
HAL Id: hal-00733280
https://hal.science/hal-00733280v1

Preprint submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Multifractal Analysis
Julien Barral, Arnaud Durand, Stéphane Jaffard, Stéphane Seuret

To cite this version:
Julien Barral, Arnaud Durand, Stéphane Jaffard, Stéphane Seuret. Local Multifractal Analysis. 2012.
�hal-00733280�

https://hal.science/hal-00733280v1
https://hal.archives-ouvertes.fr


LOCAL MULTIFRACTAL ANALYSIS

JULIEN BARRAL, ARNAUD DURAND, STÉPHANE JAFFARD AND STÉPHANE SEURET

Abstract. We introduce a local multifractal formalism adapted to functions,

measures or distributions which display multifractal characteristics that can

change with time, or location. We develop this formalism in a general frame-
work and we work out several examples of measures and functions where this

setting is relevant.

1. Introduction

Let f denote a function, a positive Radon measure, or, more generally, a distri-
bution defined on a nonempty open set Ω. One often associates with f a pointwise
exponent, denoted by hf (x), which allows to quantify the local smoothness of f at
x. On the mathematical side, the purpose of multifractal analysis is to determine
the fractal dimension of the level sets of the function x 7→ hf (x). Let

EH = {x : hf (x) = H}.

The multifractal spectrum of f (associated with the regularity exponent hf ) is

df (H) = dim EH

(where dim denotes the Hausdorff dimension, see Definition 3). Multifractal spectra
yield a description of the local singularities of the function, or measure, under
consideration.

Regularity exponents (and therefore the multifractal spectrum) of many func-
tions, stochastic processes, or measures used in modeling can be theoretically de-
termined directly from the definition. However, usually, one cannot recover these
results numerically on simulations, because the exponents thus obtained turn out
to be extremely erratic, everywhere discontinuous functions it is for instance the
case of Lévy processes [32], or of multiplicative cascades (see the book [10], and,
in particular the review paper by J. Barral, A. Fan, and J. Peyrière) so that a
direct determination of hf (x) leads to totally instable computations. A fortiori,
the estimation of the multifractal spectrum from its definition is unfeasable. The
multifractal formalism is a tentative way to bypass the intermediate step of the
determination of the pointwise exponent, by relating the multifractal spectrum
directly with averaged quantities that are effectively computable on experimental
data. Such quantities can usually be interpreted as global regularity indices. For
instance, the first one historically used in the function setting (ζf (p), referred to as
Kolmogorov scaling function) can be defined as follows; for the sake of simplicity,
we only consider in this introduction the function setting and we assume here that
the functions considered are defined on the whole Rd.
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Recall that the Lipschitz spaces are defined, for s ∈ (0, 1), and p ∈ [1,∞], by
f ∈ Lip(s, Lp(Rd)) if f ∈ Lp and ∃C > 0 such that ∀h > 0,

‖ f(x+ h)− f(x) ‖Lp≤ Chs. (1)

(the definition for larger s requires the use of higher order differences, and the
extension to p < 1 requires to replace Lebesgue spaces by Hardy spaces, see [34]).
Then

ζf (p) = p · sup{s : f ∈ Lip(s, Lp(Rd))}. (2)

Initially introduced by U. Frisch and G. Parisi in the mid 80s, the purpose of
multifractal analysis is to investigate the relationships between the pointwise regu-
larity information supplied by df (H) and the global regularity information supplied
by ζf (p). Note that these quantities can be computed on the whole domain of defi-
nition Ω of f , or can be restricted to an open subdomain ω ⊂ Ω. A natural question
is to understand how they depend on the region ω where they are computed. It is
remarkable that, in many situations, there is no dependency at all on ω; we will
then say that the corresponding quantity is homogeneous. It is the case for several
classes of stochastic processes. For instance, sample paths of Lévy processes (and
fields) [24, 25, 32], Lévy processes in multifractal time [15], and fractional Brownian
motions (FBM) almost surely have homogeneous Hölder spectra, and, in the case
of FBM, the Legendre spectrum also is homogeneous, see [33, 35]. In the random
setting, it is also the case for many examples of multiplicative cascades, see [12].
Many deterministic functions or measures also are homogeneous (homogeneity is
usually not explicitly stated as such in the corresponding papers, but is implicit in
the determination of the spectra). This is for instance the case for self-similar or
self-conformal measures when one assumes the so-called open set condition, or for
Gibbs measures on conformal repellers (see for instance [47, 48, 50]). It is also the
case for many applications, for instance the Legendre spectra raising from natural
experiments (such as turbulence, see [2, 4] and references therein) are found to be
homogeneous.

On the opposite, many natural objects, either theoretical or coming from real
data, have been shown to be non-homogeneous : Their multifractal characteristics
depends on the domain Ω over which they are observed:

• It is the case of some classes of Markov processes, see [9] and Section 5.2,
and also of some Markov cascades studied in [8].
• Some self-similar measures when the open set condition is relaxed into the

weak-separation condition may satisfy the multifractal formalism only when
restricted to some intervals (see [56, 30, 57, 29]).
• In applications, many types of signals, which have a human origin, can

have multifractal characteristics that change with time: A typical exam-
ple is supplied by finance data, see [2], where changes can be attributed
to outside phenomena such as political events, but also to the increasing
sophistication of financial tools, which may lead to instabilities (financial
crises) and implies that some characteristic features of the data, possibly
captured by multifractal analysis, evolve with time. This situation is also
natural in image analysis because of the occlusion phenomenon; indeed, a
natural image is a patchwork of textures with different characteristics, so
that its global spectrum of singularities reflects the multifractal nature of
each component, and also of the boundaries (which may also be fractal)
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where discontinuities appear. Note that the notion of local Hausdorff di-
mension which plays a central role in this section, has been introduced in
[38] precisely with the motivation of image analysis.
• Functions spaces with varying smoothness have been introduced motivated

by the study of the relationship between general pseudo-differential oper-
ators and later by questions arising in PDEs, see [52] for a review on the
subject; scaling functions with characteristics depending on the location
are then the natural tool to measure optimal regularity in this context. We
will investigate this relationship in Section 7.

This paper will provide new examples of multifractal characteristics which de-
pend on the domain of observation. In such situations, the determination of a local
spectrum of singularities for each “component” ω ⊂ Ω will carry more information
than the knowledge of the “global” one only. A natural question is to understand
how the different quantities which we have introduced depend on the region ω where
they are computed.

Some of the notions studied in this paper have been already introduced in [9];
let us also mention that a local Lq-spectrum was already introduced in [39], where
the authors studied this notion for measures in doubling metric spaces (as well
as the notion of local homogeneity) and obtained, for instance, upper bounds for
the dimensions of the sets of points with given lower and upper local dimensions
using this local concepts. The goal of their approach was to investigate conical
density and porosity questions. In our paper, on top of measures, we also deal
with functions, get comparable upper bounds for the multifractal spectra, and the
examples we develop are very different.

Let us now make precise the notion we started with, namely pointwise regularity.
The two most widely used exponents are the pointwise Hölder exponent of functions
and the local dimension of measures. In the following, B(x0, r) denotes the open
ball of center x0 and radius r.

Definition 1. Let µ be a positive Radon measure defined on an open subset Ω ⊂ Rd.
Let x0 ∈ Ω and let α ≥ 0. The measure µ belongs to hα(x0) if

∃C,R > 0, ∀r ≤ R, µ(B(x0, r)) ≤ Crα. (3)

Let x0 belong to the support of µ. The lower local dimension of µ at x0 is

hµ(x0) = sup{α : µ ∈ hα(x0)} = lim inf
r→0+

logµ(B(x0, r))

log r
. (4)

We now turn to the case of locally bounded functions. In this setting, the notion
corresponding to the lower local dimension is the pointwise Hölder regularity.

Definition 2. Let x0 ∈ Rd and let α ≥ 0. Let f : Ω → R be a locally bounded
function; f belongs to Cα(x0) if there exist C,R > 0 and a polynomial P of degree
at most α such that

if |x− x0| ≤ R, then |f(x)− P (x− x0)| ≤ C|x− x0|α. (5)

The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}. (6)

This paper is organized as follows:
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In Section 2, we recall the notions of dimensions that we will use (both in the
global and local case), we prove some basic results concerning the notion of local
Hausdorff dimension, and we recall the the wavelet characterization of pointwise
Hölder regularity.

In Section 3 we recall the multifractal formalism on a domain in a general abstract
form which is adapted both to the function and the measure setting; then the
corresponding version of local multifractal formalism is obtained, and we draw its
relationship with the notion of germ space.

In Section 4, we investigate more precisely the local multifractal analysis of
measures, providing natural and new examples where this notion indeed contains
more information than the single multifractal spectrum. In particular, we introduce
new cascade models the local characteristics of which change smoothly with the
location; here again, we show that the local tools introduced in Section 2 yield the
exact multifractal characteristics of these cascades.

In Section 5, we review the results concerning some Markov processes which do
not have stationary increments; then we show that the notion of local spectrum
allows to recover the exact pointwise behavior of the Multifractional Brownian
Motion (in contradistinction with the usual “global” multifractal formalism).

In Section 6 we consider other regularity exponents characterized by dyadic
families, and show how they can be characterized in a similar way as the previous
ones, by log-log plot regressions of quantities defined on the dyadic cubes.

Finally, in Section 7 the relationship between the local scaling function and
function spaces with varying smoothness is developed.

2. Properties of the local Hausdorff dimension and the local
multifractal spectrum

2.1. Some notations and recalls. In order to make precise the different notions
of multifractal spectra, we need to recall the notion of dimension which will be
used.

Definition 3. Let A ⊂ Rd. If ε > 0 and δ ∈ [0, d], we denote

Mδ
ε = inf

R

(∑
i

|Ai|δ
)
,

where R is an ε-covering of A, i.e. a covering of A by bounded sets {Ai}i∈N of
diameters |Ai| ≤ ε. The infimum is therefore taken on all ε-coverings R.

For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is

mesδ(A) = lim
ε→0

Mδ
ε .

There exists δ0 ∈ [0, d] such that

∀ 0 < δ < δ0, mesδ(A) = +∞ and ∀δ > δ0, mesδ(A) = 0;

this critical value δ0 is called the Hausdorff dimension of A, and is denoted by
dim(A). By convention, we set dim(∅) = −∞.

