
HAL Id: hal-00733264
https://hal.science/hal-00733264v1

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Writing Reusable Digital Geometry Algorithms in a
Generic Image Processing Framework
Roland Levillain, Thierry Géraud, Laurent Najman

To cite this version:
Roland Levillain, Thierry Géraud, Laurent Najman. Writing Reusable Digital Geometry Algorithms
in a Generic Image Processing Framework. WADGMM 2010, Aug 2010, Istanbul, Turkey. pp.140-153,
�10.1007/978-3-642-32313-3_10�. �hal-00733264�

https://hal.science/hal-00733264v1
https://hal.archives-ouvertes.fr


Writing Reusable Digital Topology Algorithms
in a Generic Image Processing Framework

Roland Levillain1,2, Thierry Géraud1,2, Laurent Najman2

1 EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire, FR-94276 Le Kremlin-Bicêtre Cedex, France

2 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Équipe A3SI,
ESIEE Paris, Cité Descartes, BP 99, FR-93162 Noisy-le-Grand Cedex, France
{roland.levillain,thierry.geraud}@lrde.epita.fr, l.najman@esiee.fr

Abstract. Digital Topology software should reflect the generality of the
underlying mathematics: mapping the latter to the former requires gener-
icity. By designing generic solutions, one can effectively reuse digital
topology data structures and algorithms. We propose an image process-
ing framework focused on the Generic Programming paradigm in which
an algorithm on the paper can be turned into a single code, written
once and usable with various input types. This approach enables users
to design and implement new methods at a lower cost, try cross-domain
experiments and help generalize results.

1 Introduction

Like Mathematical Morphology (MM), Digital Topology (DT) has many ap-
plications in image analysis and processing. Both present sound mathematical
foundations to handle many types of discrete images. In fact most methods from
Mathematical Morphology or Digital Topology are not tied to a specific context
(image type, neighborhood, topology): they are most often described in abstract
and general terms. Thus they are not limiting their field of application. However,
software packages for MM and DT rarely take (enough) advantage of this gener-
ality: an algorithm is sometimes reimplemented for each image and/or each value
type, or worse, written for a unique input type. Such implementations are not
reusable because of their lack of genericity. These limitations often come from
the implementation framework, which prohibits a generic design of algorithms.
A recent and notable exception is the DGtal project, which proposes Digital
Geometry (DG) software tools and algorithms built in a generic C++ framework
[1].

Thanks to the Generic Programming (GP) paradigm, provided in particular
by the C++ language, one can design and implement generic frameworks. This
paradigm is especially well-suited to the field of scientific applications where the
efficiency, widespread availability and standardization of C++ are real assets.
To this end, we have designed a paradigm dedicated to generic and efficient
scientific software [2] and applied the idea of generic algorithms to MM in Image
Processing (IP) [3], as suggested by d’Ornellas and van den Boomgaard [4]. The



result of our experiments is a generic library, Milena, part of the Olena image
processing platform [5].

Lamy suggests to implement digital topology in IP libraries [6]. The proposed
solution, applied to the ITK library [7,8] “works for any image dimension”.
In this paper, we present a framework for the generic implementation of DT
methods within the Milena library, working for any image type supporting the
required notions (value types, geometric and topological properties, etc.). Such
a generic framework requires the definition of concepts from the domain (in
particular, of an image) to organize data structures and algorithms, as explained
in Sect. 2. Given these concepts it is possible to write generic algorithms, like
a homotopic thinning operator making use of various definitions of the notion
of simple point. We present a generic definition of such an operator in Sect. 3
and show some illustrations in Sect. 4. Section 5 concludes on the extensibility
of this work along different axes: existing algorithms, new data structures and
efficiency.

2 Genericity in Image Processing

In order to design a generic framework for image processing, we have previously
proposed the following definition of an image [3].

Definition. An image I is a function from a domain D to a set of values V ; the
elements of D are called the sites of I, while the elements of V are its values.

