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Abstract

In this work, the problem of testing whether different (≥ 2) independent sam-
ples, with (possibly) different heavy tailed distributions, share the same extreme
value index, is addressed. The test statistic proposed is inspired by the empirical
likelihood methodology and consists in an ANOVA-like confrontation of Hill esti-
mators. Asymptotic validity of this simple procedure is proved and efficiency, in
terms of empirical type I error and power, is investigated through simulations under
a variety of situations. Surprisingly, this topic had hardly been addressed before,
and only in the two sample case, though it can prove useful in applications.

1. Introduction

In the topic of univariate extreme value analysis, the interest lies generally in the
study of a single sample and inference in the tail of its underlying distribution. The
main parameter describing the tail behavior of a continuous distribution function F is
its extreme value index. In many fields of applications, distributions of interest are those
exhibiting a heavy tail phenomenon. In this case the extreme value index appears as the
positive number γ (1/γ is then called the tail index) such that the survival function 1−F
is regularly varying with order −1/γ, which means that F̄ (x) grossly behaves like x−1/γ

for large x (precise definition of regular variation is given below), i.e. tail decreases to 0
at a polynomial rate. Therefore, the greater the value of γ is, the greater is the chance
that samples drawn from F exhibits extreme values.
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Most of the literature on univariate extreme value statistics focuses on methods for
estimating as accurately as possible the extreme value index, which appears as the natural
measure of heaviness of the tail of the underlying distribution. This work is devoted to
a different topic, namely testing whether different distributions could share the same
value of the tail index, in the heavy tail framework, on the basis of the observation of
independent samples of these distributions. More precisely, we suppose that we observe

K independent i.i.d. samples (X
(1)
i )i≤n1

, . . . , (X
(K)
i )i≤nK

, respectively coming from
heavy-tailed distribution functions F1, . . . , FK , i.e. such that for each 1 ≤ j ≤ K, Fj

satisfies

1 − Fj(tx)

1 − Fj(t)
−→ x−1/γ0j , as t → +∞, (1)

for all x > 0, where the parameter γ0j > 0 is the extreme value index of the j-th sample.

The aim of this paper is to provide a simple yet effective test procedure for comparison
of γ01, . . . , γ0K , for instance by testing the equality hypothesis

H0 : γ01 = . . . = γ0K

This problem has not been so much addressed in the literature : it nonetheless has
practical applications in the usual fields where heavy tail phenomena occur, such as
insurance, finance, or teletraffic data analysis. For instance, the data studied in Bottolo
et al (2003) consists of insurance claims having different origins, and it is of interest
to decide whether the claim type can have an effect on the tail behavior of the claim
distribution, and if so, which types can be found to be equivalent in this sense. In
Mougeot and Tribouley (2010), the authors consider various financial data of different
firms, and address the problem of comparing (pairwisely) their associated financial risks
through their corresponding tail indices. For this purpose, they proposed a data-driven
procedure of comparison of (only) two positive tail indices : in Section 3, we will compare
their results to those corresponding to the test statistic we propose, especially in terms
of coverage accuracy and power, through a simulation study.

The organization of the paper is classical : in Section 2, the methodology, assumptions,
and results are stated, and Section 3 is devoted to a simulation study which shows
satisfactory power and coverage accuracy of our method. The proofs are delegated to
the Appendix.

2. Methodology and statement of the results

We suppose that we observe K independent samples (X
(1)
i )i≤n1

, . . . , (X
(K)
i )i≤nK

sat-
isfying (1), as presented previously. In order to derive our asymptotic result, we need
a slightly stronger condition, which specifies the rate of convergence in (1). Denoting
by Uj the inverse function of 1/(1 − Fj) (j = 1, . . . ,K), we suppose that there exists a
function Aj tending to 0 at infinity such that

Uj(tx)/Uj(t) − xγ0j

Aj(t)
−→ xγ0j

xρj − 1

ρj
, as t → +∞, (2)

for all x > 0, where ρj < 0. This so-called second order condition is classical in the
extreme value theory framework, and is known to hold for most commonly encountered
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heavy-tailed distributions.

