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Abstract

The dengue virus (DV) is an important human pathogen from the Flavivirus genus, whose genome- and antigenome RNAs
start with the strictly conserved sequence pppAG. The RNA-dependent RNA polymerase (RdRp), a product of the NS5 gene,
initiates RNA synthesis de novo, i.e., without the use of a pre-existing primer. Very little is known about the mechanism of
this de novo initiation and how conservation of the starting adenosine is achieved. The polymerase domain NS5PolDV of NS5,
upon initiation on viral RNA templates, synthesizes mainly dinucleotide primers that are then elongated in a processive
manner. We show here that NS5PolDV contains a specific priming site for adenosine 59-triphosphate as the first transcribed
nucleotide. Remarkably, in the absence of any RNA template the enzyme is able to selectively synthesize the dinucleotide
pppAG when Mn2+ is present as catalytic ion. The T794 to A799 priming loop is essential for initiation and provides at least
part of the ATP-specific priming site. The H798 loop residue is of central importance for the ATP-specific initiation step. In
addition to ATP selection, NS5PolDV ensures the conservation of the 59-adenosine by strongly discriminating against viral
templates containing an erroneous 39-end nucleotide in the presence of Mg2+. In the presence of Mn2+, NS5PolDV is
remarkably able to generate and elongate the correct pppAG primer on these erroneous templates. This can be regarded as
a genomic/antigenomic RNA end repair mechanism. These conservational mechanisms, mediated by the polymerase alone,
may extend to other RNA virus families having RdRps initiating RNA synthesis de novo.
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Introduction

Most RNA viruses maintain the specific sequences present at

the ends of their genomes. The 59 genome end may carry a cap

structure to ensure both genome stability and efficient translation

[1]. The 39-end may carry a poly(A) tail or adopt specific 39-end

sequences required for viral replication [2,3]. They are generally

copied exactly to avoid loss of genetic information, and have

supposedly evolved towards optimum replication efficiency.

Terminal genome damage can be caused by errors introduced

by the viral polymerase during initiation and termination, or by

cellular ribonucleases [4]. In addition to special mechanisms to

ensure efficient initiation of RNA synthesis, viruses have evolved

mechanisms to repair or correct damaged extremities such as the

use of abortive transcripts as primers, the generation and use of

non-templated primers, and the addition of one or few non-

templated nucleotides to the 39-end by a terminal transferase

activity [4]. However, our knowledge about these mechanisms is

still very limited. Many RNA virus polymerases, which do not use

a primer and thus initiate RNA synthesis de novo, generate abortive

transcripts during the initiation phase of RNA synthesis [5,6,7].

Primer-mediated repair of template extremities was so far only

demonstrated for the positive-strand RNA (+RNA) turnip crinkle

virus (TCV) [8]. Non-templated primer synthesis by the viral

polymerase might be involved in the repair mechanism of TCV

[9]. Such mechanism was also proposed as the molecular basis of

the reconstitution of 59-ends of negative-strand RNA (-RNA)

respiratory syncytial virus (RSV) replicons [10]. In this study we

demonstrate how the dengue virus (DV) RNA-dependent RNA

polymerase (RdRp), which starts RNA synthesis de novo, plays a

decisive role in the nucleotide conservation of viral RNA ends.

DV belongs to the Flavivirus genus within the +RNA virus family

of Flaviviridae together with viruses of the genera Hepacivirus and

Pestivirus [11]. The Flavivirus genus comprises around 50 virus

species [12] including major human pathogens such as DV, yellow

fever virus (YFV), West Nile virus (WNV) and Japanese

encephalitis virus (JEV). Flaviviruses harbour the RdRp activity

in the C-terminal domain (amino acids 272–900) of non-structural

protein NS5 [13,14,15,16,17]. The N-terminal domain contains

methyltransferase activities involved in RNA capping [18,19].

Evidence has been presented that the N-terminal domain of NS5

also harbours the central RNA capping guanylyltransferase

activity [20]. The structure of full-length NS5 is not known but

several structures of methyltransferase domains have been

determined (for review see [21]). Likewise, crystal structures of

Flavivirus NS5 RdRp domains have been determined for DV [16]

and WNV [22]. All structurally characterized viral RdRps so far

adopt the basic fold of the SCOP superfamily of DNA/RNA
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polymerases. As the other subgroups of this superfamily, DNA-

dependent DNA polymerases (DdDp, prototype Klenow fragment

of the E.coli DdDp I), RNA-dependent DNA polymerase

(prototype HIV reverse transcriptase) and DNA-dependent RNA

polymerases (DdRp, prototype bacteriophage T7 DdRp), their

apo-structure is usually likened to a right hand comprising fingers,

palm and thumb subdomains. Viral RdRps contain an encircled

active site having connecting elements between the fingers and

thumb subdomains. Active sites of viral RdRps performing de novo

RNA synthesis are additionally closed in their initiation confor-

mation due to the existence of structural elements allowing the

stable positioning of the first NTP into a priming site [23,24]. All

Flaviviridae RdRps studied so far initiate RNA synthesis de novo.

Accordingly, Flavivirus RdRp domain structures contain a ‘‘prim-

ing loop’’ in the thumb subdomain closing the catalytic site

[16,22]. The putative priming loop of DV RdRp was defined as

comprising residues 792 to 804. Of particular interest are two

aromatic residues near the tip of the loop, W795 and H798, which

are conserved in all Flavivirus RdRps. They might play the role of

an initiation platform to which the base of the priming NTP stacks

as it was shown for bacteriophage w6 [23] and proposed for HCV

and BVDV RdRps [25,26]. Structures of DV RdRp in complex

with 39dGTP as well as two models of de novo initiation complexes

of DV and WNV RdRps favor Trp795 in the role of the initiation

platform [16,22].