For the sake of generality, we use the term site instead of point ; e.g. a site
could represent a triangle of a surface mesh used as the domain of an image.
Classical site sets used as image domains encompass hyperrectangles (boxes) on
regular n-dimensional grids, graphs and complexes (see Sect. 3).

In the GP paradigm, these essential notions (image, site set, site, value) must
be translated into interfaces called concepts in Milena (Image, Site Set, etc.) [9].
These interfaces contain the list of services provided by each type belonging to
the concept, as well as its associated types. For instance, a type satisfying the
Image concept must provide a domain() routine (to retrieve D), as well as a
domain t type (i.e. the type of D) satisfying the Site Set concept. Concepts act
as contracts between providers (types satisfying the concept) and users (algo-
rithms expressing requirements on their inputs and outputs through concepts).
For instance, the breadth first thinning routine from Algorithm 1.3 expects
the type I (of the input image) to fulfill the requirements of the Image concept.
Likewise nbh must be a Neighborhood; and is simple and constraint must
be functions taking a value of arbitrary type and returning a Boolean value
(Function v2b concept).

3 Generic Implementation of Digital Topology

Let us consider the example of homotopic skeletonization by thinning. Such
an operation can be obtained by the removal of simple points (or simple sites



in the Milena parlance) using Algorithm 1.1 [10]. A point of an object is said
to be simple if its deletion does not change the topology of the object. This
algorithm takes an object X and a constraint K (a set of points that must not be
removed) and iteratively deletes simple points of X\K until stability is reached.
Algorithm 1.1 is an example of an algorithm with a general definition that could
be applied to many input types in theory. But in practice, software tools often
allow a limited set of such input types (sometimes just a single one), because
some operations (like “is simple”) are tied to the definition of the algorithm [3].

Algorithm 1.2 shows a more general version of Algorithm 1.1, where imple-
mentation-specific elements have been replaced by mutable parts: a predicate
stating whether a point p is simple with respect to a set X (is simple); a routine
“detaching” a (simple) point p from a set X (detach); and a predicate declaring
whether a condition (or a set of conditions) on p is satisfied before consider-
ing it for removal (constraint). The algorithm takes these three functions as
arguments in addition to the input X. Algorithm 1.2 is a good candidate for
a generic C++ implementation of the breadth-first thinning strategy and has
been implemented as Algorithm 1.3 in Milena1. This algorithms implements the
breadth-first traversal by using a FIFO (First In, First Out) queue. The set
X is represented by a binary image (V = {true, false}), that must be compat-
ible with operations performed within the algorithm. Inputs is simple, detach
and constraint2 have been turned into function objects (also called functors).
The breadth first thinning routine creates and returns an image with type
mln concrete(I); it is an image type equivalent to I that allows to store data
for every sites independently (which is not the case for some image types).

Simple Point Characterization Implementation

There are local characterizations of simple points in 2D, 3D and 4D, which can
lead to look-up table (LUT) based implementations [11]. However, since the

number of configurations of simple and non-simple points in Zd is 23
d−1, this

approach can only be used in practice in 2D (256 configurations, requiring a LUT
of 32 bytes) and possibly in 3D (67,108,864 configurations, requiring a LUT of 8
megabytes). The 4D case exhibits 280 configurations, which is intractable using
a LUT, as it would need 128 zettabytes (128 billions of terabytes) of memory.
Couprie and Bertrand have proposed a more general framework for checking for
simple points using cell complexes [11] and the collapse operation. Intuitively,
complexes can be seen as a generalization of graphs. An informal definition of
a simplicial complex (or simplicial d-complex) is “a set of simplices” (plural of

1 In Algorithm 1.3, mln ch value(I, V) and mln concrete(I) are helper macros. The
former returns the image type associated to I where the value type has been set to
V. The latter returns an image type corresponding to I with actual data storage
capabilities. In many cases, mln concrete(I) is simply equal to I.