The method we propose for testing the null hypothesis H0 : γ01 = . . . = γ0K , is
inspired by a version of the classical ANOVA test based on the empirical likelihood
methodology, proposed by Owen (1991). The starting point is the famous Hill estimator
for γ0j (j = 1 . . . K) which is defined as

γ̂j :=
1

kj

kj∑

i=1

Y
(j)
i ,

where, denoting by X
(j)
(1) ≤ . . . ≤ X

(j)
(nj)

the order statistics associated to the j-th sample,

the log spacings Y
(j)
i are defined by

Y
(j)
i := i log

X
(j)
(nj−i+1)

X
(j)
(nj−i)

(i = 1, . . . , nj)

and kj , the sample fraction of observations to keep from (X
(j)
i )i=1...nj

, satisfies

kj → +∞, kj/nj → 0, and
√

kjAj(nj/kj) → 0, as nj → +∞. (3)

Let n =
∑K

j=1 nj and k =
∑K

j=1 kj . Note that we do not use the index n in the
definition of the kjs (nor in that of other quantities depending on n) in order to lighten
the notations.

We define, for any γ = (γj)1≤j≤K , the empirical likelihood ratio

ELR(γ) := sup
(pij)





K∏

j=1

kj∏

i=1

(kpij) ; pij ≥ 0,

kj∑

i=1

pij = 1,

kj∑

i=1

pij(Y
(j)
i − γj) = 0



 .

Clearly, this function is maximum at γ̂ := (γ̂j)1≤j≤K and ELR(γ̂) = 1. Thus, if we note

l(γ) := −2 log ELR(γ),

testing H0 can be based on the statistic

inf
γ∈A

l(γ) = −2 log
supγ∈A ELR(γ)

supγ ELR(γ)
,

where A = {γ ∈]0,+∞[K , γ1 = . . . = γK}.
The first part of the following theorem yields the asymptotic distribution of this

statistic and thus provides a critical region for this empirical likelihood ratio test of H0,
with prescribed asymptotic level. The second part shows that the method extends to
more general linear hypotheses on the extreme value indices.

Theorem 1. Under assumptions (1)-(3), if minj≤K kj/k is bounded away from 0 then,

under H0,

inf
γ∈A

l(γ)
d→ χ2(K − 1), as n → +∞.

Moreover, if H ′
0 : “ Cγ0 = 0”, where γ0 = (γ0j)1≤j≤K and C is a d×K matrix with full
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rank 1 ≤ d < K, then under H ′
0,

inf
γ∈A′

l(γ)
d→ χ2(d), as n → +∞

where A′ = {γ ∈]0,+∞[K ; Cγ = 0}.

In order to prove Theorem 1, we have to introduce some important quantities and
provide their asymptotic behavior in Lemma 1 stated below : for any γ = (γj)1≤j≤K

with positive components,

Gn(γ) := (γ̂j − γj)j=1...K S2
j (γ) := 1

kj

∑kj

i=1(Y
(j)
i − γj)

2

G̃n(γ) := (
√

kj(γ̂j − γj))j=1...K Bn(γ) := diag(S2
1(γ), . . . , S2

K(γ))

Mn(γ) := maxj≤K maxi≤kj
|Y (j)

i − γj |
Note that the proof of Theorem 1 will make it clear that the statistic infγ∈A l(γ), seem-
ingly lengthy to compute, is very close to the quadratic quantity

K∑

j=1

kj(γ̂j − γ̃)2/Sj(γ̂) where γ̃ =
K∑

j=1

δ2
j γ̂j

/
K∑

j=1

δ2
j and δ2

j = kj/S2
j (γ̂). (4)

Lemma 1. Under the conditions of Theorem 1, if B := diag(γ2
01, . . . , γ

2
0K), then, as

n → +∞, we have

Gn(γ0)
P→ 0, G̃n(γ0)

d→ N(0, B),

Bn(γ0)
P→ B, Mn(γ0) = oP(

√
k).

The results contained in this Lemma are due to the asymptotic normality of the Hill
estimator (see de Haan and Peng (1998) for example) and to equations (8)-(9) of J.C.
Lu and L. Peng (2002).