In practice, obtaining lower bounds for the Hausdorff dimension directly from the
definition involve considering all possible coverings of the set, and is therefore not
practical. One rather uses the mass distribution principle which involves instead
the construction of a well-adapted measure.
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Proposition 1. Let A ⊂ Rd and let µ be a Radon measure such that µ(A) > 0;

if ∀x ∈ A, lim sup
r→0

µ(B(x, r))

rs
≤ C then Hs(A) ≥ µ(A)

c
.

We will see in Section 3.2 a local version of this result.

Apart from the Hausdorff dimension, we will also need another notion of dimen-
sion: The packing dimension which was introduced by C. Tricot, see [58]:

Definition 4. Let A be a bounded subset of Rd; if ε > 0, we denote by Nε(A) the
smallest number of sets of radius ε required to cover A. The lower box dimension
of A is

dimB(A) = lim inf
ε→0

logNε(A)

− log ε
.

The packing dimension of a set A ⊂ Rd is

dimp(A) = inf

{
sup
i∈N

(
dimBAi : A ⊂

∞⋃
i=1

Ai

)}
(7)

(the infimum is taken over all possible partitions of A into a countable collection
Ai).

2.2. Local Hausdorff dimension.
In situations where the spectra are not homogeneous, the purpose of multifractal

analysis is to understand how they change with the location where they are consid-
ered. In the case of the multiractal spectrum, this amounts to determine how the
Hausdorff dimension of the set Ef (H) changes locally. This can be performed using
the notion of local Hausdorff dimension, which can be traced back to [38] (see also
[8] where this notion is shown to be fitted to the study of deranged Cantor sets).

Definition 5. Let A ⊂ Rd, and x ∈ Rd. The local Hausdorff dimension of A at x
is the function defined by

∀x ∈ A, dim(A, x) = lim
r→0

dim(A ∩B(x, r)). (8)

Remarks:

• The limit exists because, if Ω1 ⊂ Ω2, then dim(Ω1) ≤ dim(Ω2); therefore
the right-hand side of (8), being a non-negative increasing function of r,
has a limit when r → 0.
• We can also conisder this quantity as defined on the whole Rd, in which

case, it takes the value −∞ outside of A.
• The same definition allows to define a local dimension, associated with any

other definition of fractional dimension; one gets for instance a notion of
local packing dimension.

The following result shows that the local Hausdorff dimension encapsulates all
the information concerning the Hausdorff dimensions of the sets of the form A∩ω,
for any open set ω.

Proposition 2. Let A ⊂ Rd; then for any open set ω which intersects A,

dim(A ∩ ω) = sup
x∈ω

dim(A, x). (9)
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Proof. For r small enough, Br ⊂ ω; it follows that

∀x ∈ ω, dim(A, x) ≤ dim(A ∩ ω),

and therefore sup
x∈ω

dim(A, x) ≤ dim(A ∩ ω).

Let us now prove the converse inequality. Let (Kn)n∈N be an increasing sequence
of compact sets such that ∪Kn = ω; then

dim(A ∩ ω) = lim
n→∞

dim(A ∩Kn).

Let δ > 0 be given; then

∀x ∈ Kn, ∃r(x) > 0, dim(A ∩B(x, r))− dim(A, x) ≤ δ.
We extract a finite covering of Kn from the collection {B(x, r(x))}x∈Kn which yields

a finite number of points x1, · · ·xN ∈ ω such that Kn ⊂
⋃
B(xi, r(xi)); thus

dim(A ∩Kn) ≤ sup
i=1,··· ,N

dim(A ∩B(xi, r(xi)))

≤ sup
i=1,··· ,N

dim(A, xi) + δ ≤ sup
x∈ω

dim(A, x) + δ.

Taking δ → 0 and N →∞ yields the required estimate. �

Proposition 2 implies the following regularity for the local Hausdorff dimension.

Corollary 1. Let A be a given subset of Rd; then the function x → dim(A, x) is
upper semi-continuous.

Proof. We have

dim(A, x) = lim
r→0

dim(A ∩B(x, r)) = lim
r→0

sup
y∈B(x,r)

dim(A, y) = lim sup
y→x

dim(A, y).

�

2.3. Wavelets and wavelet leaders. In Section 3 we will describe a general
framework for deriving a multifractal formalism adapted to pointwise regularity
exponents. The key property of these exponents that we will need is that they are
derived from log-log plot regressions of quantities defined on the dyadic cubes. Let
us first check that it is the case for the pointwise exponent of measures.

Recall that a dyadic cube of scale j ∈ Z is of the form

λ =

[
k1

2j
,
k1 + 1

2j

)
× · · · ×

[
kd
2j
,
kd + 1

2j

)
, (10)

where k = (k1, . . . kd) ∈ Zd. Each point x0 ∈ Rd is contained in a unique dyadic
cube of scale j, denoted by λj(x0).

Let 3λj(x0) denote the cube with the same center as λj(x0) and three times
wider; it is easy to check that (3) and (4) can be rewritten as

hµ(x0) = lim inf
j→+∞

logµ(3λj(x0))

log 2−j
.

We now show that the Hölder exponent of a function can be recovered in a similar
way, from quantities derived from wavelet coefficients. Recall that orthonormal
wavelet bases on Rd are of the following form: There exist a function ϕ and 2d −
1 functions ψ(i) with the following properties: The ϕ(x − k) (k ∈ Zd) and the
2dj/2ψ(i)(2jx− k) (k ∈ Zd, j ∈ Z) form an orthonormal basis of L2(Rd). This basis
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is r-smooth if ϕ and the ψ(i) are Cr and if the ∂αϕ, and the ∂αϕψ(i), for |α| ≤ r,
have fast decay. Therefore, ∀f ∈ L2,

f(x) =
∑
k∈Zd

ckϕ(x− k) +

∞∑
j=0

∑
k∈Zd

∑
i

cij,kψ
(i)(2jx− k); (11)

the ck and cij,k are the wavelet coefficients of f :

cij,k = 2dj
∫
Rd
f(x)ψ(i)(2jx− k)dx, and ck =

∫
Rd
f(x)ϕ(x− k)dx. (12)

Note that (12) makes sense even if f does not belong to L2; indeed, when using
smooth enough wavelets, these formulas can be interpreted as a duality product
between smooth functions (the wavelets) and distributions.

Instead of the three indices (i, j, k), wavelets will be indexed by dyadic cubes as
follows: Since the wavelet index i takes 2d − 1 values, we can assume that it takes
values in {0, 1}d − (0, . . . , 0); we will use the notations

λ (= λ(i, j, k)) =
k

2j
+

i

2j+1
+

[
0,

1

2j+1

)d
, cλ = cij,k, ψλ(x) = ψ(i)(2jx− k).

Note that the cube λ which indexes the wavelet gives information about its loca-
tion and scale; if one uses compactly supported wavelets, then ∃C > 0 such that
supp (ψλ) ⊂ C · λ.

Finally, Λj will denote the set of dyadic cubes λ which index a wavelet of scale

j, i.e. wavelets of the form ψλ(x) = ψ(i)(2jx − k) (note that Λj is a subset of the
dyadic cubes of side 2j+1). We take for norm on Rd

if x = (x1, . . . , xd), |x| = sup
i=1,...,d

|xi|;

so that the diameter of a dyadic cube of side 2−j is exactly 2−j .
In the following, when dealing with Hölder regularity of functions, we will always

assume that, if a function f is defined on an unbounded set Ω, then it has slow
increase, i.e. it satisfies

∃C,N > 0 |f(x)| ≤ C(1 + |x|)N ;

and, if Ω 6= Rd, then the wavelet basis used is compactly supported, so that, if
x0 ∈ Ω, then the wavelet coefficients “close” to x0 are well defined for j large
enough.

Let f be a locally bounded function, with slow increase. The pointwise Hölder
regularity of f is characterized in terms of the wavelet leaders of f :

dλ = sup
λ′⊂3λ

|cλ′ |. (13)

The assumptions we made on f imply that wavelet leaders are well defined and
finite.

We note dj(x0) = dλj(x0). The following result allows to characterize the Hölder
exponent by the decay rate of the dλj(x0) when j → +∞, see [34].

Proposition 3. Let α > 0 and let ψλ be an orthonormal basis with regularity
r > α. If there exists ε > 0 such that f ∈ Cε(Ω), then

∀x0, hf (x0) = lim inf
j→+∞

log dλj(x0)

log 2−j
. (14)
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Hence, the pointwise Hölder exponent can be computed from a dyadic family.
This is also the case for the lower dimension of a measure µ. Indeed, if 3λj(x0)
stands for the dyadic cube λ of generation j neighboring λj(x0), it is easy to check
that (3) and (4) can be rewritten as

hµ(x0) = lim inf
j→+∞

logµ(3λj(x0))

log 2−j
.

3. A local multifractal formalism for a dyadic family

3.1. Multifractal analysis on a domain Ω.

Definition 6. Let Ω be a non-empty open subset of Rd. A collection of nonnegative
quantities E = (eλ) indexed by the set of dyadic cubes λ ⊂ Ω is called a dyadic
function on Ω.

The choice of the dyadic setting may seem arbitrary; however, it is justified by
two reasons:

• It is the natural choice when dealing with orthonormal wavelet bases (though
wavelets could be defined using other division rules, in practice the dyadic
one is the standard choice), and also the measure setting.
• When analyzing experimental data through regressions on log-log plots, for

a given resolution, the dyadic splitting yields the largest number of scales
available in order to perform the regression.

Definition 7. The pointwise exponents associated with a dyadic function E on Ω
are the function h(x) and h̃(x) : Ω→ R defined for x ∈ Ω as follows:

• The lower exponent of E is

hE(x) = lim inf
j→+∞

log eλj(x)

log 2−j
(15)

• The upper exponent of E is

h̃E(x) = lim sup
j→+∞

log eλj(x)

log 2−j
. (16)

By convention one sets hE(x) = h̃E(x) = +∞ if x /∈Supp(E).

We saw in the introduction the first example of scaling function which has been
used. We now define them in the abstract setting supplied by dyadic functions. We
denote by ΛΩ

j the subset of Λj composed of the dyadic cubes contained in Ω.