2 Note that the notion of “constraint” is not the same in Algorithm 1.1 and Algo-
rithm 1.3: in the former, it is the set of points to preserve, while in the latter is it a
predicate that a candidate point must pass to be removed.



Algorithm 1.1. Breadth-First Thinning.

Data : E (a set of points/sites),
X ⊆ E (initial set of points),
K ⊆ X (a set of points (constraint) that cannot be removed)
Result : X
P ← { p ∈ X | p is simple for X }
while P 6= ∅ do
S ← ∅
for each p ∈ P do

if p 6∈ K and p is simple for X then
X ← X − {p}
for each n ∈ N (p) ∩X do
S ← S ∪ {n}

P ← ∅
for each p ∈ S do

if p is simple for X then P ← P ∪ {p}

Algorithm 1.2. A generic version of Algorithm 1.1.

Data : E, X ⊆ E, N (neighborhood),
is simple (a function saying whether a point is simple),
detach (a routine detaching a point from X),
constraint (a function representing a constraint)
Result : X
P ← { p ∈ X | is simple(p, X) }
while P 6= ∅ do
S ← ∅
for each p ∈ P do

if constraint (p) and is simple(p, X) then
X ← detach(X, p)
for each n ∈ N (p) ∩X do
S ← S ∪ {n}

P ← ∅
for each p ∈ S do

if is simple (p, X) then P ← P ∪ {p}



Algorithm 1.3. A generic C++ implementation of Algorithm 1.2 in Milena. Functors
are highlighted.

template <typename I, typename N, typename F, typename G, typename H>

mln_concrete(I)

breadth_first_thinning(const Image<I>& input_,

const Neighborhood<N>& nbh_,

Function_v2b<F>& is_simple_,

G& detach,

const Function_v2b<H>& constraint_)

{

// Convert arguments to their exact types and initialize ‘output’.

const I& input = exact(input_);

const N& nbh = exact(nbh_);

F& is_simple = exact(is_simple_);

const H& constraint = exact(constraint_);

mln_concrete(I) output = duplicate(input);

is_simple.set_image(output); // Bind ‘output’ to ‘is simple’.

detach.set_image(output); // Bind ‘output’ to ‘detach’.

// Step #1. Initialize a FIFO queue with simple points candidates.

typedef mln_psite(I) psite;

p_queue_fast<psite> queue;

// Image ‘in queue’ records whether a point site is in the queue.

mln_ch_value(I, bool) in_queue;

initialize(in_queue, input);

data::fill(in_queue, false);

mln_piter(I) p(output.domain());

for_all(p) // ∀ ‘p’ ∈ the domain of ‘output’...

if (output(p) && constraint(p) && is_simple(p)) {

queue.push(p); in_queue(p) = true; // Push ‘p’ into the queue.

}

// Step #2. Process the FIFO queue until it is empty.

while (!queue.is_empty()) {

psite p = queue.pop_front(); in_queue(p) = false;

if (output(p) && constraint(p) && is_simple(p)) {

detach(p); // ‘p’ is simple and passes the constraint; detach it.

// Process the neighbors of ‘p’.

mln_niter(N) n(nbh, p);

for_all(n) // ∀ ‘n’ in the neighborhood of ‘p’...

if (output.domain().has(n) // Prevent out-of-bound accesses.

&& output(n) && constraint(n) && is_simple(n)

&& !in_queue(n)) {

queue.push(n); in_queue(n) = true; // Push ‘n’ into the queue.

}

}

}

return output;

}



(a) A simplicial 3-complex, composed
of 0-faces (vertices), 1-faces (edges), 2-
faces (triangles) and a 3-face (tetrahe-
dron).

f2

e3

f3

f1

e1

e2

v

(b) A cubical 2-complex, com-
posed of 0-faces (vertices), 1-faces
(edges) and 2-faces (squares).