Genomes of Flaviviridae lack a poly(A) tail at the 39-end. A

remarkable trait of Flavivirus genomes is the strict conservation of

the 59- and 39-end dinucleotides as 59 AG…CU 39. The molecular

basis for this strict conservation of the 59- and 39-end dinucleotides

and/or the use of the same starting nucleotide for +RNA and -

RNA strand synthesis by the viral polymerases is not known. Its

Hepacivirus and Pestivirus counterparts have to display higher

nucleotide tolerance. They are able to initiate with (A/G)C and

G(G/U), respectively, since the 59- and 39-ends of Hepacivirus

genomes of different genotypes correspond to 59 (A/G)C…GU 39

and the genomes of pestiviruses to 59 GU…CC 39. Interestingly,

genomes and antigenomes of non-segmented -RNA (ns-RNA)

paramyxoviruses, whose RdRps perform de novo RNA synthesis,

start with a conserved 59-AC [10].

Here we show that the strict sequence conservation of Flavivirus

genome ends is entirely polymerase-encoded. We demonstrate

ATP-specific de novo initiation using the RdRp domain of DV

protein NS5 (NS5PolDV) and specific 10-mer oligonucleotidic

RNA templates corresponding to the 39-end of genomic +RNA

and -RNA. We document the existence of a built-in ATP-specific

priming site of NS5PolDV. This specific site is one of the means by

which NS5PolDV ensures that the DV genome and antigenome

start with an A, the others being several correction mechanisms

including the generation of non-templated pppAG primers as well

as the preferential formation and elongation of pppAG even on

templates with non-cognate 39-ends. Finally, we show that the

ATP-specific priming site is part of the putative priming loop

coming from the thumb subdomain. There, residue H798, and not

W795, is essential for de novo initiation and may act as a priming

platform stabilizing the ATP priming nucleotide. DV RdRp is

actively involved in the conservation of the correct ends of the

genome proving thus a direct example of how RNA viruses

maintain the integrity of their genomes. The mechanisms

described here may more broadly apply to other RNA viruses

having viral RdRps able to initiate RNA synthesis de novo.

Results

NS5PolDV generates pppAG by abortive de novo initiation
on short RNA templates

We set out to study primer synthesis by the RdRp domain of

dengue virus protein NS5 (NS5PolDV) using small specific

templates corresponding to the 39-ends of the genome (+RNA)

and the antigenome (-RNA). Templates are comprised of 10

nucleotides and are predicted to be devoid of stable secondary

structure (see Materials and Methods). Both templates end with

the dinucleotide 59-CU-39. Product formation over time was

followed using either ATP and GTP, or all NTPs needed to form a

full-length product when synthesis is precisely started at the 39-end

of the template. Figure 1 shows reaction kinetics of RNA synthesis

on DV1039+ corresponding to the 39-end of the RNA genome 59-

AACAGGUUCU-39 (left) and on DV1039- corresponding to that

of the antigenome 59-ACUAACAACU-39 (right). We used either

[a-32P]-GTP (aGTP, panel A) or [c-32P]-ATP (cATP, panel B) as

the radioactive nucleotide. For the catalytic ion, either Mg2+ (panel

A) or Mg2+ supplemented with Mn2+ (panel B) were used at their

optimum concentrations 5 mM for Mg2+ and 2 mM for Mn2+

[14]. Reactions with ATP and GTP render time-dependent

accumulation of a short product migrating below the marker G2

(see panel B). Comparison with authentic unlabeled pppAG (see

Materials and Methods) visualized using UV-shadowing indicated

that it indeed corresponds to pppAG (not shown), the expected

product of the first step of de novo RNA synthesis. When DV1039+ is

used as a template, pppAG is formed as well as pppAGA and

pppAGAA. When all NTPs are used, pppAG accumulates with

time as does pppAGA in the case of DV1039+ and pppAGU in the

case of DV1039-. After the synthesis of trinucleotides NSPolDV

adopts a processive RNA synthesis elongation mode to continue

synthesis up to full-length products (labeled by asterisks in

Figure 1). As we had observed before [14], when using Mn2+

the reaction is much more efficient and allows for the use of

[c-32P]-ATP (cATP) as radiolabeled nucleotide in order to

visualize exclusively de novo RNA synthesis products starting with

ATP. The pattern observed with Mg2+ is reproduced when Mn2+

is present (Figure 1B). One difference is that the use of Mn2+

Author Summary

The 59- and 39-ends of RNA virus genomes have evolved
towards efficient replication, translation, and escape from
defense mechanisms of the host cell. Little is known about
how RNA viruses conserve or restore the correct ends of
their genomes. The Flavivirus genus of positive-strand RNA
viruses contains important human pathogens such as
yellow fever virus, West Nile virus, Japanese encephalitis
virus and dengue virus (DV). The Flavivirus genome ends
are strictly conserved as 59-AG…CU-39. We demonstrate
here the primary role of the DV polymerase in the
conservation of the first and last genomic residue. We
show that DV polymerase contains an ATP-specific priming
site, which imposes a strong preference for the de novo
synthesis of a dinucleotide primer starting with an ATP.
Furthermore, the polymerase is able to indirectly correct
erroneous sequences by producing the correct primer in
the absence of template and on templates containing
incorrect nucleotides at the 39-end. The correct primer is
productively elongated on either correct or incorrect
templates. Our findings provide a direct demonstration
of the implication of a viral RNA polymerase in the
conservation and repair of genome ends. Other polymer-
ases from other RNA virus families are likely to employ
similar mechanisms.