Definition 8. Let Ω be a nonempty bounded open subset of Rd.The structure func-
tion of a dyadic function E on Ω is defined by

∀p ∈ R, Sj(Ω, p) =
∑
λ∈ΛΩ

j

(eλ)p. (17)

The scaling function of E on Ω is defined by

∀p ∈ R, τΩ
E (p) = lim inf

j→+∞

logSj(Ω, p)

log 2−j
. (18)
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If Ω is not bounded, one defines the scaling function as follows:

if Ωn = Ω ∩B(0, n), ∀p ∈ R, τΩ
E (p) = lim

n→∞
τΩn
E (p). (19)

Note that the limit exists because the sequence is decreasing. From now on, we will
assume that the set Ω is bounded, so that, at each scale j, a finite number only
of dyadic cubes λ satisfy λ ⊂ Ω. The corresponding results when Ω is unbounded
follow easily from (19).

Apart from the scaling function, an additional “global” parameter plays an im-
portant role for classification in many applications; and, for multifractal analysis,
checking its positivity is a prerequisite in the wavelet setting (see [2] and references
therein): The uniform regularity exponent of E is defined by

hΩ
E = lim inf

j→+∞

log( sup
λ∈Λj

eλ)

log 2−j
. (20)

The scaling function τΩ
E is concave (as a liminf of concave functions) taking values

in R. The following regularity assumption is often met in practice, and implies that
ηΩ
E is finite for any value of p.

Definition 9. A dyadic function E is regular in Ω if

∃C1, C2 > 0, ∃A,B ∈ R ∀λ ⊂ Ω : eλ 6= 0 =⇒ C12−Bj ≤ eλ ≤ C22−Aj . (21)

The existence of A is equivalent to the condition hΩ
E > −∞. More precisely,

hΩ
E = sup{A : the right hand side of (21) holds}.

In the measure case and in the Hölder exponent case, one can pick A = 0. In the
Hölder case, the uniform regularity assumption means that A > 0. When the eλ
are wavelet leaders, the assumption on the lower bound implies that the function
f considered has no C∞ components.

Since the scaling function is concave, there is no loss of information in rather
considering its Legendre transform, defined by

LΩ
E (H) := inf

p∈R
(Hp− τΩ

E (p)). (22)

The function LΩ
E (H) is called the Legendre spectrum of E .

Though it is mathematically equivalent to consider LΩ
E (H) or τΩ

E (p), one often
prefers to work with the Legendre spectrum, because of its interpretation in terms
of regularity exponents supplied by the multifractal formalism.

Definition 10. Let E be a dyadic function on Ω, and define, for H ∈ [−∞,+∞],
the level set associated with E

EΩ
E (H) = {x ∈ Ω : hE(x) = H}.

dΩ
E : H ∈ R 7→ dim EΩ

E (H).

Let us now show how a heuristic relationship can be drawn between the multi-
fractal and the Legendre spectra. The definition of the scaling function (18) roughly

means that, for j large, Sj(Ω, p) ∼ 2−τ
Ω
E (p)j . Let us estimate the contribution to

Sj(Ω, p) of the dyadic cubes λ that cover the points of EE(H). By definition of
EE(H), they satisfy eλ ∼ 2−Hj ; by definition of dΩ

E (H), since we use cubes of the
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same width 2−j to cover E, we need about 2d
Ω
E (H)j such cubes; therefore the cor-

responding contribution is ∼ 2d
Ω
E (H)j2−Hpj = 2−j(Hp−d

Ω
E (H)). When j → +∞, the

smallest exponent brings an exponentially dominant contribution, so that

τΩ
E (p) = inf

H
(Hp− dΩ

E (H)). (23)

This formula can be interpreted as stating that the scaling function is the Legendre
transform of the spectrum. Assuming that dΩ

E (H) is concave, it can be recovered
by an inverse Legendre transform, leading to

dΩ
E (H) = inf

p∈R
(Hp− τΩ

E (p)). (24)

When this equality holds, the dyadic function E satisfies the multifractal formalism,
which therefore amounts to state that the Legendre spectrum coincides with the
multifractal spectrum.

Note that the derivation we sketched is not a mathematical proof, and the de-
termination of the range of validity of (24) (and of its variants) is one of the main
mathematical problems concerning multifractal analysis. The only results which
hold in all generality are upper bounds of dimensions of singularities.

Proposition 4. [20, 34, 43] Let E be a dyadic function on Ω. Then

dΩ
E (H) ≤ LΩ

E (H). (25)

An important consequence of this corollary is supplied by the only case where the
knowledge of the scaling function is sufficient to deduce the multifractal spectrum,
and even the pointwise exponent hE everywhere.

Corollary 2. Let E be a dyadic function. If its scaling function τΩ
E satisfies

∃α > 0 such that ∀p ∈ R, τΩ
E (p) = τE(0) + αp, (26)

then the multifractal formalism is satisfied on Ω, and the lower exponent of E is

∀x ∈ Supp E , hE(x) = α.

Proof. (of Corollary 2) Assume that (26) is true. Then LE(H) = −∞ except for
H = α; Corollary 4 implies in this case that dE(H) ≤ −∞ for H 6= α. Therefore
only one Hölder exponent is present, so that ∀x, h(x) = α; it follows that dΩ

E (α) = 1,
and the multifractal formalism therefore holds. �

This corollary has direct implications in modeling: Indeed, several experimental
signals have a linear scaling function. In such situations, multifractal analysis yields
that the data have a constant pointwise exponent; therefore it supplies a non-
parametric method which allows to conclude that modeling by, say, a fractional
Brownian motion, is appropriate (and the slope of the scaling function supplies the
index of the FBM), see e.g. [2] where one example of internet traffic data is shown.
We will also see a local version of Corollary 2 which has implications in modeling:
Corollary 5.

3.2. Local multifractal formalism.

Definition 11. Let E be a dyadic function on Ω. The local multifractal spectrum
of E is the function defined by

∀H, ∀x ∈ Ω, dE(x,H) = dim(EE(H), x)
(

= lim
r→0

d
B(x,r)
E (H)

)
. (27)
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The following result, which is a direct consequence of Proposition 2, shows that
the local spectrum allows to recover the spectrum of all possible restrictions of E
on a subset ω ∈ Ω.

Corollary 3. Let E be a dyadic function on Ω. Then for any open set ω ⊂ Ω,

∀H ∈ R, dωE (H) = sup
x∈ω

dE(x,H). (28)

Definition 12. A dyadic family E is said to be homogenously multifractal when
the local multifractal spectrum dE(x, ·) does not depend on x, i.e.

∀x ∈ Ω, ∀H ∈ R, dE(x,H) = dΩ
E (H).

A local scaling function can also be defined by making the set Ω shrink down to
the point x0.

Definition 13. Let E be a dyadic function on Ω. The local scaling of E is the
function defined by

∀H, ∀x ∈ Ω, τE(x, p) = lim
r→0

τ
B(x,r)
E (p). (29)

Note that the right-hand side of (29) is a decreasing function of r, and therefore
it has a limit when r → 0. Similarly as in the multifractal spectrum case, a
straightforward compacity argument yields that the scaling function on any domain
ω can be recovered from the local scaling function.

Corollary 4. Let E be a dyadic function on Ω. Then for any open set ω ⊂ Ω,

∀H ∈ R, τωE (p) = inf
x∈ω

τE(x, p). (30)

Definition 14. The scaling function of a dyadic family E is said to be homogenous
when the local scaling function τE(x, ·) does not depend on x.

The upper bound supplied by Corollary 4 holds for any given ball B(x, r). Fixing
x ∈ Ω and making r → 0, we obtain a following local version of this result:

∀x ∈ Ω, ∀H, dE(x,H) ≤ inf
p∈R

(Hp− τE(x, p)) . (31)

We will say that the multifractal formalism holds locally at x whenever (31) is an
equality.

As above, this result has an important consequence: In some cases, it allows
to determine the regularity exponent at every point, even in situations where this
exponent is not constant.

Corollary 5. Let E be a dyadic function. If there exists a function α : R 7→ R such
that the local scaling function τE satisfies

∀x ∈ Ω, ∀p ∈ R, τE(x, p) = τE(x, 0) + α(x)p, (32)

then the multifractal formalism is locally satisfied on Ω, and the lower exponent of
E is

∀x ∈ Ω, hE(x) = α(x). (33)

This result is a direct consequence of (31) and Corollary 2: Indeed, if (32) holds,
then (31) implies that dE(x,H) = −∞ if H 6= α(x). We pick now an H 6= α(x);

recall that dE(x,H) = limr→0 d
B(x,r)
E (H); therefore ∃R > 0 such that ∀r ≤ r,

d
B(x,r)
E (H) = −∞. In particular, H is not the pointwise exponent at x. Since this
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argument holds for any H 6= α(x), (33) holds, and Corollary 5 follows.

We will see an application of Corollary 5 concerning the multifractional Brownian
Motion in Section 5.1. Combining (31) with Proposition 3, yields the following
upper bound.

Corollary 6. Let E be a dyadic function on Ω; for any open set ω ⊂ Ω,

∀H, dωE (H) ≤ sup
x∈ω

inf
p∈R

(Hp− τE(x, p)) . (34)

It is remarkable that, though this result is a consequence of Corollary 4, it usually
yields a sharper bound. Indeed, assume for example that the multifractal formalism
holds for two separated regions ω1 and ω2 yielding two different spectra d1(H)
and d2(H); then (34) yields max(d1(H), d2(H)) whereas the global multifractal
formalism applied to Ω = ω1∪ω2 only yields the concave hull of max(d1(H), d2(H)).
More generally, each time (34) yields a non-concave upper bound, it will be strictly
sharper than the result supplied by Corollary 4.

The uniform regularity exponent also has a local form:

Definition 15. The local exponent associated with E is the function

hE(x) = lim
r→0

h
B(x,r)
E .

Note that the most general possible local exponents are lower semi-continuous
functions, see [42].

It would be interesting to obtain a similar characterization for the functions
(x,H) → dE(x,H) and (x, p) → τE(x, p) (considered as as functions of two vari-
ables) and determine their most general form.

3.3. An example from ergodic theory. Let Ω = (0, 1). Consider a 1-periodic
functions φ : R → R, as well as two continuous functions γ : [0, 1] → (0,∞) and
θ : [0, 1]→ R. Let T : x ∈ R 7→ 2x. For x ∈ R and j ∈ N denote by Sjφ(x) the jth

Birkhoff sum of φ at x, i.e.,

Sjφ(x) =

j−1∑
k=0

φ(T kx).