Fig. 1. Examples of cell complexes.

simplex), where a simplex or n-simplex is the simplest manifold that can be
created using n points (with 0 ≤ n ≤ d). A 0-simplex is a point, a 1-simplex a
line segment, a 2-simplex a triangle, a 3-simplex a tetrahedron. A graph is indeed
a 1-complex. Figure 1(a) shows an example of a simplicial complex. Likewise, a
cubical complex or cubical d-complex can be thought as a set of n-faces (with
0 ≤ n ≤ d) in Zd, like points (0-faces), edges (1-faces), squares (2-faces), cubes
(3-faces) or hypercubes (4-faces). Figure 1(b) depicts a cubical complex sample.

Complexes support a topology-preserving transformation called collapse. An
elementary collapse removes a free pair of faces of a complex, like the square face
f1 and its top edge e1, or the edge e2 and its top vertex v, in Fig. 1(b). The pair
(f2, e3) cannot be removed, since e3 also belongs to f3. Successive elementary
collapses form a collapse sequence that can be used to remove simple points.
Collapse-based implementations of simple-point deletion can always be used in
2D, 3D and 4D, though they are less efficient than their LUT-based counterparts.
On the other hand, they provide some genericity as the collapse operation can
have a single generic implementation on complexes regardless of their structure.

4 Illustrations

Using this generic approach, Algorithm 1.3 can be used to compute skeletons of
various input images.



(a) 2D binary image. (b) Skeleton of (a) with no
constraint

(c) Skeleton of (a) where
end points of the initial im-
age have been preserved.

Fig. 2. Computation of skeletons from a 2D binary regular image.

4.1 Skeleton of a 2D Binary Image

Our first illustration uses a classical 2D binary image built on a square grid
(Fig. 2(a)). The following lines produces the result shown on Fig. 2(b).

typedef image2d<bool> I;

typedef neighb2d N;

I output =

breadth_first_thinning(input,

c4(),

is_simple_point2d<I, N>(c4(), c8()),

detach_point<I>(),

no_constraint());

I and N are introduced as aliases of the image and neighborhood types for conve-
nience. The breadth first thinning algorithm is called with five arguments,
as expected. The first two ones are the input image and the (4-connectivity)
neighborhood used in the algorithm. The last three ones are the functors gov-
erning the behavior of the thinning operator. The call is simple point2d<I,

N>(c4(), c8()) creates a simple point predicate based on the computation of
the 2D connectivity numbers [10] associated with the 4-connectivity for the fore-
ground and the 8-connectivity for the background. To compute these numbers
efficiently, is simple point2d uses a LUT containing all the possible configura-
tions in the 8-connectivity neighborhood of a pixel. detach point<I> is a simple
functor removing a pixel by giving it the value “false”. Finally, no constraint

is an empty functor representing a lack of constraint.
We also present a variation of the previous example where the fifth argument

passed to the function is an actual constraint, preserving all end points of the
initial image (see Fig. 2(c)). This result is obtained by invoking the generic



(a) 3D binary image. (b) Skeleton (dark voxels) of (a) with no
constraint superimposed on the initial im-
age (light voxels).

Fig. 3. Computation of the skeleton of 3D binary regular image.

functor is not end point in the following lines. This call creates a predicate
characterizing end points by counting their number of neighbors.

I output_with_end_points =

breadth_first_thinning(input,

c4(),

is_simple_point2d<I, N>(c4(), c8()),

detach_point<I>(),

is_not_end_point<I, N>(c4(), input));

4.2 Skeleton of a 3D Binary Image

This second example in 3D is similar to the previous one in 2D. The domain of the
image is a box on a cubical grid; the 26- and the 6-connectivity are respectively
used for the foreground and the background. The output of Fig. 3(b) is obtained
from the 3D volume shown in Fig. 3(a) with the following lines.

typedef image3d<bool> I;

typedef neighb3d N;

I output =

breadth_first_thinning(input,

c26(),

is_simple_point3d<I, N>(c26(), c6()),

detach_point<I>(),

no_constraint());



(a) Triangle mesh surface. (b) Surface curvature. (c) Surface skeleton.