Proof of Theorem 1

• First step : we shall prove in Subsection 5.1 that for any C > 0,

l(γ) = Q(γ) + oP(1), uniformly for γ ∈ Bn,C , (5)

where

Q(γ) := G̃t
n(γ)(Bn(γ̂))−1G̃n(γ) =

K∑

j=1

kj(γ̂j − γj)
2/Sj(γ̂).

and
Bn,C := {γ; ||γ − γ0|| ≤ Ck−1/2}

• Second step : we shall prove in Subsection 5.2 that

inf
γ∈A

Q(γ) = Q(γ̄)
d→ χ2(K − 1), as n → +∞. (6)

where γ̄ = (γ̃, . . . , γ̃) and γ̃ is defined in Equation (4). In view of (5), it thus
remains to prove that

lim
C→+∞

lim
n→+∞

P [ γ̄ /∈ Bn,C ] = 0,
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since this implies the contiguity of l(γ̄) and Q(γ̄). Using the assumption that
minj≤K kj/k is bounded away from 0, we can find a positive constant c (not de-
pending on C) such that

P [ γ̄ /∈ Bn,C ] ≤ P [ |γ̃ − γ01| > K−1/2Ck−1/2 ]

≤ P [
∑K

j=1 |γ̂j − γ0j | > K−1/2Ck−1/2 ]

≤ ∑K
j=1 P [

√
kj |γ̂j − γ0j | > cC ]

By the asymptotic normality of the Hill estimators of the K extreme value indices
(stated in Lemma 1), the right-hand side of the last inequation converges (as n→ ∞)
to a quantity which vanishes as C goes to +∞.

Remark 1. According to (5) and (6), we can use in practice indifferently l(γ̄) or Q(γ̄)
as a statistic for our test. As expected and can be seen from assumption (3) and Figure
1, the accuracy of our procedure depends on the choice of the sample fractions kj , for
j = 1, . . . ,K, as for the estimation problem. We shall present, in Section 3 below, the
method we used for choosing adequate values for these tuning parameters.

3. Simulations

The purpose of this section is to investigate, through extensive simulations, the per-
formance of our test procedure in the case of the comparison of tail indices of two samples
X1 and X2 (case K = 2). In this testing framework, we naturally focus our attention on
both the empirical type I error and power function of the procedure.

As was made in Mougeot and Tribouley (2010), we made simulations based on 2000
random samples of size n = 800 (for the first sample X1) and m = 700 (for the second
sample X2) generated from the following families of distributions which satisfy the first
and second order conditions (1) and (2) :

• The Fréchet distribution (denoted by F ) with parameter γ > 0 given by F (x) =
exp(−x−1/γ)Ix>0, for which ρ = −1.

• The Student distribution (denoted by t) with ν degrees of freedom, for which
γ = 1/ν and ρ = −2γ.

• The Burr distribution (denoted by B) with parameters γ > 0 and ρ < 0, given by
F (x) = 1 − (1 + xρ/γ)−1/ρ

Ix>0.

In Subsections 3.1 and 3.2, we apply the method proposed by Hall and Welsh (1985)
for the estimation of the optimal (in the sense of minimization of the mean square error)
sample fractions k1 and k2 given by :

k̂1 = n−2ρ̂1/(1−2ρ̂1) and k̂2 = m−2ρ̂2/(1−2ρ̂2),

where ρ̂j is the estimator of the second order parameter ρj (j = 1 or 2). We used the one
proposed in Fraga Alves et al (2003) for comparison reasons. Recent alternatives can be
found in Worms (2012), Ciuperca and Mercadier (2010), Goegebeur et al (2010) and
de Wet et al (2012). Results for the type I error are given in Subsection 3.1 and for the
power function in Subsection 3.2 .
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In Subsection 3.1, we also investigated the effect of the choice of k1 and k2 on the type
I accuracy of the test, by performing simulations under a large range of values for the
sample fractions k1 and k2.

3.1. Type I error estimation

Table 1 provides the estimated type I error α̂ at the optimal sample fractions men-
tioned above, for nominal risks α = 5% and α = 10%, and for different combinations of
the above mentioned distributions, where the second order parameters ρ1 and ρ2 can be
equal or different. We add to our results those of Mougeot and Tribouley (2010) taken
from their Table 2, when using the Hill estimator. In the following table, our results are
noted WW and those of Mougeot and Tribouley (2010), MT.