Then, for any dyadic subinterval λ of Ω of generation j, let

eλ = sup
x∈λ

e−γ(x)Sjφ(x)−jθ(x).

When the functions γ and θ are constant, the multifractal analysis of the dyadic
family E = (eλ)λ⊂Ω reduces to that of the Birkhoff averages of γφ + θ, since

lim infj→∞
log eλj(x)

log 2−j = H if and only if lim infj→∞ Sj(x)/j = H log(2)−θ
γ . This is

a now classical problem in ergodic theory of hyperbolic dynamical systems, which
is well expressed through the thermodynamic formalism. The function log(2)τΩ

E is
the opposite of the pressure function of −(γφ+ θ), that we denote by Pγ,θ(q), i.e.

− log(2)τΩ
E (p) = Pγ,θ(p) = lim

j→∞

1

j
log

∑
λ∈ΛΩ

j

(
sup
x∈λ

e−γSjφ(x)−jθ)p (p ∈ R),

= P (−γp)− θp,
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where P = P−1,0 is the pressure function of φ; and the following result follows for
instance from [28].

Theorem 1. Let H ∈ R; then EΩ
E (H) 6= ∅ if and only if H belongs to the interval

[(τΩ
E )
′
(∞), (τΩ

E )
′
(−∞)] and in this case τΩ

E (H) = inf{Hp− τΩ
E (p) : p ∈ R}.

Continuing to assume that γ and θ are constant, and using the fact that E
possesses the same almost multiplicative properties as weak Gibbs measures (see
[40, 31] for the multifractal analysis of these objects), i.e. some self-similarity
property, it is easily seen that we also have τωE = τΩ

E and dωE = dΩ
E for all open

subsets of Ω.
Now suppose that γ or θ is not constant. Such a situation should be seen locally

as a small perturbation of the case where these functions are constant, and it is
indeed rather easy using the continuity of γ and θ to get the following fact.

Proposition 5. ∀ x ∈ Ω, ∀q ∈ R,

τE(x, p) = −
Pγ(x),θ(x)(p)

log(2)
=
−P (−γ(x)p) + θ(x)p

log(2)
. (35)

Suppose also that φ is not cohomologous to a constant, i.e. the pressure func-
tion P of φ is not affine, which is also equivalent to saying that the interval
I = [P ′(−∞), P ′(∞)] of possible values for lim infj→∞ Sj(y)/j, is non trivial.

For all H ∈ R, define

ξH : y ∈ (0, 1) 7→ H log(2)− θ(y)

γ(y)
.

Notice that lim infj→∞
log eλj(y)

log 2−j = H if and only if lim infj→∞ Sj(y)/j = h and

H = (γ(y)h+ θ(y))/ log(2), i.e. h = ξH(y).
Now fix x ∈ (0, 1). For r > 0 we thus have

E
B(x,r)
E (H) = {y ∈ B(x, r) : lim inf

j→∞
Sj(y)/j = ξH(y)}, (36)

and due to Theorem 2.3 in [18], for all H > 0,

dimE
B(x,r)
E (H) ≥ sup{inf{P (p)− pα : p ∈ R} : α ∈ rg(ξH |B(x,r)) ∩ int(I)}.

Fix H ∈ (τ ′E(x,∞), τ ′E(x,−∞)) = (γ(x)P ′(−∞) + θ(x), γ(x)P ′(∞) + θ(x)). By
construction,

ξH |B(x,r)(x) = (H log(2)− θ(x))/γ(x) ∈ rg(ξH |B(x,r)) ∩ int(I).

Thus, due to (36),

dimE
B(x,r)
E (H) ≥ inf

{
P (p)− p

(
H log(2)− θ(x))/γ(x)

)
: p ∈ R

}
,

which, due to (35), is exactly inf{Hp− τE(x, p) : p ∈ R}. Since this estimate holds
for all r > 0,

dE(x,H) ≥ inf{Hp− τE(x, p) : p ∈ R},
hence, by (31), it follows that

dE(x,H) = inf{Hp− τE(x, p) : p ∈ R}.

For the case where H ∈ {τ ′E(x,∞), τ ′E(x,−∞)}, it is difficult to conclude in full
generality. We thus have proved the following result.
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Theorem 2. Suppose φ is not cohomologous to a constant. Fix x ∈ Ω and
H ∈ R. If H 6∈ [τ ′E(x,∞), τ ′E(x,−∞)] = [γ(x)P ′(−∞) + θ(x), γ(x)P ′(∞) + θ(x)]

then E
B(x,r)
E (H) = ∅ for r small enough, and if H ∈ (τ ′E(x,∞), τ ′E(x,−∞)) then

dE(x,H) = inf{Hp− τE(x, p) : p ∈ R}.

Let us mention that if the union of the sets of discontinuity points of γ and θ
has Hausdorff dimension 0, then the study achieved in [18] shows that the previous
result holds at any point x which is a point of continuity of both γ and ξ. Also,
when φ and θ are positive, the family E can be used to build wavelet series whose
local multifractal structure is the same as that of E .

4. Measures with varying local spectrum

4.1. General considerations. Let µ be a positive Borel measure supported by
[0, 1]d. recall that one derives from µ the dyadic family Eµ = {eλ := µ(3λ)}λ∈Λ.

It is obvious that the definition (4) of the local dimension hµ(x0) is equivalent
to (15) with the dyadic family Eµ. Similarly, the classical formalism for measures
on [0, 1]d is the same as the one described in the previous section for the family Eµ
on Ω = [0, 1]d. Hence one can define a local multifractal spectrum for measures by
Definition 27.

In the measure setting, the following result shows that the mass distribution
principle has a local version.

Proposition 6. Let µ be a Radon measure, A ⊂ Rd and x ∈ A ∩ supp (µ). Then

dim(x,A) ≥ hµ(x).

Proof. It follows from (54) applied on A ∪ B(x, r), remarking that the hypothesis
x ∈ supp (µ) implies that µ(A ∪B(x, r)) > 0 and then letting r → 0. �

We introduced the local multifractal spectrum to study non-homogeneous multi-
fractal measures. It is interesting to recall the result of [21], where it is proved that
homogeneous multifractal measures and non-homogeneous multifractal measures
do not exhibit the same multifractal properties.

Theorem 3. Consider a non-atomic homogeneous multifractal measure supported
on [0, 1]. Then the intersection of the support of the (homogeneous) multifractal
spectrum of dµ with the interval [0, 1] is necessarily an interval of the form (α, 1]
or [α, 1], where 0 ≤ α ≤ 1.

This is absolutely not the case for non-homogenouely multifractal measures:
consider for instance two uniform Cantor sets C0 and C1 of dimension 1/2 and
1/4 on the intervals [0, 1/2) and [1/2, 1]. Then the barycenter of the two uniform
measures naturally associated with C0 and C satisfies

dµ(h) =

 1/4 if h = 1/4,
1/2 if h = 1/2,
−∞ else.

Hence the local spectrum is the natural tool to study non-homogeneous multifractal
measures.
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4.2. A natural example where the notion of local spectrum is relevant.
The Bernoulli (binomial) measure is perhaps the most natural and simple multi-
fractal object, and it is now folklore that is is homogeneously multifractal. We
make a very natural modification in its construction, which will break homogene-
ity by making the Bernoulli parameter p depend on the interval which is split in
the construction. Doing this, we obtain a ”localized” Bernoulli measure whose local
spectrum depends on x. This example is closely related with the example developed
in Section 3.3.

Let p = [0, 1] 7→ (0, 1/2) be a continuous mapping. For n ≥ 1, (ε1, ε2, ..., εn) ∈
{0, 1}, we denote the dyadic number kε1ε2...εn =

∑n
i=1 εi2

−i and the dyadic interval
Iε1ε2...εn = [kε1ε2...εn , kε1ε2...εn + 2−n), where n ≥ 1, (ε1, ε2, ..., εn) ∈ {0, 1}, and we
will use the natural tree structure of these intervals using the words (ε1ε2...εn).

Consider the sequence of measures (µn)n≥1 built as follows:

• µ1 is uniformly distributed on I0 and I1, and µ1(I0) = p(2−1) and µ1(I1) =
1− p(2−1).
• µ2 is uniformly distributed on the dyadic intervals Iε1ε2 of second genera-

tion, and

µ2(Iε10) = µ1(Iε1) · p(kε11) and µ2(Iε11) = µ1(Iε1) · (1− p(kε11)).

• ...
• µn is uniformly distributed on the dyadic intervals Iε1ε2...εn of generation
n, and

µn(Iε1ε2...εn−10) = µn−1(IIε1ε2...εn−1
) · p(kIε1ε2...εn−11)

and µn(Iε1ε2...εn−11) = µn−1(Iε1) · (1− p(kε1ε2...εn−11)).

Observe that by construction, for every n, for every p ≥ n and every dyadic
interval I of generation n, one has µp(I) = µn(I).

Definition 16. The sequence of measures (µn)n≥1 converges weakly to a measure
µ that we call the ”localized” Bernoulli measure associated with the map p.

Obviously, if p is constant, one recovers the usual Bernoulli measure with pa-
rameter p.

We indicate the sketch of the proof to obtain the local multifractal properties of
µ. We do not use exactly the exponent hµ defined by (4), for simplicity we work
with the dyadic local exponent defined by

hdµ(x) = lim inf
j→+∞

logµ(Ij(x)

log 2−j
,

where (as usual) Ij(x) stands for the unique dyadic interval of generation j con-
taining x. What we are going to prove also holds for the exponent hµ, but would
require long technical developments. In particular, we would need an extension
of Corollary 2 of [18] on localized multifractal analysis of Gibbs measures. This
exponent hdµ can also be encompassed in the frame of Section 3 by using the dyadic
family E = {µ(λ)}λ∈Λ, thus all the ”local” notions we introduced hold for this
exponent.

Theorem 4. For every x ∈ [0, 1], the local spectrum associated with the exponent
hdµ of µ at x is that of a Bernoulli measure of a parameter p(x), i.e.