Fig. 4. Computation of a skeleton using breadth-first thinning. The triangle mesh
surface 4(a) (35,286 vertices and 70,568 triangles) is seen as a simplicial 2-complex.
The image of curvature 4(b) is computed on the edges of the mesh, and simplified
using an area opening filter. All curvature regional minima are then removed from the
mesh, and the skeleton 4(c) is obtained with Algorithm 1.3 using the collapse operation.

The only real difference with the previous example is the use of the functor
is simple point3d. The default implementation of this predicate uses an on-
the-fly computation of 3D connectivity numbers. We have also implemented a
version based on a precomputed LUT which showed significant speed-up im-
provements.

Please note that the predicates is simple point2d and is simple point3d

are specifically defined for a given topology in order to preserve performances.

4.3 Thick Skeleton of a 3D Mesh Surface

In this third example, we manipulate discrete mesh surfaces composed of trian-
gles. The input of the thinning operator is a surface containing “holes”, obtained
from the mesh shown in Fig. 4(a) by removing triangles located in regional min-
ima of the surface’s curvature (darkest areas of Fig. 4(b)). The result presented
in Fig. 4(c) is obtained with the following lines. Types are not shown to make
this code more readable.

output = breadth_first_thinning(input,

nbh,

is_simple_triangle,

detach_triangle,

no_constraint());

In the previous code, input is a triangle-mesh surface represented by an image
built on a simplicial 2-complex and nbh represents an adjacency relationship
between triangles sharing a common edge. Function objects is simple triangle

and detach triangle are operations compatible with input’s type; they are
generic routines based on the collapse operation mentioned in Sect. 3, working
with any complex-based binary image.



(a) Ultimate 2-collapse of Fig. 4(a). (b) Ultimate 1-collapse of (a)

Fig. 5. Thin skeleton obtain by 2- and 1-collapse.

The input image is constructed so that the sites browsed by the for all

loops in Algorithm 1.3 are only 2-faces (triangles), while preserving access to
values at 1-faces and 0-faces. Thus, even though they receive 2-faces as input
parameters, is simple triangle and detach triangle are able to inspect the
adjacent 1-faces and 0-faces and determine whether and how a triangle can be
completely detached from the surface through a collapse sequence.

The resulting skeleton is said to be thick, since it is composed of triangles
connected by a common edge. The corresponding complex is said to be pure, as
it does not contain isolated 1-faces or 0-faces (that are not part of a 2-face).

4.4 Thin Skeleton of a 3D Mesh Surface

To obtain a thin skeleton, we can use a strategy based on successive n-collapse
operations, with n decreasing [12]. From the input of the previous example, we
can obtain a ultimate 2-collapse by removing all simple pairs composed of a 2-
face and a 1-face (a triangle and an adjacent edge). The following lines compute
such an ultimate 2-collapse. The iteration on input’s domain is still limited to
triangles (2-faces).

collapse2 = breadth_first_thinning(input,

nbh,

is_triangle_in_simple_pair,

detach_triangle_in_simple_pair,

no_constraint());

Functor is triangle in simple pair checks whether a given triangle is part
of a simple pair, and if so detach triangle in simple pair is used to remove



the pair. Thinning the initial surface with this “simple site” definition produces
a mesh free of 2-faces (triangles), as shown in Fig. 5(a).

From this first skeleton, we can compute an ultimate 1-collapse, by removing
all simple pairs composed of an edge (1-face) and a vertex (0-face). This skeleton
is produced with the following code, where input2 is an image created from
collapse2, and for which the domain of has been set to the edges of the complex,
(instead of the triangles).

collapse1 = breadth_first_thinning(input2,

nbh,

is_edge_in_simple_pair,

detach_edge_in_simple_pair,

no_constraint());

Here is edge in simple pair and detach edge in simple pair respectively
test and remove an edge along with a vertex that form a simple pair. The result
is a simplified skeleton, with no isolated branches, as the lack of constraint
(no constraint) does not preserve them. The output of the ultimate 1-collapse
on the bunny mesh is depicted in Fig. 5(b). It contains the crest lines that form
the boundaries of catchment basins, such as in the watershed transform, and, in
addition, the crest lines that make the previous ones connect one to another.