Nucleotide Conservation of Dengue Virus RNA Ends
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results in longer full-length products, which might be caused by an

alteration of the terminal nucleotide transferase activity of

NS5PolDV [14,27,28].

In conclusion, using RNA templates mimicking viral sequences,

dinucleotide and trinucleotide products are formed during

initiation and before processive RNA elongation, the most

abundant being the dinucleotide pppAG.

NS5PolDV contains a built-in ATP-specific priming site for
de novo RNA synthesis initiation

The first nucleotide of Flavivirus genomes is an adenosine,

followed by a guanosine. This 59-pppAG sequence is strictly

conserved along the Flavivirus genus. In order to answer the

question whether the polymerase (and/or the correct template) is

at the origin of the conservation of the first nucleotide, we tested a

Figure 1. De novo initiation by NS5PolDV on oligonucleotides corresponding to the 39-ends of dengue virus genome and
antigenome. (A) De novo initiation in the presence of Mg2+ ions. Reaction mixtures were prepared as described in Materials and Methods plus 5 mM
MgCl2, 10 mM template, 500 nM NS5PolDV and the given concentrations of NTPs. Radiolabeled GTP (aGTP) was used. Reactions were started by the
addition of MgCl2 and reactions incubated for indicated time periods. Samples were analyzed by PAGE and autoradiography. Markers in lanes 1 and 2
are labeled DV1039+ and DV1039-, respectively. DV1039+ (lanes 3 to 10) and DV1039- (lanes 11 to 18) were used as templates. Nucleotide sequences are
given above the panel. Identities of labeled product bands are given on the right and left side of the gel. Full-length products are labeled by an
asterisk. (B) De novo initiation in the presence of Mn2+ ions. Reaction mixtures were prepared as indicated in Materials and Methods plus 5 mM MgCl2,
2 mM MnCl2, 1 mM template, 500 nM NS5PolDV and the given concentrations of NTPs. Radiolabeled ATP (cATP) was used. Reactions were started by
the addition of MnCl2, incubated for given time periods, and analyzed by PAGE and autoradiography. Markers in lanes 1 to 4 include an oligoG-ladder
(lanes 1 and 2), labeled DV1039+ (lane 3) and DV1039- (lane 4). DV1039+ (lanes 5 to 12) and DV1039- (lanes 13 to 20) were used as templates. Identities of
labeled product bands are given on the right and left side of the reaction lanes. Full-length products are labeled by an asterisk.
doi:10.1371/journal.ppat.1002912.g001
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set of DV1039- variants with different 39-ends. In addition to the

correct DV1039- CU, we used DV1039- CC, DV1039- CA and

DV1039- CG in the presence of the corresponding priming NTP

and GTP. The expected primer products are pppAG, pppGG,

pppUG and pppCG, respectively. Figure 2A compares end points

of reactions performed in the presence of aGTP and Mg2+ as the

catalytic ion. Remarkably, the CU template only is proficient for

product synthesis (pppAG). RNA primer synthesis on other

templates is almost undetectable. We conclude that in the

presence of Mg2+ as a catalytic ion the DV RdRp priming-site

accommodates exclusively ATP.

To our surprise, when Mn2+ was used instead of Mg2+, the

pppAG primer was generated even in the absence of the template,

albeit to a lower extent (Figure 2B). This is not the case in the

presence of Mg2+ even at ten-fold higher enzyme concentration

(see below Figure 3B). When using Mn2+ and the DV1039-

template variants, we therefore included control reactions in the

absence of corresponding templates and in the presence of cGTP,

which allows exclusive detection of dinucleotides starting with

pppG. Figure 2C shows corresponding reaction kinetics with Mn2+

as the catalytic ion in the absence or the presence of templates

using aGTP or cGTP as the radioactive nucleotide. Again, using

DV1039-CU and ATP/GTP, NS5PolDV generates pppAG to a

higher extent than without template. Note that no pppGA product

is generated. When DV1039-CC and GTP is used, NS5PolDV

synthesizes pppGG in the presence of the template only. DV1039-

CA, UTP, and GTP lead to the formation of pppUG and pppGU

(see cGTP control reaction), the latter by initiation internal to the

template. No product is formed in the absence of the template.

Finally, DV1039-CG allows formation of pppCG which is not

formed in the absence of the template. In conclusion, NS5PolDV

keeps the strict preference for an ATP as the priming nucleotide in

the presence of Mn2+ when no template is present. Nevertheless,

the use of templates with an altered 39-nucleotide can force

NS5PolDV to start the de novo RNA synthesis with the correspond-

ing base-paired priming nucleotide, and also allows internal

initiation.

Collectively, these observations confirm that the priming site of

NS5PolDV has a marked specificity for ATP. This preference is

strict in the presence of Mg2+. It is equally strict for dinucleotide

synthesis in the presence of Mn2+ and in the absence of template.

The specificity for ATP as the starting nucleotide is lost when

Mn2+ is used in the presence of templates with incorrect 39-ends;

only then NS5PolDV is able to form pppNG products as efficiently

as pppAG.