∀ H ≥ 0, dµ(x,H) = dµp(x)
(H).
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For every x ∈ [0, 1], we consider its dyadic decomposition x = ε1ε2....εn..., εi ∈
{0, 1}. Let N0,n(x) = #{1 ≤ k ≤ n : εk = 0} and N1,n(x) = #{1 ≤ k ≤ n : εk =
1} (= n − N0,n(x)). We consider the asymptotic frequencies of 0’s and 1’s in the
dyadic decomposition of x defined as

N0(x) = lim sup
n→+∞

1

n
N0,n(x).

Proposition 7. For every x ∈ [0, 1], we have

hdµ(x) = −N0(x) log2 p(x)− (1−N0(x)) log2(1− p(x)).

Essentially, the localized binomial measure looks locally around x like the bino-
mial measure of parameter p(x).

Proof. Let us fix q ∈ (0, 1/2), and consider the classical Bernoulli measure µq of
parameter q on the whole interval [0, 1]. It is classical that the Hölder exponent of
µq at every point x is

hdµq (x) = −N0(x) log2 q − (1−N0(x)) log2(1− q). (37)

Inspired by this formula, a Caesaro argument gives the proposition. Indeed, by
construction, the value of the µ-mass of the interval In(x) is given by

µ(In(x)) =

n∏
i=1

p(kε1ε2...εi−11)∗,

where

p(kε1ε2...εi−11)∗ =

{
p(kε1ε2...εi−11) if εi = 0

1− p(kε1ε2...εi−11) if εi = 1
.

Hence,

µ(In(x)) = 2
∑n
i=1:εi=0 log2 p(kε1ε2...εi−11)+

∑n
i=1:εi=0 log2(1−p(kε1ε2...εi−11)),

Since p(kε1ε2...εi−11) tends to p(x) when i tends to infinity, and since N0(x) is
the asymptotic frequency of zeros in the dyadic expansion of x, one sees that

1

n

n∑
i=1:εi=0

log2 p(kε1ε2...εi−11) −→n→+∞ N0(x)p(x).

Similarly, since p(x) < 1/2,

1

n

n∑
i=1:εi=1

log2(1− p(kε1ε2...εi−11)) −→n→+∞ (1−N0(x))(1− p(x)).

Let α = −N0(x) log2 p(x) − (1 − N0(x)) log2(1 − p(x)). The latter proves that,
given ε > 0, there exists an integer N such that n ≥ N implies that

2−n(α+ε) ≤ µ(In(x)) ≤ 2−n(α−ε).

This yields the result. �

Consider an interval J ⊂ [0, 1], and the multifractal spectrum dµ(H,J) =
dim {x ∈ J : hdµ(x) = H}. The value of this spectrum is a consequence of the
following theorem of Barral and Qu in [18] (who proved this result for any Gibbs
measure µ).
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Theorem 5. Fix q ∈ (0, 1/2), and consider the Bernoulli measure with parameter
q. Let us denote by Rq the support of the (homogeneous) multifractal spectrum of
µq. Let h : [0, 1]→ Rq be a continuous function. Then for every interval J ⊂ [0, 1],
one has

dim {x ∈ J : hdµq (x) = h(x)} = sup{dµq (h(x)) : x ∈ J}.

We now prove Theorem 4.

Fix H > 0, and also q ∈ (0, 1/2). If for some x one has

−N0(x) log2 p(x)− (1−N0(x)) log2(1− p(x)) = h,

then there exists a real number hq(H,x) such that

−N0(x) log2 q − (1−N0(x)) log2(1− q) = hq(H,x).

Since both p(x) and q are strictly less than 1/2, a simple argument entails that the
map hq(H,x) is continuous with respect to (H,x).

Now fix x0 ∈ [0, 1] and consider the Bernoulli measure with parameter q = p(x0).
Consider the interval I = B(x0, r). One has

{x ∈ I : hµ(x) = H} = {x ∈ I :−N0(x) log2 p(x)− (1−N0(x)) log2(1− p(x)) = H}
= {x ∈ I :−N0(x) log2 q − (1−N0(x)) log2(1− q) = hq(H,x)}.

But this last set has its Hausdorff exactly given by Theorem 5, hence

dim{x ∈ I : hµ(x) = H} = sup{dµq (hq(H,x)) : x ∈ I}.

When r goes to zero, p(x) tends uniformly to q = p(x0). Hence hq(H,x) tends to
H. In particular, the mapping dµq being continuous (real analytic in fact), when r
goes to zero one finds that

dµ(x,H) = dµq (H) = dµp(x)
(H).

This result can immediately be applied to the case where the mapping x 7→ p(x)
is continuous by part (instead of simply continuous), and can certainly be adapted
when p is càdlàg. It would be worth investigating the case where p enjoys less
regularity properties.

Remark 1. Many examples of Cantor set with varying local Hausdorff dimensions
have been constructed [8, 51], here the key point is that we perform the (global and
local) multifractal analysis of measures sitting on these ”inhomogeneous” Cantor
sets.

5. Local spectrum of stochastic processes

Suppose now that f is a nowhere differentiable function defined on [0, 1]d; one
can associate with f the dyadic family Ef = {Oscf (3λ)}λ∈Λ, where the oscillation
of f over a set ω ⊂ Ω is

Oscf (ω) = sup{f(x) : x ∈ ω} − inf{f(x) : x ∈ ω}.

Then, it is obvious that the pointwise Hölder exponent (6) of f at x is the same
as the one defined by (15) with the dyadic family Ef . Hence, the previous de-
velopments performed in the abstract setting of dyadic functions family holds for
non-differentiable functions.
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We start by giving a simple general probabilistic setting which naturally leads
to a weak, probabilistic form of homogeneity. Let X be a random field on Rd; X
has stationary increments if ∀s ∈ Rd, the two processes

x 7→ Ys(x) := X(s+ x)−X(s) and x 7→ X(x)

share the same law. Indeed, this equality in law implies the equality in law of the
linear forms applied to the two processes Ys and X, hence of iterated differences
and wavelet coefficients. It follows that local suprema of iterated differences and
of wavelet coefficients computed on dyadic cubes also share the same laws, and
Proposition 3 implies that, if X has locally bounded sample paths, then the Hölder
exponent has a stationary law. Therefore, the Hölder spectra on dyadic intervals
of the same width also share the same law almost surely. As a result, the Hölder
spectra on all dyadic intervals share the same law. This leads to the following
result.

Proposition 8. Let X be a random field on Rd with stationary increments. If X
has locally bounded sample paths, then

∀s a.s. ∀H dX(s,H) = dX(0, H).

5.1. Local analysis of the multifractional Brownian motion. Let H denote a
function defined on Rd with values in a fixed compact subinterval [a, b] of (0, 1). We
assume that H satisfies locally a uniform Hölder condition of order β ∈ (b, 1), that
is, H ∈ Cβ(Ω) for every open subset Ω of Rd. Now, recall that the multifractional
Brownian motion (MBM) with functional parameter H has been introduced in [19,
49] as the continuous and nowhere differentiable Gaussian random field BH =
{BH(x), x ∈ Rd} that can be represented as the following stochastic integral

BH(x) =

∫
Rd

eıx·ξ − 1

|ξ|H(x)+d/2
2

d̂W (ξ),

where x·ξ denotes the standard inner product, |ξ|2 is the usual Euclidean norm, and

d̂W stands for the “Fourier transform” of the real-valued white noise dW , meaning
that for any square-integrable function f , one has∫

Rd
f̂(ξ) d̂W (ξ) =

∫
Rd
f(x) dW (x).

In particular, the MBM reduces to a fractional Brownian motion when the function
H is chosen to be constant. The pointwise regularity of the MBM is well known;
as a matter of fact, it has been shown in [7] that

a.s. ∀x ∈ Rd hBH (x) = H(x). (38)

Thus, the Hölder exponent of the MBM is completely prescribed by the function
H. Our purpose is now to give an illustration to Corollary 5 above by showing
that the multifractal formalism is locally satisfied by almost every sample path of
the MBM. To be specific, we shall establish in the remainder of this section the
following result which, with the help of Corollary 5, enables one to recover (38).

Proposition 9. Let EH denote the dyadic function that is obtained by considering
the wavelet leaders of the multifractional Brownian motion BH , and assume that the
wavelets belong to the Schwartz class. Then, the local scaling function τEH satisfies

a.s. ∀x ∈ Rd ∀p ∈ R τEH (x, p) = H(x)p− d.
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In order to establish Proposition 9, we shall work with a Lemarié-Meyer wavelet
basis of L2(Rd) formed by the functions 2dj/2ψ(i)(2jx − k), see [41], and more
generally with the biorthogonal systems generated by the fractional integrals of the
basis functions ψ(i), namely, the functions ψ(i),h defined by

ψ̂(i),h(ξ) =
ψ̂(i)(ξ)

|ξ|h+d/2
2

.

It will also be convenient to consider the Gaussian field Y = {Y (x, h), (x, h) ∈
Rd × (0, 1)} given by

Y (x, h) =

∫
Rd

eıx·ξ − 1

|ξ|h+d/2
2

d̂W (ξ).

Note, in particular, that BH(x) = Y (x,H(x)) for all x ∈ Rd, and that the random
field {Y (x, h), x ∈ Rd} is merely a fractional Brownian motion with Hurst param-
eter h. By expanding its kernel in the orthonormal basis of L2(Rd) formed by the
Fourier transforms of the functions 2dj/2ψ(i)(2jx−k), and by virtue of the isometry
property, the stochastic integral defining Y (x, h) may be rewritten in the form

Y (x, h) =
∑
i

∑
j∈Z

∑
k∈Zd

εij,k2−hj
(
ψ(i),h(2jx− k)− ψ(i),h(−k)

)
,

where the εij,k form a collection of independent standard Gaussian random variables.
It is possible to show that the above series converges uniformly on any compact
subset of Rd×(0, 1), see [6]. Moreover, the above decomposition yields the following
natural wavelet expansion of the field BH :

BH(x) =
∑
i

∑
j∈Z

∑
k∈Zd

εij,k2−H(x)j
(
ψ(i),H(x)(2jx− k)− ψ(i),H(x)(−k)

)
. (39)

Furthermore, it is shown in [6] that the low-frequency component of Y , that is,∑
i

−1∑
j=−∞

∑
k∈Zd

εij,k2−hj
(
ψ(i),h(2jx− k)− ψ(i),h(−k)

)
,

is almost surely a C∞ function in the two variables x and h. Hence, the low-
frequency component of the MBM, which is obtained by summing only over the
negative values of j in (39), is in Cβ(Ω) for any open subset Ω of Rd, just as the
functional parameter H. As β is larger than all the values taken by the function
H, it follows that the pointwise regularity of the MBM is merely given by that of
its high-frequency component, that is,

B̃H(x) =
∑
i

∞∑
j=0

∑
k∈Zd

εij,k2−H(x)j
(
ψ(i),H(x)(2jx− k)− ψ(i),H(x)(−k)

)
.