Note that in both cases, the neighborhood object nbh is the same, as it
represents the adjacency of two n-faces connected by a common adjacent (n−1)-
face. In the case of the 2-collapse, the neighborhood of a site (triangle) is the set
of adjacent triangles connected by an edge, while in the case of the 1-collapse,
the neighborhood of a site (edge) is the set of adjacent edges connected by a
vertex.

4.5 Execution Times

Table 1 shows the execution times of the previous illustrations, computed on
a PC running Debian GNU/Linux 6.0.4, featuring an Intel Pentium 4 CPU
running at 3.4 GHz with 2 GB RAM at 400 MHz, using the C++ compiler g++

(GCC) version 4.4.5, invoked with optimization option ‘-03’. The first three test
cases use a simple point criterion based on connectivity numbers, while the last
three use a collapse-based definition.

5 Conclusion

We have presented building blocks to implement reusable Digital Topology al-
gorithms in an Image Processing framework, Milena. Given a set of theoretical
constraints on its inputs, an algorithm can be written once and reused with many
compatible image types. This design has previously been proposed for Mathe-
matical Morphology, and can be applied to virtually any image processing field.
Milena is Free Software released under the GNU General Public License, and
can be freely downloaded from http://olena.lrde.epita.fr/.

http://olena.lrde.epita.fr/


Table 1. Execution times of Algorithm 1.3 for various inputs. Figures correspond to
the time spent in the breadth first thinning routine only.

Input Input size Constraint Output Time

2D image (Fig. 2(a))
321 × 254 pixels

None Fig. 2(b) 0.08 s
2D image (Fig. 2(a)) End points Fig. 2(c) 0.10 s

3D image (Fig. 3(a)) 41 × 41 × 41 voxels None Fig. 3(b) 2.67 s

Mesh (2-faces only) (Fig. 4(a)) None Fig. 4(c) 159.53 s
Mesh (2- and 1-faces) 35,286 0-faces +

None
Fig. 5(a)

68.78 s
(Fig. 4(a)) 105,852 1-faces + (2-collapse)
Mesh (1- and 0-faces) 70,568 2-faces

None
Fig. 5(b)

46.18 s
(Fig. 5(a)) (1-collapse)

A strength of generic designs is their ability to extend and scale easily and
efficiently. First, generic algorithms are extensible because of their parameteri-
zation. For instance, the behavior of Algorithm 1.3 can be changed by acting on
the simple point definition or the set of constraints. The scope of this algorithm,
initially designed to produce homotopic thinnings of binary skeleton, can even be
extended further to handle gray-level images and produce gray-level thinnings.
From a theoretical point of view, gray-level images can be processed by decom-
posing them into different sections. The equivalent of detaching a simple point in
a binary image is the lowering of a destructible point in a gray-level context [13].
We have been able to produce gray-level skeletons with Algorithm 1.3 by simply
replacing the is simple and detach operations by is destructible and lower

functors (see Fig. 6). In the case of a 2D regular images on a square grid, this
operation is straightforward as a destructible point can also be characterized
locally using new definitions of connectivity numbers.

Generic algorithms can thereafter be turned into patterns or canvases [14]
allowing the implementation of many algorithms sharing a common core. For
example Milena implements morphological algorithms like dilation and erosion,
reconstructions, etc. depending on the browsing strategy. Digital Topology could
also benefit from a canvas-based approach. The framework can also be extended
with respect to data structures. Milena provides site sets based on boxes, graphs
and complexes, but more can be added to the library (e.g. combinatorial maps,
orders, etc.) and benefit from existing algorithms and tools.

Finally, our approach can take advantage of properties of input types (reg-
ularity of the site set, isotropic adjacency relationship, etc.) and allow users
to write specialized versions of their algorithms for such subsets of data types,
leading to faster or less memory-consuming implementations [15].