The ATP-specific priming site enables NS5PolDV to
produce and elongate the correct primer pppAG on viral
templates with non-canonical 39-nucleotides

In the presence of Mg2+ and/or Mn2+ the built-in ATP-specific

priming site drives NS5PolDV-mediated RNA synthesis starting

with pppA. The dinucleotide pppAG is accumulated during RNA

synthesis on templates with the correct 39-end (see Figure 1). Using

Mn2+ this pppAG primer is also formed in the absence of an RNA

template. We asked the question whether NS5PolDV forms and/or

Figure 2. Specificity for ATP as the initiating nucleotide. (A) Specific pppAG dinucleotide formation by NS5PolDV in the presence of Mg2+ on
DV1039- templates (ACUAACAA-CU) with varying last nucleotides: lane 1 -CU, lanes 2 and 3 -CC, lane 4 -CA and lane 5 -CG) in presence of Mg2+.
Corresponding initiating NTPs and GTP were used as substrates. Reaction mixtures were prepared as given in Materials and Methods plus 5 mM
MgCl2, 500 nM NS5PolDV, 10 mM template, 500 mM of initiating NTPs, and 100 mM GTP (containing aGTP). For the reaction on the -CC template,
300 mM (lane 2) and 600 mM GTP (lane 3) was used. Reactions were started by the addition of MgCl2 and incubated for 2 h. Samples were analyzed
using PAGE and autoradiography. (B) pppAG dinucleotide formation by NS5PolDV in the presence of Mn2+. Reaction mixtures contained 2 mM MnCl2,
500 nM NS5PolDV, 500 mM GTP, and 100 mM ATP (containing aATP) and either no template (lane 1), 1 mM DV1039+ (lane 2), or 1 mM DV1039- (lane 3).
Reactions were started by the addition of MnCl2 and incubated for 2 h. The identity of product bands is given on the right. (C) Specific non-
templated pppAG dinucleotide formation and non-specific NG dinucleotide formation on DV1039- template variants (see under A) in the presence of
Mn2+. Reaction mixtures contained 2 mM MnCl2, 500 nM NS5PolDV, 1 mM template, 500 mM of NTPs, which were not labeled, and 100 mM GTP
(containing either aGTP or cGTP as outlined below the gel) and either no template or DV1039- variants (given below the gel). Reactions were started
by the addition MnCl2 and samples were taken at given time points. The identity of product bands is given on the right side of the reaction kinetics.
doi:10.1371/journal.ppat.1002912.g002
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elongates pppAG even on templates with incorrect 39-nucleotides

thus enabling to repair incorrect 39-ends.

First, pppAG formation was tested on the four DV1039- variants

in the presence of only ATP and GTP. Figure 3A shows that

NS5PolDV is indeed able to form pppAG in the presence of

templates with any 39-nucleotide and Mn2+. In contrast, in the

presence of Mg2+ only the natural DV1039- CU template supports

pppAG formation even in the presence of an increased concen-

tration of NS5PolDV (Figure 3B). We then tested pppAG

formation exclusively in the presence of Mn2+ on all DV1039-

variants in the presence of all nucleotides, a scenario putatively

mimicking the situation within the replication complex. Figure 3C

shows that pppAG is always formed in parallel to the dinucleotide,

which corresponds to the template. In the case of the template

variant with a -CG 39-end, pppAG is produced with even higher

efficiency than the base-paired dinucleotide. Note that the

dinucleotide pppGU is also produced on all templates by internal

initiation. For the reaction in the presence of all templates and all

nucleotides, we quantified all products, which were initiated de novo

over the very 39-end, and found that pppAG is formed as the

prominent product (32.361.5%, three independent reactions).

Note that all templates are present at the same concentration,

which should not correspond to the situation in vivo. We conclude

that in the presence of incorrect templates and Mg2+, NS5PolDV

discriminates against these templates and forms pppAG only on

the correct template (see also Figure 2A). In contrast, Mn2+ ions

enable NS5PolDV to preferentially generate pppAG even in the

presence of incorrect templates, which could represent an indirect

way of 39-end repair.

We then considered the elongation of the correct pppAG

primer over templates with incorrect 39-ends. We thus tested the

elongation of a chemically synthesized pppAG primer (see

Materials and Methods) either without template or in the presence

of the four DV1039- variants (Figure 4). The most prominent result

is that NS5PolDV is able to productively elongate pppAG on the

correct template in the presence of Mn2+ (Figure 4A) and Mg2+

ions (Figure 4B). We also observe that NS5PolDV in the presence

of Mn2+ is able to productively elongate pppAG on incorrect

templates (Figure 4A), thus demonstrating that the enzyme is able

to indirectly correct the error in the template and conserve the 59-

end of the DV genome. Note that as expected there is no primer

elongation detectable in the absence of a template.

The predicted T794-A799 priming-loop of NS5PolDV

provides the built-in ATP-specific priming site
NS5PolDV harbors an ATP-specific priming site, which is