As a consequence, we may consider in what follows the high-frequency component

B̃H instead of the whole field BH . In addition, in view of the regularity of H, it
follows from standard results on Calderón-Zygmund operators (see [45]) and robust-
ness properties of the local scaling functions, τEH coincides with the local scaling

function of the dyadic family ẼH which is obtained by considering the wavelet
leaders associated with the wavelet coefficients

cij,k = εij,k2−H(k2−j)j .
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(Recall that in [34], it is proved that the scaling function is “robust”, i.e. does not
depend on the smooth enough wavelet basis chosen; furthermore, the arguments of
the proof clearly are local, so that the local scaling function also is robust.)

Letting λ denote the cube corresponding to the indices i, j and k as in Section 2.3,
these coefficients may naturally be rewritten in the form

cλ = ελ2−H(xλ)〈λ〉,

where ελ is the standard Gaussian random variable εij,k, xλ is the basis point k2−j of

the cube λ and 〈λ〉 is its scale j. Recall that the wavelet leaders dλ are then defined
in terms of the wavelet coefficients through (13). Finally, for the sake of simplicity
and without loss of generality, we shall study the local scaling function τẼH only on

the open set (0, 1)d, so that we only have to consider the dyadic subcubes of [0, 1)d.
Let us now establish a crucial lemma concerning the behavior on the subcubes

of [0, 1)d of the new dyadic family ẼH .

Lemma 1. With probability one, for any dyadic cube λ ⊂ [0, 1)d with scale 〈λ〉
large enough,

1

〈λ〉3H(xλ)
≤ 2H(xλ)〈λ〉dλ ≤ 2〈λ〉.

Proof. We begin by the proving the lower bound. For any proper dyadic subcube
λ of [0, 1)d with scale 〈λ〉 = j, we have

P(dλ ≤ 〈λ〉−3H(xλ)2−H(xλ)〈λ〉) =
∏
λ′⊂3λ

P(|ελ′ | ≤ 〈λ〉−3H(xλ)2H(xλ′ )〈λ
′〉−H(xλ)〈λ〉).

Let l(j) = j + d(2/d) log2 je, where d · e denotes the ceiling function and log2 the
base two logarithm. Considering in the above product only the subcubes λ′ ⊂ 3λ
with scale 〈λ′〉 equal to l(j), and using the elementary fact that the modulus of a
standard Gaussian random variable is bounded above by t with probability at most
t, we deduce that

P(dλ ≤ 〈λ〉−3H(xλ)2−H(xλ)〈λ〉) ≤
∏
λ′⊂3λ
〈λ′〉=l(j)

〈λ〉−3H(xλ)2H(xλ′ )〈λ
′〉−H(xλ)〈λ〉.

Moreover, the function H satisfies locally a uniform Hölder condition of order β,
so there exists a real C > 0 that does not depend on λ such that

∀λ′ ⊂ 3λ |H(xλ′)−H(xλ)| ≤ C2−βj . (40)

Combined with the observation that there are at least j2 subcubes λ′ ⊂ 3λ such
that 〈λ′〉 = l(j), this implies that

P(dλ ≤ 〈λ〉−3H(xλ)2−H(xλ)〈λ〉) ≤
(
j−3H(xλ)2H(xλ)(l(j)−j)+Cl(j)2−βj

)j2
.

Given that the function H is valued in the interval [a, b], we infer that

P(dλ ≤ 〈λ〉−3H(xλ)2−H(xλ)〈λ〉) ≤
(
j(2/d−3)a2b+Cl(j)2

−βj
)j2

.

The right-hand side is clearly bounded above by e−j
2

when j is larger than some
integer j0, so that∑

λ⊂[0,1)d

〈Λ〉≥j0

P(dλ ≤ 〈λ〉−3H(xλ)2−H(xλ)〈λ〉) ≤
∑
j≥j0

2dje−j
2

<∞,
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and we deduce the required lower bound from the Borel-Cantelli lemma.
In order to establish the upper bound, let us begin by observing that with proba-

bility one, for any dyadic cube λ ⊂ [0, 1)d with scale 〈λ〉 = j large enough, |ελ| ≤ j.
This follows again from the Borel-Cantelli lemma, together with the fact that

P(|ελ| > j) = 2(1− Φ(j)) ≤ e−j
2/2

j

√
2

π
,

which itself follows from standard estimates on the asymptotic behavior of the
cumulative distribution function Φ of the standard Gaussian distribution. Now,
along with (40), this implies that for 〈λ〉 = j large enough,

dλ ≤ sup
λ′⊂3λ

〈λ′〉2−(H(xλ)−C2−βj)〈λ′〉 = j2−(H(xλ)−C2−βj)j ≤ 2j2−H(xλ)j ,

and the required upper bound follows. �

We may now finish the proof of Proposition 9. To this end, let x ∈ (0, 1)d and
r > 0 such that Ω = B(x, r) ⊂ (0, 1)d. Then, owing to Lemma 1, the structure

function of the dyadic function ẼH on Ω, which is defined by (17), satisfies∑
λ∈ΛΩ

j

(
2−H(xλ)j

j3H(xλ)

)p
≤ Sj(Ω, p) ≤

∑
λ∈ΛΩ

j

(
2j2−H(xλ)j

)p
(41)

for j large enough and p ≥ 0. Given that H satisfies locally a uniform Hölder
condition of order β, there exists a real C > 0 that depends on neither x nor r such
that |H(xλ)−H(x)| ≤ Crβ for all dyadic cubes λ ⊂ Ω. In addition, the cardinality
of ΛΩ

j is comparable with rd2dj . Thus, there is a constant C ′ > 0 such that

rd2dj

C ′

(
2−(H(x)+Crβ)j

j3(H(x)+Crβ)

)p
≤ Sj(Ω, p) ≤ C ′rd2dj

(
2j2−(H(x)−Crβ)j

)p
.

It follows that the scaling function of ẼH on Ω satisfies

(H(x)− Crβ)p− d ≤ τΩ
ẼH

(p) ≤ (H(x) + Crβ)p− d.

Letting r go to zero, we may finally conclude that τEH (x, p) = H(x)p − d for all
p ≥ 0 and x ∈ (0, 1)d. The same approach still holds for the negative values of
p except that the inequalities have to be reversed in (41) and in the subsequent
estimates as well. Proposition 9 follows.

5.2. A Markov process with a varying local multifractal spectrum. In this
section we reinterpret the results of [9] in terms of local spectrum. A quite gen-
eral class of one-dimensional Markov processes consists of stochastic differential
equations (S.D.E.) with jumps. Recall that such a process is the sum of a Brow-
nian motion and a pure jump process. We will assume in the following that the
process has no Brownian part; indeed, since Brownian motion is mono-Hölder, its
consequence on the spectrum is straightforward to handle: it eliminates Hölder ex-
ponents larger than 1/2 and, eventually adds a point at (1/2, 1). Thus the Markov
processes that will be studied are jumping S.D.E. without Brownian and drift part,
starting e.g. from 0, and with jump measure ν(y, du) (meaning that when located
at y, the process jumps to y + u at rate ν(y, du)). Again, since this is a ”toy”
model, we will make additional simplifying assumptions: Namely that the process
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is increasing (that is, ν(y, (−∞, 0)) = 0 for all y ∈ R). Classically, a necessary
condition for the process to be well-defined is that

∫∞
0
u ν(y, du) <∞.

If ν is chosen so that the index βν(y,.) is constant with respect to y, then one
expects that the local multifractal spectrum dM (t, h) of the process M = (Mt)t≥0

will be deterministic and independent of t. Hence, the index of the jump measure
will depend on the value y of the process. The most natural example of such a
situation consists in choosing

νγ(y, du) := γ(y)u−1−γ(y)1[0,1](u)du,

for some function γ : R 7→ (0, 1). The lower exponent of this family of measures is

∀ y ≥ 0, βνγ(y,.) = γ(y).

In [9], the following assumption is made

(H)

{
There exists ε > 0 such that γ : [0,∞) 7−→ [ε, 1− ε]
is a Lipschitz-continuous strictly increasing function.

It is relatively clear that the assumptions can be relaxed, and that many classes
of Markov processes could be further studied. An interesting subject to investigate
is the range of functions γ that could be used in the construction. For a process,
M = (Mt)t≥0, one sets ∆Mt = Mt −Mt−, where Mt− = lim

s→t, s<t
Ms

Proposition 10. [9] Assume that (H) holds. There exists a strong Markov process
M = (Mt)t≥0 starting from 0, increasing and càdlàg (i.e. right-continuous, with
a left limit), and with generator L defined for all y ∈ [0,∞) and for any function
φ : [0,∞) 7→ R Lipschitz-continuous by

Lφ(y) =

∫ 1

0

[φ(y + u)− φ(y)]νγ(y, du). (42)

Almost surely, this process is continuous except on a countable number of jump
times. Denote by J the set of its jump times, that is J = {t > 0 : ∆M(t) 6= 0}.
Finally, J is dense in [0,∞).

This representation of M is useful for its local regularity analysis.

The following theorem of [9] summarizes the multifractal features of M .

Theorem 6. Assume (H) and consider the process M constructed in Proposition
10. Then, the following properties hold almost surely.

(i) For every t ∈ (0,∞)\J , the local spectrum of M at t is given by

dM (t, h) =

{
h · γ(Mt) if 0 ≤ h ≤ 1/γ(Mt),

−∞ if h > 1/γ(Mt),
(43)

while for t ∈ J ,

dM (t, h) =


h · γ(Mt) if 0 ≤ h < 1/γ(Mt),

h · γ(Mt−) if h ∈ [1/γ(Mt), 1/γ(Mt−)],

−∞ if h > 1/γ(Mt−).