Table 1. Type I error α̂

Distr. γ1 = γ2 ρ1 ρ2 WW MT
α̂ (5%) α̂ (10%) α̂ (5%) α̂ (10%)

tt 0.25 -0.5 -0.5 4.50 8.65 6 17
tt 0.5 -1 -1 5.10 10.85 11 25
tt 1 -2 -2 18.10 25.30 9 20
FF 0.25 -1 -1 6.10 12.25 1 8
FF 0.5 -1 -1 6.50 10.70 2 9
FF 1 -1 -1 6.65 10.10 3 10
BB 0.25 -2 -2 4.25 9.00 3 10
BB 0.25 -1 -2 5.00 10.00 14 28
BB 1 -1 -1 5.40 9.95 9 19
BB 1 -1 -2 5.30 11.35 14 29
tF 0.5 -1 -1 6.15 10.80 33 57
tF 1 -2 -1 7.55 12.60 7 16
tB 0.5 -1 -0.5 15.00 24.80 16 36
tB 1 -2 -1 5.65 11.00 10 22
tB 1 -2 -2 6.60 14.00 8 20
FB 0.25 -1 -1 5.60 10.55 12 28
FB 0.5 -1 -1 5.50 10.85 10 24
FB 1 -1 -1 5.80 10.20 14 26
FB 0.25 -1 -2 5.30 11.90 3 10
FB 0.5 -1 -2 5.80 11.15 2 9
FB 1 -1 -2 6.75 12.35 3 10

We see, through these simulations, that the procedure we propose, though simple to
implement, yields generally sharper, more satisfactory results than those from Mougeot
and Tribouley (2010) (except for a few cases), even without using any bootstrap calibra-
tion for our test. The same conclusion holds when, in their method, the Hill estimator
is replaced by the other estimators they considered in their simulations

We also present, in Figure 1, some contour graphs of the empirical type I error α̂,
for a wide range of the sample fractions k1 and k2. We can observe that the accuracy of
course depends on the choice of these fractions, but there is some kind of permissibility
for this choice before obtaining unsatisfactory results (here “satisfactory” was arbitrarily
defined as “being included in the interval [3%, 7%]”, for a nominal risk α = 5%) .
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(a) X1 ∼ Burr(1/4,−2), X2 ∼ Burr(1/4,−2) (b) X1 ∼ Burr(1/4,−1), X2 ∼ Burr(1/4,−2)

(c) X1 ∼ Frechet(1/2), X2 ∼ Burr(1/2,−1) (d) X1 ∼ Frechet(1/2), X2 ∼ Burr(1/2,−2)

Figure 1: Estimated type I error α̂ as a function of the sample fractions k1 and k2, for α = 5%. White
areas correspond to cases where α̂ turned out to be greater than 7%
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3.2. Power function estimation

In this part, we get the extreme value index γ1 of X1 fixed and calculate the power
associated to our test procedure for different values of γ2, the extreme value index of X2.
For example, if γ1 = 1/2, we take γ2 between 0.1 and 1. Moreover, ρ1 and ρ2 can be
taken equal or different. We use again the method of Hall and Welsh (1985) to estimate
the optimal k1 and k2 values. Figure 2 gives two examples of estimated power functions
for Burr and Fréchet distributions.

In both examples, the graphic on the left is such that ρ1 is always equal to ρ2, whereas
the graphic on the right is such that ρ1 is always different from ρ2. We remarked through
these two examples and others not presented here, that when the two distributions of X1

and X2 have the same second order parameters ρ1 and ρ2, the estimated power function
is, as expected, minimal when the tail indices γ1 and γ2 are equal. This is not the case
when the second order parameters ρ1 and ρ2 are different.

The empirical results look rather satisfactory, though no comparison with other meth-
ods can be made due to the fact that the extreme value indices comparison topic has
hardly been addressed in the literature before.

4. Conclusion

In this work, we presented a first attempt to address the problem of comparing
extreme value indices of different heavy-tailed samples, through some statistical test with
prescribed theoretical accuracy. Exception made of Mougeot and Tribouley (2010), we
know of no work addressing explicitly and methodologically this topic in the extreme
value literature. The method we propose (i) appears to perform relatively well in terms
of empirical type I error accuracy and power, (ii) is valid for comparison of more than 2
samples, and (iii) allows for testing linear hypotheses more general than just the equality
of all the extreme value indices. Its inspiration stems from the empirical likelihood work
on linear models in Owen (1991) and from J.C. Lu and L. Peng (2002), which yields
confidence intervals for the tail index based on the Hill estimator.