essential for the formation, accumulation, and elongation of the

correct primer pppAG. Which elements of NS5PolDV form this

site? The crystal structure of NS5PolDV (Figure 5A) allowed the

prediction of a priming loop comprising residues 792 to 804 [16],

which is expected to provide the priming site during de novo RNA

Figure 3. pppAG-formation on the correct DV1039- and on variant templates having an incorrect last nucleotide. Dinucleotide
formation by NS5PolDV on DV1039- templates (ACUAACAA-CN) varying the last nucleotide (correct -CU versus -CC, -CA and -CG). Control reactions
were included without template. (A) pppAG dinucleotide formation in the presence of Mn2+. Only ATP (500 mM) and GTP (100 mM containing aGTP)
were used as substrates. Reaction mixtures were prepared as given in Materials and Methods plus 2 mM MnCl2, 500 nM NS5PolDV, and 1 mM
template. Reactions were started by the addition of MnCl2 and samples were taken at given time points. Samples were analyzed by PAGE and
autoradiography. pppGG is marked by an asterisk for clarity. (B) pppAG dinucleotide formation in the presence of Mg2+. Only ATP (500 mM) and GTP
(100 mM containing aGTP) were used as substrates. Reaction mixtures were prepared as given in Materials and Methods plus 5 mM MgCl2, 5 mM
NS5PolDV, and 1 mM template. Reactions were started by addition of MgCl2 and samples were taken at given time points. Samples were analyzed as
under A. (C) pppNG dinucleotide formation in the presence of Mn2+. All NTPs were given as substrates at equal concentration (100 mM). Reaction
mixtures were prepared as given in Materials and Methods plus 2 mM MnCl2, 500 nM NS5PolDV, and 1 mM template. 1 mM overall RNA concentration
was used when all templates were present. Radiolabelled aGTP was used. Reactions were started by addition of MnCl2 and samples were taken at
given time points and analyzed as in A.
doi:10.1371/journal.ppat.1002912.g003
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synthesis initiation. We generated a deletion mutant (NS5PolDV

TGGK) by replacing residues T794-A799 between T793 and

K800 by two glycines (see close-up in Figure 5A). The overall

correct folding of the purified, recombinant mutant protein was

verified by a fluorescent thermal shift assay giving identical

temperatures of denaturation (melting temperature Tm) for both

proteins (wild type (wt) NS5PolDV Tm 49.0uC 6 0.5uC, NS5PolDV

TGGK Tm 48.4uC 6 0.05uC).

The TGGK mutant is expected to have an open active site,

which impedes correct ATP-specific de novo initiation over the 39-

end of a single-stranded RNA template but may favor the

accommodation of double-stranded RNA. Its RNA synthesis

initiation and elongation activity was first tested using a

‘‘minigenomic’’ RNA template consisting of 224 nucleotides of

the 59-end of the DV genome fused to 492 nucleotides of the 39-

end [14]. It has been shown before using this template and

analyzing the products on a denaturing agarose-formaldehyde gel

[29] that two types of product are formed (see wt reaction kinetics

in the center panel of Figure 5B). Firstly, the de novo RNA synthesis

product is generated corresponding to the size of the template.

Secondly, an elongation product is generated by back-primed

RNA synthesis. There, the 39-end (…AACAGGUUCU-39) forms

a short hairpin annealing the last di-nucleotide to nucleotides -6

and -7 (underlined in the sequence) and is then elongated [29].

The length of the product is thus ,twice the size of the template.

Reactions were carried out using either Mg2+ or Mn2+ as catalytic

ions. The left and right panels of Figure 5B show that in both cases

the mutant TGGK shows an increased overall activity on this

template compared to wt activity. The center panel shows that this

is mainly caused by increased back-priming. Interestingly, instead

of one product species of twice the template size NS5PolDV

TGGK produces a range of elongated products of different

lengths. This might be due to the accommodation of long hairpins,

which then create longer products than the template but shorter

than the elongation product of wt NS5PolDV.

De novo RNA synthesis initiation by wt NS5PolDV and the

TGGK mutant were then tested on DV1039-, in the absence of a

template and on DV1039+ using Mn2+ as the catalytic ion, ATP

and GTP containing aGTP. Figure 5C (panel 1) shows that in

contrast to wt NS5PolDV, NS5PolDV TGGK is not able to catalyze

de novo initiation on DV1039-. Secondly, NS5PolDV TGGK does

not catalyze pppAG formation without template (panel 2). In

contrast, it is able to catalyze de novo initiation on DV1039+
presenting ca. 32% of wt activity (panel 3). In order to understand

this apparent contradiction, we used cATP instead of aGTP as

radioactive NTP. It became clear that NS5PolDV TGGK was

unable to generate the pppAG primer product (panel 4). We

conclude that the product observed with aGTP corresponds to

pppGA formed by internal de novo initiation being only possible on

DV1039+. When using Mg2+ as catalytic ion again we did not

observe formation of the de novo RNA synthesis initiation product

pppAG on either template (for DV1039- see below Figure 6B).

Figure 4. pppAG-elongation on the correct antigenome 39-end and on variants with an incorrect last nucleotide. pppAG-elongation
by NS5PolDV on DV1039- templates (ACUAACAA-CN) varying the last nucleotide (correct -CU versus -CC, -CA and -CG). Control reactions were included
without template. (A) pppAG elongation in the presence of Mn2+. pppAG (100 mM) and UTP (100 mM, containing aUTP) were used as substrates.
Reaction mixtures were prepared as given in Materials and Methods plus 2 mM MnCl2, 500 nM NS5PolDV, and 1 mM template. Reactions were started
by addition of MnCl2 and UTP. Samples were taken at given time points and analyzed by PAGE and autoradiography. OligoG marker is shown on the
left, the identity of product bands is given on the right. (B) pppAG-elongation in the presence of Mg2+. pppAG (100 mM) and UTP (100 mM, containing
aUTP) were used as substrates. Reaction mixtures were prepared as given in Materials and Methods plus 5 mM MgCl2, 5 mM NS5PolDV, and 1 mM
template. Reactions were started by addition of MgCl2 and UTP. Samples were taken at given time points and analyzed by PAGE and
autoradiography. OligoG marker is shown on the right; the identity of product bands is given on the left.
doi:10.1371/journal.ppat.1002912.g004
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We conclude that NS5PolDV TGGK is unable to pre-form the