(44)
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(ii) The spectrum of M on any interval I = (a, b) ⊂ (0,+∞) is

∀h ≥ 0, dM (h) = sup
{
h · γ(Mt) : t ∈ I, h · γ(Mt) < 1

}
(45)

= sup
{
h · γ(Ms−) : s ∈ J ∩ I, h · γ(Ms−) < 1

}
. (46)

In (45) and (46), we adopt the convention that sup ∅ = −∞.
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Figure 1. Two sample paths of the stochastic process M built
using the function γ(y) := min(1/2 +y/4, 0.9). On the right hand-
side are plotted the theoretical spectra DM ([0, 3], .).

As can be seen from the definition of the local multifractal spectrum, in order
to prove Theorem 6, it is enough to show (46). Indeed, (43) simply follows from
considering the limit of (46) when the interval I is the centered ball B(t, r) and
letting r tend to zero.

Formula (46) is better understood when plotted: for every s ∈ I ∩ J , plot a
segment whose endpoints are (0, 0) and (1/γ(Ms−), 1) (open on the right), and
take the supremum to get DM (I, .). Sample paths of the process M and their
associated spectra are given in Figure 1.

The formulae giving the local and global spectra are based on the computation
of the pointwise Hölder exponents at all times t. The value of the pointwise Hölder
exponent of M at t depends on two parameters: the value of the process M in
the neighborhood of t, and the approximation rate of t by the set of jumps J . In
particular, the following properties holds a.s.,

for every t ≥ 0, hM (t) ≤ 1/γ(Mt),

for Lebesgue-almost every t, hM (t) = 1/γ(Mt),

for every κ ∈ (0, 1), dimH{t ≥ 0 : hM (t) = κ/γ(Mt)} = κ.
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The relevance of the local spectrum in this context is thus obvious: depending on
the local value of M , the pointwise Hölder exponents change, and so is the (local)
multifractal spectrum.

It is worth emphasizing that, as expected from the construction of the process
M , the local spectrum (43) at any point t > 0 essentially coincides with that of
a stable Lévy subordinator of index γ(Mt). This local comparison is strengthened
by the following theorem, which proves the existence of tangent processes for M
(which are Lévy stable subordinators).

Proposition 11. We denote by Ft := σ({N(A), A ∈ B([0, t] × [0,∞))}). Let

t0 ≥ 0 be fixed. Conditionally on Ft0 , the family of processes
(Mt0+αt −Mt0

α1/γ(Mt0
)

)
t∈[0,1]

converges in law, as α → 0+, to a stable Lévy subordinator with Lévy measure
γ(Mt0)u−1−γ(Mt0

)du. Here the Skorokhod space of càdlàg functions on [0, 1] is
endowed with the uniform convergence topology.

Observe that for all s ∈ J , all h ∈ (1/γ(Ms), 1/γ(Ms−)], dM (h) = h · γ(Ms−).
Thus the spectrum dM of M on an interval I is a straight line on all segments of
the form (1/γ(Ms), 1/γ(Ms−)], s ∈ J ∩ I. By the way, this spectrum, when viewed
as a map from R+ to R+, is very irregular, and certainly multifractal itself. This
is in sharp contrast with the spectra usually obtained, which are most of the time
concave or (piecewise) real-analytic. Hence, the difference between the global and
the local multifractal spectra is stunning: While dM is very irregular, dM (t, ·) is a
straight line.

This example naturally leads to the following open problem, which would express
that a natural compatibility holds for local multifractal analysis: Find general
conditions under which a stochastic process X which has a tangent process at a
point x0 satisfies that the multifractal spectrum of the tangent process coincides
with the local spectrum of X at x0.

6. Other regularity exponents characterized by dyadic families

Other exponents than those already mentioned fit in the general framework given
by Definition 7 and therefore the results supplied by multifractal analysis can be
applied to them. We now list a few of them.

Pointwise Hölder regularity is pertinent only if applied to locally bounded func-
tions. An extension of pointwise regularity fitted to functions that are only assumed
to belong to Lploc is sometimes required: The corresponding notion was introduced
by Calderón and Zygmund in 1961, see [22], in order to obtain pointwise regularity
results for elliptic PDEs.

Definition 17. Let p ∈ [1,+∞) and α > −d/p. Let f ∈ Lploc(Ω), and x0 ∈ Ω; f
belongs to T pα(x0) if there exist C > 0 and a polynomial P of degree less than α
such that, for r small enough,(

1

rd

∫
B(x0,r)

|f(x)− P (x− x0)|pdx

)1/p

≤ Crα. (47)

The p-exponent of f at x0 is

hpf (x0) = sup{α : f ∈ T pα(x0)}.

Remarks:
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• The normalization chosen in (47) is such that cusps |x−x0|α (when α /∈ 2N)
have an Hölder and a p-exponent which take the same value α at x0.
• The Hölder exponent corresponds to the case p = +∞.
• We only define lower exponents here: Upper exponents could also be defined

in his context, by considering local Lp norms of iterated differences.
• Definition 17 is a natural substitute for pointwise Hölder regularity when

functions in Lploc are considered. In particular, the p-exponent can take
negative values down to −d/p, and typically allows to take into account
behaviors which are locally of the form

1

|x− x0|γ
for γ < d/p, (48)

A pointwise regularity exponent associated with tempered distributions has been
introduced by Y. Meyer: The weak scaling exponent (see [46], and also [1] for a
multifractal formalism based on this exponent). It can also be interpreted as a
limit case of other exponents for distributions, which can be related with the Hölder
exponent; let us briefly recall how this can be done.

Let f be a tempered distribution defined over Rd. One can define fractional
primitives of order s of f in the Fourier domain by

f̂ (−s)(ξ) = (1 + |ξ|2)s/2f̂(ξ).

Since f is of finite order, for s large enough, f (−s) locally belongs to Lp (or L∞).
It follows that one can define regularity exponents of distributions through p-
exponents (or Hölder exponents) of a fractional primitives of large enough order. If
f is only defined on a domain Ω, one can still define the same exponents at x0 ∈ Ω
by using a function g ∈ D(Rd) such that g is supported inside Ω and g(x) = 1 in
a neighborhood of x0; then fg is a tempered distribution defined on Rd and the
exponents of (fg)(−s) at x0 clearly do not depend on the choice of g.

Let f be a tempered distribution defined on a open domain. Denote by hsf (x)

the Hölder exponent of f (−s) (which is thus canonically well defined for s large
enough. By definition, the weak scaling exponent of f at x is

Wf (x) = lim
s→+∞

(
hsf (x)− s

)
(note that the limit always exists because the quantity considered is an increasing
function of s). We will not deal directly with this exponent because it does not
directly fit in the framework given by Definition 7. But we will rather consider the
following intermediate framework.

Definition 18. Let f be a tempered distribution defined on a non-empty open
set Ω ⊂ Rd. Let p ≥ 1 and s be large enough so that f (−s) belongs to Lp in a
neighborhood of x0. The fractional p-exponent of order s of f at x0 is defined by

hp,sf (x0) = hp
f(−s)(x0)

(using the convention h∞f = hf ).

Note that, in practice, the standard way to perform the multifractal analysis
of data that are not locally bounded is to deal with the exponent h∞,sf , where s

is chosen large enough so that f (−s) ∈ L∞loc, i.e. it consists in first performing
a fractional integration, and then a standard multifractal analysis based on the
Hölder exponent, see [2] and references therein.
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Similarly, in the function case, if the pointwise regularity exponents are small
enough, they can be recovered for the oscillation of f . Recall that the oscillation of
f of order l on a convex set A is defined through conditions on the finite differences
of the function f , denoted by ∆M

h f : The first order difference of f is

(∆1
hf)(x) = f(x+ h)− f(x).

If l > 1, the differences of order l are defined recursively by

(∆l
hf)(x) = (∆l−1

h f)(x+ h)− (∆l−1
h f)(x).

Then

Osclf (A) = sup
x,x+lh∈A

∣∣(∆l
hf)(x)

∣∣ .
One easily checks that the Hölder exponent can be derived for the oscillation on
the cubes 3λ. Let f be locally bounded on an open set Ω.

If l > hf (x0), then

∀x0 ∈ Ω, hf (x0) = lim inf
j→+∞

logOsclf (3λj(x0))

log 2−j
. (49)

Recall also Proposition 3 which allows to derive numerically the Hölder exponent
by a log-log plot regression bearing on the the dλj(x0) when j → +∞, see [34].

However, in contradistinction with the measure case, a similar formula does not
hold for the upper Hölder exponent, see [23] where partial results in this direction
and counterexamples are worked out.

We now turn to the wavelet characterization of the p-exponent. We will assume
that f locally belongs to Lp, with slow Lp-increase, i.e. satisfies

∃C,N > 0

∫
Ω∩B(0,R)

|f(x)|pdx ≤ C(1 + |R|)N .

In the following, when dealing with the T pα regularity of a function f , we will
always assume that, if f is defined on an unbounded set Ω, then it has slow Lp-
increase, and, if Ω 6= Rd, then the wavelet basis used is compactly supported.

Definition 19. Let f ∈ Lploc(Ω), and let ψλ be a given wavelet basis. The local
square function of f is

Sf,λ(x) =

( ∑
λ′⊂3λ

|cλ′ |21λ′(x)

)1/2

,

and the p-leaders are defined by dpλ = 2dj/p ‖ Sf,λ ‖p .

The following result of [36] yields a wavelet characterization of the p-exponent
which is similar to (14).

Proposition 12. Let p ∈ (1,∞) and f ∈ Lp. Assume that the wavelet basis used
is r-smooth with r > hpf (x0) + 1. Then

hpf (x0) = lim inf
j→+∞

log dpλj(x0)

log 2−j
. (50)
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Recall that the “almost-diagonalization” principle for fractional integrals on
wavelet bases states that, as regards Hölder regularity, function spaces or scal-
ing functions, one can consider that a fractional integration just acts as if it were
diagonal on a wavelet basis, with coefficients 2−sj on ψλ. This rule of thumb is
justified by the fact that a fractional integration actually is the product of such a
diagonal operator and of an invertible Calderon-Zygmund operator A such that A
and A−1 both belong to the Lemarié algebras Mγ , for a γ arbitrarily large (and
which depends only on the smoothness of the wavelet basis) see [44, 45] for the defi-
nition of the Lemarié algebras and for the result concerning function spaces and [34]
and references therein for Hölder regularity, function spaces or scaling functions.