One possibility to generalize this work would be to define a similar test statistic as ours,
but based on more efficient tail index estimators than the Hill estimator ; it should
though be stressed that the particular structure of the Hill estimator has been used here
to prove the asymptotic distribution of the test statistic (the Hill estimator is the mean
of log-spacings and its asymptotic variance is a simple function of the tail index alone).
Another path to pursue the study of this topic could be to use known results on regression
models for the tail index.

5. Appendix

5.1. Proof of (5)

Let m0 = 0 and mj = k1 + . . . + kj (for j ≤ K). We denote by (Zl,n(γ))ι≤K the
K-dimensional vector for which, if l ∈ {mj−1 + 1, . . . ,mj},

(Zl,n(γ))ι :=

{
0 if ι 6= j

Y
(j)
i − γj if ι = j, with i = l − mj−1
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(a) X1 ∼ B(1/2,−1), and X2 ∼ B(1/2, ρ2), ρ2 = −1 or −1/2

(b) X1 ∼ B(1/2, ρ1), ρ1 = −1 or −1/2, and X2 ∼ F(1/2)

Figure 2: Estimated power function as γ2 varies, when γ1 is kept fixed
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ELR(γ) can then be rewritten as (remind that k =
∑K

j=1 kj)

ELR(γ) := sup
(pl)

{
k∏

l=1

(kpl) ; pl ≥ 0,

k∑

l=1

pl = 1,

k∑

l=1

plZl,n(γ) = 0

}
,

The classical Lagrange multipliers method yields the following optimal weights pl in the
above description of ELR(γ)

pl,n(γ) :=
1

k(1+ < λn(γ), Zl,n(γ) >)

where λn(γ) is determined as the solution of

k∑

l=1

(1+ < λn(γ), Zl,n(γ) >)−1Zl,n(γ) = 0, (7)

so that

l(γ) = 2
k∑

l=1

log(1+ < λn(γ), Zl,n(γ) >).

Now, if we note ∆n := diag(k1/k, . . . , kK/k) and

Z̄n(γ) :=
1

k

k∑

l=1

Zl,n, V̂n(γ) :=
1

k

k∑

l=1

Zl,nZt
l,n, Z∗

n(γ) := max
1≤l≤k

||Zl,n(γ)||,

then we have (remind the definitions of Gn, G̃n, Bn and Mn before the statement of
Lemma 1), for any given C > 0 and γ ∈ Bn,C ,

Z̄n(γ) = ∆nGn(γ) = ∆nGn(γ0) + ∆n(γ0 − γ) (8)√
kZ̄n(γ) = ∆1/2

n G̃n(γ) = ∆1/2
n G̃n(γ0) + ∆n

√
k(γ0 − γ) (9)

V̂n(γ) = ∆nBn(γ) = ∆nBn(γ0) + k−1/2∆1/2
n On(γ0 − γ) (10)

Z∗
n(γ) = Mn(γ) ≤ Mn(γ0) + κ ||γ0 − γ|| (11)

where On is a K × K matrix such that ‖On‖ = OP(1), and κ is an absolute constant.

Please note that, in the sequel, all the asymptotic results (in oP or OP) are established
uniformly for γ ∈ Bn,C .

Now, as usual in empirical likelihood methodology, starting from the definition of λn(γ)
we obtain

||λn(γ)|| (ut
n(γ)V̂n(γ)un(γ) − Z∗

n(γ)||Z̄n(γ)||) ≤ ||Z̄n(γ)||
where un(γ) := λn(γ)/||λn(γ)||. It is clear from Lemma 1, relations (9) and (11), and
the definition of the ball Bn,C that

√
k||Z̄n(γ)|| = OP(1) and Z∗

n(γ) = oP(
√

k).