ATP-specific priming site necessary for de novo RNA synthesis

initiation at the very 39-end. The predicted priming loop plays

indeed an essential role in providing the correct priming site. We

explain the increased activity of NS5PolDV TGGK on mini-

genomic RNA templates by its increased propensity to catalyze

Figure 5. Role of the predicted priming loop T794-A799 in correct de novo initiation. (A) 3D-structural model of NS5PolDV used in this
study (DV serotype 2 strain New Guinea C) derived from the structure of serotype 3 NS5PolDV (PDB code 2J7W [16]). NS5PolDV adopts the typical
closed right-hand structure of RdRps containing the palm (light green), fingers (light blue) and thumb (red) subdomains. Between fingers and thumb
subdomains the template tunnel runs down to the active site harbored mainly by the palm subdomain. The side chains of the three conserved
catalytic residues D533 (motif A), D663 and D664 (motif C) in the active site are shown in sticks (C-atoms light green, O-atoms red). The priming loop
emerges from the thumb subdomain and closes the dsRNA exit tunnel and the active site. The close-up shows aromatic residues W795 and H798 (in
sticks) within the putative priming loop T794 to A799. In the mutant TGGK the priming loop was replaced by two glycines situated between T793 and
K800 (in sticks). (B) Activity of wt NS5PolDV and its deletion mutant TGGK NS5PolDV was determined on a specific minigenomic template. Reaction
mixtures were prepared as given in Materials and Methods. Initial velocities in cpm/min determined by filter-binding assays in the presence of [3H]-
UTP and liquid scintillation counting, are compared in the presence of Mg2+ (left panel) and Mn2+ (right panel). The center panel shows agarose-
formaldehyde gel analysis of reaction kinetics in the presence of [a-32P]-UTP and Mg2+ ions. Product bands are labeled on the right sight of the gel.
(C) De novo initiation of wt NS5PolDV and its deletion mutant TGGK was followed in the presence of Mn2+ using either 1 mM DV1039-, in the absence of
a template, or 1 mM DV1039+ (from left to right as indicated). Reaction mixtures also contained 2 mM MnCl2, 500 nM enzyme, 500 mM of NTPs, which
were not labeled, and 100 mM labeled NTP (containing aGTP or cATP as indicated). Reactions were started by addition of MnCl2 and samples were
taken at given time points. Identities of labeled product bands are given on the right and left side of the reaction kinetics. pppGA and pppGAA
internal de novo initiation products on DV1039+ are labeled by an asterisk.
doi:10.1371/journal.ppat.1002912.g005
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back-priming due its more accessible catalytic site, i.e. to harbor

the minigenome in different hairpin conformations allowing 39

elongation.

Residue H798 and not W795 is important for ATP-specific
de novo initiation

Two aromatic residues, W795 and H798, within the priming

loop were proposed to play a particular role in providing an

initiation platform to which the base of the priming ATP could

establish a stacking interaction [16]. Residue W795 was given

special attention because it was found near the triphosphate

moiety of a 39-dGTP bound to NS5PolDV [16]. In addition, this

tryptophan was better placed than the histidine for stacking a

priming ATP in two models of de novo RNA synthesis initiation

complexes of NS5PolDV and NS5PolWNV [16,22]. We generated

two mutants of NS5PolDV, W795A and H798A. Overall correct

folding of the purified recombinant mutants was equally verified

by a fluorescent thermal shift assay giving Tm values correspond-

ing to the wt protein (wt NS5PolDV Tm 49.0uC 6 0.5uC, W795A

mutant Tm 48.6uC 6 0.6uC, H798A mutant Tm 48.1uC 6

0.04uC).

The RNA initiation and elongation activities of wt NS5PolDV

and the W795A and H798A mutants were tested using the

minigenomic RNA template and either Mg2+ or Mn2+ as catalytic

ions (Figure 6A). In both cases the H798A mutant shows an

increased activity on this template whereas W795A shows a similar

overall activity compared to wt NS5PolDV. Figure 6B shows the

analysis of the reaction products on a denaturing agarose-

formaldehyde gel. The W795A mutant behaves indeed like wt

NS5PolDV, the percentage of the de novo RNA synthesis initiation

product of template size is unchanged. In contrast the H798A

mutant generates considerably less de novo RNA synthesis product

whereas the yield of RNA elongation products is higher.

We then compared the capacities of wt and all mutant

NS5PolDV proteins to catalyze de novo RNA synthesis initiation

on DV1039-, without template and on DV1039+ using Mn2+ as

catalytic ion (Figure 6C panels 1, 3 and 4). Indeed, the H798A

mutant is considerably less capable of correct de novo RNA

synthesis initiation than wt NS5PolDV whereas W795A behaves as

wt NS5PolDV. Note that the product formed by NS5PolDV TGGK

on DV1039+ (panel 4) corresponds to pppGA generated by internal

RNA synthesis initiation (see also Figure 5C); and therefore part of

the product formed by the H798A mutant may correspond to

pppGA. When Mg2+ is used on both templates, the same results

are obtained (Figure 6C panel 2 for template DV1039-). We thus

conclude that residue H798 is essential for the formation of the

correct ATP-specific priming site and may act as a priming

platform.

Discussion

In this study, we present evidence that the dengue virus NS5

polymerase domain (NS5PolDV) alone is responsible for mainte-

nance of A and U as first and last nucleotides of the DV genome,

respectively. NS5PolDV was used instead of full-length NS5 in the

frame of this study in order to avoid any interference of the RNA-

binding, NTP-binding, or enzymatic activities of the N-terminal

domain of NS5. We report that NS5PolDV is endowed with several

structural and mechanistic features converging to the specific de

novo synthesis and elongation of the correct ATP-initiated primer

even on templates that lack the correct corresponding U at the 39-

end. The first and last nucleotides of the genome are strictly

conserved in the genus Flavivirus thus the results presented here

may apply to the entire genus.