It follows from Proposition 12 , and the “almost-diagonalization” principle for
fractional integrals on wavelet bases, that the exponent hp,sf (x0) can be obtained
as follows.

Corollary 7. Let p ∈ (1,∞) and f ∈ Lp. Let

Ssf,λ(x) =

( ∑
λ′⊂3λ

|2−sj
′
cλ′ |21λ′(x)

)1/2

and dp,sλ = 2dj/p ‖ Ssf,λ ‖p .

Then, if the wavelet basis is r-smooth with r > hpf (x0) + s+ 1, then

hp,sf (x0) = lim inf
j→+∞

log dp,sλj(x0)

log 2−j
. (51)

7. A functional analysis point of view

7.1. Function space interpretation: Constant regularity. If p > 0, the scal-
ing function has a function space interpretation, in terms of discrete Besov spaces
which we now define. Recall that the elements of a dyadic family are always non-
negative.

Definition 20. Let s ∈ R and p ∈ R. A dyadic function E belongs to bs,∞p (Ω) if

∃C, ∀j, 2−dj
∑
λ∈ΛΩ

j

∗
(eλ)p ≤ C · 2−spj . (52)

If p = +∞, a dyadic function E belongs to bs,∞∞ (Ω) if

∃C ∀λ : eλ ≤ C · 2−sj . (53)

Note that, if p > 0, this condition (if applied to the moduli of the coefficients)
defines a vector space. It is a Banach space if p ≥ 1, and a quasi-Banach space if
0 < p < 1; recall that, in a quasi-Banch space, the triangular inequality is replaced
by the weaker condition :

∃C, ∀x, y, ‖ x+ y ‖≤ C(‖ x ‖ + ‖ y ‖).

Definition 20 yields a function space interpretation to the scaling function when
p > 0. It is classical in this context to rather consider the scaling function

ηE(p) = τE(p)− d.

Then, if Ω is a bounded set,

∀p ∈ R, ηΩ
E (p) = sup{s : E ∈ bs/p,∞p (Ω)};
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and, if Ω is unbounded, then the function space interpretation is the same, using
the precaution supplied by (19). Additionally,

hΩ
E = sup {s : E ∈ bs,∞∞ (Ω)} .

The terminology of “discrete Besov spaces” is justified by the fact that, if the
eλ are wavelet coefficients, then (52) and (53) are the wavelet characterization of
the “classical” Besov spaces Bs,∞p (Rd) of functions (or distributions) defined on Rd;
therefore each wavelet decomposition establishes an isomorphism between the space
bs,∞p (Rd) and the space Bs,∞p (Rd), see [44]. Note that, when p = ∞, these Besov

spaces coincide with the Hölder spaces Cs(Rd), so that, when the (eλ) are wavelet
coefficients, then the uniform regularity exponent has the following interpretation

hΩ
E = sup{s : E ∈ Cs(Rd)}.

In the measure case, H. Triebel showed that the discrete Besov conditions bearing
on the µ(3λ) can also be related with the Besov regularity of the measure µ, see
[59]:

If s < d, (µ(3λ)) ∈ bs,∞p (Rd)⇐⇒ µ ∈ Bs−d,∞p (Rd).
In the case where p = +∞, uniform regularity gives an important information
concerning the sets A such that µ(A) > 0, as a consequence of the mass distribution
principle, see Section 2: Since this estimate precisely means that the sequence
(eλ) = (µ(3λ)) belongs to bs,∞∞ (Ω), it follows that, if A ⊂ Ω and if a measure µ
satisfies µ(A) > 0, then

dim(A) ≥ hΩ
µ . (54)

When the sequence E is composed of wavelet leaders, or of p-leaders, the cor-
responding function spaces are no more Besov spaces, but alternative families of
function spaces, the Oscillation Spaces, see [33, 35].

hΩ
E = sup{A : (21) holds}.

The following upper bounds for dimensions are classical for measures, see [20],
and are stated in the general setting of dyadic functions in [37].

Proposition 13. Let E be a dyadic function, and let

JΩ
H = {x ∈ Ω : hE(x) ≥ H}, GΩ

H = {x ∈ Ω : hE(x) ≥ H},

FΩ
H = {x ∈ Ω : h̃E(x) ≤ H)}, KΩ

H = {x ∈ Ω : h̃E(x) ≤ H)}.
• If E ∈ bs,∞p (Ω) with p > 0, then dim(GΩ

H) ≤ d− sp+Hp.

• If E ∈ b̃s,∞p (Ω) with p > 0, then dimp(F
Ω
H) ≤ d− sp+Hp.

• If E ∈ bs,∞p (Ω) with p < 0, then dim(KΩ
H) ≤ d− sp+Hp.

• If E ∈ b̃s,∞p (Ω) with p < 0, then dimp(J
Ω
H) ≤ d− sp+Hp.

7.2. Function space interpretation: Varying regularity. Recall that the global
scaling function has a function space interpretation in terms of Besov spaces which
contain the dyadic function E . Similarly, the local scaling function can be given
two functional interpretations; one is local, and in terms of germ spaces at a point,
and the second is global, and is in terms of function spaces with varying smooth-
ness. We now recall these notions, starting with germ spaces in a general, abstract
setting.
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Definition 21. Let E be a Banach space (or a quasi-Banach space) of distributions
satisfying D ↪→ E ↪→ D′. Let x ∈ Rd; a distribution f belongs to E locally at x
if there exists ϕ ∈ D such that ϕ(x) = 1 in a neighbourhood of x and fϕ ∈ E. We
also say that f belongs to the germ space of E at x, denoted by Ex.

Let us draw the relationship between the local scaling function and germ spaces:
If the (eλ) are the wavelet coefficients of a function f , then

∀p > 0, ηf (x, p) = sup
{
s : f ∈ Bs/p,∞p,x

}
.

Note that, in the wavelet case, these local Besov regularity indices have been inves-
tigated by H. Triebel, see Theorem 4 of [60] where their wavelet characterization is
derived, (the reader should be careful that what is referred to as “pointwise regular-
ity” in the terminology introduced by H. Triebel is called here “local regularity”).

The uniform exponent can also be reformulated in terms of of Hölder spaces:

Hf (x) = sup {s : f ∈ Csx} .

In that case, the function Hf (x) is called the Local Hölder exponent of f . Its
properties have been investigated by S. Seuret and his collaborators, see e.g. [42].

Note that the definition of germ spaces can be adapted to the dyadic functions
setting.

Definition 22. Let E be a Banach space (or a quasi-Banach space) defined on
dyadic functions over Ω ; a dyadic function (eλ) belongs to Ex if there exists a
neighbourhood ω of x such that the dyadic function (eλ) restricted to ω belongs to
E.

It is clear that this definition, when restricted to the case of Besov spaces and
wavelet coefficients coincides with Definition 21.

We now turn to function spaces with varying smoothness. Such spaces were
initially introduced by Unterberger and and Bokobza in [61, 62], followed by many
authors (see [52] for an extensive review on the subject). A general way to introduce
such spaces is to remark that the classical Sobolev spaces Hs,p(Rd) can be defined
by the condition

‖ T (f) ‖p<∞,
where T is the pseudo-differential operator defined by

(Tf)(x) =
1

(2π)d

∫
Rd
eixξ(1 + |ξ|2)s/2f̂(ξ)dξ.

This definition leads to operators with constant order s because the symbol (1 +
|ξ|2)s/2 is independent of x. However, one can define more general spaces, with
possibly varying order if replacing (1 + |ξ|2)s/2 by a symbol σ(x, ξ). In particular
the symbols (1 + |ξ|2)a(x)/2 will lead to Sobolev spaces of varying order Ha,p where
we can expect that, if a is a smooth enough function (say continuous), then the
local order of smoothness at x will be a(x). This particular case, and its extensions
in the Besov setting, has been studied by H.G. Leopold, followed by J. Schneider,
Besov, H. Triebel, A. Almeida, P. Hästö, J. Vyb́ıral, and several other authors,
who gave alternative characterizations of these space in terms of finite differences
or Littlewood-Paley decomposition. They also studied their mutual embeddings
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(and also in the case where both the order of smoothness and the order of in-
tegrability p vary) and their interpolation properties, see [53, 54] fand references
therein, and also [52] for an historical account. The reader can also consult [3, 63]
for recent extensions in particular when both the order of smoothness and the order
of integrability p vary. We follow here the presentation of J. Schneider, since this
author obtained Littlewood-Paley characterizations, which are clearly equivalent to
the wavelet characterization that we now give. For the sake of simplicity, we as-
sume form now on that the distributions considered are defined on Rd and that the
wavelet basis used belongs to the Schwartz class (the usual adaptations are stan-
dard in the case of functions on a domain, or for wavelets with limited regularity).
We additionally assume that the function a is uniformly continuous and satisfies

∃c, C > 0, ∀x ∈ Rd, c ≤ a(x) ≤ C. (55)

Then the Besov space Ba,qp (for p, q ∈ (0,∞]) can be characterized by the following
wavelet condition, which is independent of the wavelet basis used.

Proposition 14. Let a be a uniformly continuous function satisfying (55), and
let p, q ∈ (0,∞]. The Besov space of varying order Ba,qp is characterized by the
following condition:

Let cλ denote the wavelet coefficients of a distribution f , and let

aj =

2−dj
∑
λ∈Λj

(cλ2a(λ)j)p

1/p

,

where a(λ) denotes the average of the function a on the cube λ; then f ∈ Ba,qp if
(aj) ∈ lq.

Note that when p = q = 2 one recovers the Sobolev space Ha,2 defined above,
and when a is a constant equal to s, then one recovers the standard Besov space
Bs,qp . Furthermore, the embeddings

Ba,1p ↪→ Ha,p ↪→ Ba,∞p

yield easy to handle “almost characterizations” of Sobolev spaces of varying order.
The following result, which follows directly from the definition of the local scaling

function (Definition 8) and the characterization supplied by Proposition 14, gives
the interpretation of the local scaling function in terms Besov spaces of varying
order.

Proposition 15. Let f be a distribution defined on Rd. Then, for p > 0, the local
wavelet scaling function of f can be recovered by

∀p > 0, ηf (p, x) = p · sup{a : f ∈ Ba,∞p }.
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