard deviation of the bey = 107> m). For the case 8, parallel and
angular misalignments afo—*m and5.10~* rad respectively are added to the previous case. All the
uncertainties on the different sources of fault are giverahle 4.

The mean and the variance of the marmonic components (n=1,2,3 and 4) and the global non-
linear response for both methods MCS and PCE are presentédune 18 for case 7 and on Figure 20
for case 8. Figures 19 and 21 show the n-FRF, the global maaiiresponse and the upper and lower
envelopes via the PCE method, respectively for case 7 ardBcahe results of the global non-linear
amplitudes and the>n harmonic components via the Monte-Carlo simulations ae given in gray
lines in Figures 19 and 21. These results given for varigtmmmaterial and geometrical parameters,
excitations and faults characteristics show that the medrifege variance of all the responses as well
as the upper and lower PCE envelopes agree very well with thietdICarlo samples. So it proves
the efficiency of the PCE method to evaluate the non-linesparse of a rotor system in presence of
multi-faults such as unbalance, misalignment, bow and asstmic shaft. For these two examples, the
computational cost of the Polynomial Chaos Expansion as®e significantly due to the fact there
is several random variables. So it increases the size ofdgly@&mial Chaos basis and consequently
the size of the linear system to solve Equation (77). Fors@sand 8, the chaos order is taken equal
to 2 for all random quantities, consequently the Polynor@iaaos basis size is equal to 21 and 36
respectively.

Figures 19(b,f) and 21(b,f) show that for these two casegtblkal non-linear displacement is
mainly due to the first harmonic contribution. We recall ttie¢ appearances of the various compo-
nents (i.e. evolutions of the mean and variance for the2x, 3x and 4x components) are due to the
presence of all the faults in the system, which creates a&xaits of orders 1 and 2 and the coupling
terms in the expressions given in Equations 65 and 67.

By comparing Figures 19 and 21, it appears that differeneésden these two cases are the more
significant for O, 2x and 4x components, whereas the<land 3x responses seem to be very
similar. It is due to the fact that uncertainties on the aagutisalignment are added for case 8: as
previously seen, an angular misalignment can affect theZx and 4<x harmonic components via
the expressions of matricégsand/s. For the reader comprehension, it can be noted that, a vigiab
of n'" order induces a variability of the: — 2)!th and(n + 2)™ orders due to expressions bfand
I3 in Equations (65) and (67).

4.7 Orbits

In this part of the paper, results are investigated throbhgtotrbits of the shaft in order to understand
the dynamic behavior of the shaft with the observation ofg@ndouble or complex loops for differ-
ent rotor frequencies. Orbits are constructed by usinglacgments inc-direction andy-direction at
the node under study.

Figure 22 shows the evolution of orbits at node 6 for variaiation speeds with a set of random
parameters defined in case 7. It can be noted that the orbifw@sented without the static deflection
of the rotor in order to show the complexity of the non-lineasponse that generally occurs at low
amplitudes. Figures 22(b), 22(d) and 22(f) show the orbihefshaft for the first, second and third
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Figure 18: Frequency Response Functions (Case 7); Mean amah¥e of the FRF with PCE (red
solid line) and MCS (black dashed line): (a) static compdn@r) 1x harmonic component; (c)»2
super-harmonic component; (dx3super-harmonic component; (ex4uper-harmonic component;
(f) global non-linear response.
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Figure 19: Frequency Response Functions (Case 7); Lowar@ret envelopes (red solid line); MCS
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Figure 20: Frequency Response Functions (Case 8); Mean amah¥e of the FRF with PCE (red
solid line) and MCS (black dashed line): (a) static compdn@r) 1x harmonic component; (c)»2
super-harmonic component; (dx3super-harmonic component; (ex4uper-harmonic component;
(f) global non-linear response.
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Figure 21: Frequency Response Functions (Case 8); Lowar@ret envelopes (red solid line); MCS
(gray dotted line); Deterministic response (black dottadleed line): (a) static component; (b} 1
harmonic component; (c)>2super-harmonic component; (dx3uper-harmonic component; (ex4
super-harmonic component; (f) global non-linear response
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critical speeds respectively (at 28 Hz, 99 Hz and 243 Hz).uileg 22(a) and 22(c) show orbits at
the first and second>2 critical speeds respectively (at 14 Hz and 45 Hz). For tkecfitical speeds
simple loops are observed. For the Zritical speeds double loops are observed, so it highlights
the presence of 2 harmonic component. These results are in perfect agreewidnthe previous
evolutions of the n-FRF illustrate on Figure 21.

5 Conclusion

This paper describes the use of the Polynomial Chaos Exgraapproach coupled with the Harmonic
Balance Method in a rotordynamics problem. The efficienay mustness of the proposed method
has been tested through various numerical results. Thaastc results are validated by comparison
with the results obtained by Monte Carlo simulations.

These results show that variations of faults such as unbajdrow and parallel misalignment may
affect all the harmonic component of the rotor system, arrdhirans of faults such as asymmetric
section or angular misalignment can affect all the harmoaroponents.
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