Figure 6. Role of NS5PolDV residues His798 and Trp795 as
initiation platform. (A) Activity of wt NS5PolDV and its mutants
W795A and H798A was determined on a specific minigenomic
template. Reaction mixtures in the presence of [3H]-UTP were prepared
as given in Materials and Methods. Initial velocities in cpm/min
determined using filter-binding assays and liquid scintillation counting
are compared in the presence of Mg2+ (left panel) and Mn2+ (right
panel). (B) Reaction kinetics of wt NS5PolDV and its mutants W795A and
H798A on the minigenomic template were analyzed on an agarose-
formaldehyde gel. Reaction mixtures in the presence of [a-32P]-UTP and
Mg2+ ions were prepared as given in Materials and Methods. Product
bands are labeled on the right sight of the gel. (C) De novo initiation of
wt NS5PolDV, deletion mutant TGGK and mutants W795A and H798A
was followed using either DV1039- (1 mM in the presence of Mn2+ and
10 mM in the presence of Mg2+), in the absence of a template or 1 mM
DV1039+ (from top to bottom as indicated). Reaction mixtures contained
2 mM MnCl2 or 5 mM MgCl2 as indicated, 500 nM enzyme, 500 mM of
ATP, and 100 mM GTP (containing aGTP). Reactions were started by
addition of catalytic ions and samples were taken at given time points.
Identities of labeled product bands are given on the left side of the gels.
pppGA internal de novo initiation product on DV1039+ is labeled by an
asterisk.
doi:10.1371/journal.ppat.1002912.g006
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We demonstrate the generation of a dinucleotide primer

pppAG on both genomic and antigenomic RNA templates. We

have previously observed the production of such dinucleotide

primer on homopolymeric templates [14]. In the following step

pppAG(A/U) trinucleotides are formed before processive RNA

elongation occurs. During the latter, NS5PolDV continues RNA

synthesis to the very end of the template. We do not know if di-

and tri-nucleotide primers as detected in the reaction, originate

from a slow but processive RNA synthesis reaction, or are actually

released from the complex and re-used by the polymerase acting in

a distributive RNA synthesis mode. We also show that the pppAG

primer is effectively elongated in the presence of Mg2+ or Mn2+

and the correct template. Thus, after initial phosphodiester bond

synthesis, the pppAG primer is aligned at the correct position in

order to be elongated. The efficient use of the short primer pppAG

reported here is in apparent contrast to the inefficient use of 59-

OH-AG dinucleotide previously reported [13,30]. The 59-

triphosphate moiety of the chemically synthesized pppAG primer

is most probably an important binding determinant allowing

efficient elongation (see discussion of the proposed de novo initiation

complex Figure 7).

We then demonstrate that in its de novo RNA synthesis initiation

state NS5PolDV contains a built-in ATP-specific priming site.

Major structural elements of NS5PolDV contributing to this site

reside within residues T794 to A799. Their deletion forces

NS5PolDV to initiate de novo RNA synthesis internal to the

template using GTP as the first nucleotide (Figure 5C panel 1) and

to perform primer-dependent RNA synthesis (Figure 5B). In

analogy to the structure of HCV NS5B in complex with a

nucleotide in its priming site [31] and because of the amino acid

conservation observed within a larger group of de novo RdRps [25],

we expect that NS5PolDV residues R472 (RdRp catalytic motif F3,

see [14]) as well as S710 and R729 (motif E) are involved in

triphosphate binding. This might explain why de novo RNA

synthesis initiation by the loop-deleted mutant is still possible,

albeit internal to the template. We conclude that indeed the T794-

A799 loop plays a major role both in correct de novo initiation and

in shaping the priming site. Within the priming loop, residue H798

is essential for primer synthesis (Figure 6). We propose that H798

provides the initiation platform against which the priming

nucleotide ATP is stacked. Using the structure of the de novo

initiation complex of the RdRp of bacteriophage w6 [23] as a

starting point, we generated a model of the initiation complex of

DV serotype 2 RdRp in complex with the 39- end of the genome

UUCU and both ATP and GTP as first and second nucleotide,

respectively (Figure 7). In this model, the triphosphate moiety of

ATP indeed interacts with residues S710, R729 and R737 of the

thumb subdomain of NS5PolDV. The aromatic ring of H798

stacks the adenine nucleobase of ATP in a similar position to a w6

RdRp tyrosine residue against which the guanine nucleobase of its

priming GTP is stacked. In several protein complex structures

histidine has been shown to bind an adenine nucleobase by

stacking interactions [32]. Nevertheless, histidine does not seem to

provide any specificity towards adenine versus guanine [33]. Our

model does not propose any obvious specific interaction with the

adenine base. This might be due to the fact that the structure of

NS5PolDV has been captured in a pre-initiation state. In this state,

motif F, which provides the upper part of the NTP entry tunnel in

the active initiation and elongation conformation of viral RdRps,

is not yet correctly positioned [34]. The fine characterization of

the ATP-specific built-in priming site of NS5PolDV awaits the

crystal structure of a de novo RNA synthesis initiation complex.

We provide a mechanistic basis for the conservation of

nucleotides A and U as the first and last nucleotides of the DV

genome, respectively. Figure 8 summarizes the different levels of

control that ensure ATP-specific de novo RNA synthesis initiation.