Acknowledgments The authors thank Jacques-Olivier Lachaud, who reviewed
this paper, for his valuable comments, as well the initial reviewers from the
WADGMM workshop.

This work has been conducted in the context of the SCRIBO project (http:
//www.scribo.ws/) of the Free Software Thematic Group, part of the “Sys-

http://www.scribo.ws/
http://www.scribo.ws/


(a) 2D gray-level image. (b) Gray-level skeleton.

Fig. 6. Computation of a gray-level skeleton.

tem@tic Paris-Région” Cluster (France). This project is partially funded by the
French Government, its economic development agencies, and by the Paris-Région
institutions.

References

1. DGtal: Digital geometry tools and algorithms. http://liris.cnrs.fr/dgtal/

2. Géraud, Th., Levillain, R.: Semantics-driven genericity: A sequel to the static
C++ object-oriented programming paradigm (SCOOP 2). In: Proceedings of the
6th International Workshop on Multiparadigm Programming with Object-Oriented
Languages (MPOOL), Paphos, Cyprus (July 2008)

3. Levillain, R., Géraud, Th., Najman, L.: Milena: Write generic morphological al-
gorithms once, run on many kinds of images. In Wilkinson, M.H.F., Roerdink,
J.B.T.M., eds.: Mathematical Morphology and Its Application to Signal and Image
Processing – Proceedings of the Ninth International Symposium on Mathematical
Morphology (ISMM). Volume 5720 of Lecture Notes in Computer Science., Gronin-
gen, The Netherlands, Springer Berlin / Heidelberg (August 2009) 295–306

4. d’Ornellas, M.C., van den Boomgaard, R.: The state of art and future development
of morphological software towards generic algorithms. International Journal of
Pattern Recognition and Artificial Intelligence 17(2) (March 2003) 231—255

5. EPITA Research and Developpement Laboratory (LRDE): The Olena image pro-
cessing platform. http://olena.lrde.epita.fr

6. Lamy, J.: Integrating digital topology in image-processing libraries. Computer
Methods and Programs in Biomedicine 85(1) (2007) 51–58

7. Ibáñez, L., Schroeder, W., Ng, L., Cates, J., the Insight Software Consortium: The
ITK Software Guide. second edn. Kitware, Inc. (November 2005)

8. National Library of Medicine: Insight segmentation and registration toolkit (ITK).
http://www.itk.org/

http://liris.cnrs.fr/dgtal/
http://olena.lrde.epita.fr
http://www.itk.org/


9. Levillain, R., Géraud, Th., Najman, L.: Why and how to design a generic and effi-
cient image processing framework: The case of the Milena library. In: Proceedings
of the IEEE International Conference on Image Processing (ICIP), Hong Kong
(September 2010) 1941–1944

10. Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In Coeurjolly,
D., Montanvert, A., Chassery, J.M., eds.: Géométrie discrète et images numériques.
Hermes Sciences Publications (2007) 187–209

11. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D,
and 4D discrete spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31(4) (April 2009) 637–648

12. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in
pseudomanifolds. In: Proceedings of the 13th International Workshop on Combi-
natorial Image Analysis (IWCIA), Springer-Verlag (2009) 397–410

13. Couprie, M., Bezerra, F.N., Bertrand, G.: Topological operators for grayscale image
processing. Journal of Electronic Imaging 10(4) (2001) 1003–1015

14. d’Ornellas, M.C.: Algorithmic Patterns for Morphological Image Processing. PhD
thesis, Universiteit van Amsterdam (2001)

15. Levillain, R., Géraud, Th., Najman, L.: Une approche générique du logiciel pour le
traitement d’images préservant les performances. In: Proceedings of the 23rd Sym-
posium on Signal and Image Processing (GRETSI), Bordeaux, France (September
2011) In French.


	Writing Reusable Digital Topology Algorithms in a Generic Image Processing Framework