Consequently,
||λn(γ)|| = OP(k−1/2)

since ut
n(γ)V̂n(γ)un(γ) is bounded away from 0, which is due to the assumption that

kj/k is bounded away from 0 (which implies that ‖∆n‖ = OP(1)) and that V̂n(γ) =

∆
1/2
n B∆

1/2
n + oP(1), with B invertible (since the indices γ0j are positive).
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Therefore, setting gl,n(γ) := < λn(γ), Zl,n(γ) > we have

g∗n := sup{||gl,n(γ)||, γ ∈ Bn,C} = oP(1). (12)

It follows classically (from the definition of λn(γ)) that

V̂n(γ)λn(γ) = Z̄n(γ) + Rn(γ),

where ||Rn(γ)|| ≤ 2(g∗n)2||Z̄n(γ)|| = oP(k−1/2). By Lemma 1, it is simple to see that
Bn(γ) = Bn(γ̂) + oP(1) and thus (10) leads to

√
kλn(γ) = (Bn(γ̂))−1∆−1/2

n G̃n(γ) + oP(1). (13)

Using (12), a Taylor expansion yields

l(γ) = 2
k∑

l=1

log(1 + gl,n(γ)) = 2
k∑

l=1

gl,n(γ) −
k∑

l=1

(gl,n(γ))2 + R′
n(γ),

where R′
n(γ) = 2

3

∑k
l=1(gl,n(γ))3(1 + ξl,n(γ))−3 for some ξl,n(γ) ∈]0, gl,n(γ)[. Moreover,

by (9), (10) and (13),

k∑

l=1

gl,n(γ) = (
√

kλn(γ))t(
√

kZ̄n(γ)) = (G̃n(γ))t(Bn(γ̂))−1G̃n(γ) + oP(1)

and
∑k

l=1(gl,n(γ))2 = (
√

kλn(γ))tV̂n(γ)(
√

kλn(γ))

= (G̃n(γ) + oP(1))t∆
−1/2
n (Bn(γ̂))−1(∆nBn(γ̂) + oP(1))(Bn(γ̂))−1∆

−1/2
n (G̃n(γ) + oP(1))

= (G̃n(γ))t(Bn(γ̂))−1G̃n(γ) + oP(1).

Finally, by (12) it comes |R′
n(γ)| ≤ oP(1)

∑k
l=1(gl,n(γ))2 = oP(1) and

l(γ) = (G̃n(γ))t(Bn(γ̂))−1G̃n(γ) + oP(1) = Q(γ) + oP(1),

which concludes the first step of the proof of Theorem 1. Note that in the last equa-
tion, Bn(γ̂) can be replaced indifferently by Bn(γ) or Bn(γ0) without invalidating the
approximation.

5.2. Proof of (6)

Recalling that A = {γ ∈ ]0,+∞[K , γ1 = . . . = γK} and that δj =
√

kj/S2
j (γ̂), we

readily have

inf
γ∈A

Q(γ) = Q(γ̃, . . . , γ̃), where γ̃ =
∑K

j=1 δ2
j γ̂j/

∑K
j=1 δ2

j . (14)

Moreover,
inf
γ∈A

Q(γ) = ||W − W ′||2,

where W = (
√

kj(γ̂j − γ0j)/Sj(γ̂))j=1...K and W ′ = (δj(γ̃ − γ0j))j=1...K . By Lemma

1, positiveness of the γ0j , and the fact that S2
j (γ̂) − S2

j (γ0)
P→ 0, we see that W is

asymptotically distributed as NK(0, I).
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Moreover, setting (under H0) γ∗ = γ01 = . . . = γ0K , if we introduce p =
∑K

j=1 δ2
j ,

δ = (δj)j=1,...K and vn = δ√
p , then, under H0,

< W, vn > vn =

K∑

j=1

(
δj√
p
δj(γ̂j − γ0j))

vn√
p

= γ̃δ − γ∗δ = W ′,

so that W ′ is the orthogonal projection of W on a subspace of dimension 1. Equation
(6) follows.

Finally, if the hypothesis tested is H ′
0 : “Cγ0 = 0” as in the second part of Theorem 1,

then let us set ∆ = diag(δ1, . . . , δK), C̃ = C∆−1, w0 = ∆γ0. Since W = ∆(γ̂ − γ0) is
asymptotically distributed as NK(0, I) and, under H ′

0, we have C̃w0 = 0, it comes

inf
γ∈A′

Q(γ) = inf
γ
{ ‖∆(γ̂ − γ)‖ ; Cγ = 0 } = inf

w
{ ‖∆(γ̂ − γ0) − w‖ ; C̃w = 0 }

Because the subspace {w ; C̃w = 0 } is (K − d)-dimensional, the result thus comes by
Cochran’s theorem.
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