Firstly, it generates and elongates the bona fide pppAG primer (red

arrows and green arrows on the right). Even in the absence of any

template and in the presence of Mn2+ (Figure 8 left red arrow)

NS5PolDV is able to exclusively synthesize the pppAG primer

(Figure 2B and C, Figure 3A and C). Note that we have also

observed pppAG synthesis by full-length NS5 in the absence of a

template (not shown). Since a sufficiently high Mn2+ concentration

is present in the cell (0.1 mM to 40 mM Mn2+ in blood, brain, and

other tissues [35]), NS5 in the replication complex might already

be loaded with pppAG and thus be ready to elongate pppAG on

the viral template. The same pppAG primer is preferentially

synthesized in the presence of the correct template irrespective of

the metal ion present at the polymerase active site (Figure 8 right

red arrows, Figure 2A and B, Figure 3). In the presence of Mg2+,

NS5PolDV supports neither formation nor elongation of pppAG

on incorrect templates (Figure 8 blue blocked arrow, Figure 4B). In

the presence of Mn2+, NS5PolDV is able to synthesize cognate

dinucleotides on incorrect templates (Figure 2C), but in the

presence of all nucleotides and all templates (a probably biased

and more unfavorable set-up compared to the situation in the

replication complex in vivo), pppAG is still a major product

(Figure 3C). Remarkably, the pppAG/Mn2+-loaded polymerase is

able to mismatch and extend pppAG in order to restore the

correct 59-end (Figure 8 blue arrows, Figure 4). The selective

extension reaction thus refrains synthesis of incorrect RNAs that

Figure 7. De novo initiation model of NS5PolDV in complex with
RNA template UUCU (39-end of DV genome), ATP, GTP and
catalytic Mg2+ ions. The model was generated as explained in
Materials and Methods. Fingers, thumb and palm subdomains are
colored as in Figure 5A. Only the 39-end CU of the RNA template is
shown, it base pairs the initiating ATP and the second nucleotide GTP.
The triphosphate of ATP contacts residues S710, R729 and R737 of the
thumb subdomain motif E. The 39-O atom of the ribose of ATP lies near
the a-phosphate of GTP, which is coordinated to Mg1 bound to D534 of
motif A and D663 of motif C. Mg2 is coordinated to the leaving
pyrophosphate of GTP. The proposed priming platform H798 stacks to
adenine base of the priming ATP.
doi:10.1371/journal.ppat.1002912.g007
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could occur in the presence of incorrect templates. All these

reactions converge to the formation of pppAG and the conserva-

tion of A as the starting nucleotide at the 59-end of viral genomic

and antigenomic RNAs. Note that the mechanistic basis of the

conservation of the second nucleotide G is beyond the scope of this

study. Preliminary results generated in our laboratory indicate that

both template and polymerase are important to ensure the specific

incorporation of a G as the second nucleotide (not shown).

Several ways of viral RNA genome maintenance and repair

concerning terminal damage have been discussed [4], among

others the generation of ‘‘non-templated’’ primers and the use of

abortive transcripts as primers. Here we demonstrate that

NS5PolDV uses these two mechanisms. Non-templated primers

are generated only in the presence of Mn2+. Abortive transcripts

are used as primers in the presence of either Mg2+ or Mn2+. A

third mechanism observed here is the discrimination against an

incorrect template in the presence of Mg2+. In addition, in the case

that a 39-end might be shortened, the correction upon de novo

initiation should be preceded by the addition of (a) nucleotide(s) by

the terminal transferase activity of NS5. This activity has also been

listed as another way of repairing terminal damage of viral RNA

genomes [4]. For NS5PolDV we have observed this activity before

[14] and now again in the presence of Mn2+ (Figure 1B).

The DV polymerase endows several of the proposed mecha-

nisms to maintain the correct 59 and 39-ends of the DV genome

and antigenome. The ability of DV and WNV to restore a U at the

very 39-end of genomes with 39-end deletions has been demon-

strated [2,36]. This observation is in accordance with the existence

of an ATP-specific priming site in NS5PolDV. Tilgner et al. [2,36]

reported the complete reversion of WNV replicon CA and CG 39-

ends to CU whereas CC was only partially reverted. Since we have

not seen preferential de novo RNA synthesis initiation starting with

GG in comparison to UG or CG (all three are possible in presence

of Mn2+, Figure 2), this might be due to an intrinsic difference

between DV and WNV RdRp or caused by different propensities

of the erroneous templates to allow pppAG elongation. Indeed CA

and CG 39-ends allow pppAG elongation more readily than the

CC 39-end (Figure 4, two independent reactions were performed).

Thus the CC 39-end might therefore take longer to revert.

Furthermore, Teramoto et al. [2,36] observed the correction of the

59-end from pppGAG to pppAG. Our work provides a

mechanistic explanation for their observation.

The observation of non-templated pppAG formation in the

presence of Mn2+ by a viral RdRp has not been reported before

using recombinant RdRp assays. However, previous reports

convey the occurrence of non-templated dinucleotide formation.

RSV, a member of the ns-RNA virus family Paramyxoviridae

restores the correct 59-pppA although minireplicons did not

encode the correct 39-U [10]. The authors propose that RSV

RdRp contains a built-in ATP-specific priming site and cite the

observation that the RdRp of the related ns-RNA vesicular

stomatitis virus (VSV, Rhabdoviridae) contains a specific ATP-

binding site [37] as an argument in favor of their proposition.

When VSV RdRp assays were carried out using recombinant

RdRp in the presence of Mg2+, non-templated 59-initiation was

not observed [6]. There is either the possibility that RSV and VSV

belong to two different ns -RNA viral families and thus developed

different strategies or, in analogy to our results that their RdRps

use Mn2+ to correctly initiate RNA synthesis on erroneous

templates as observed for NS5PolDV here. It is generally believed

that Mg2+ is the activating cofactor of polymerases in vivo because

viral RdRp properties observed with Mg2+ in vitro are more

Figure 8. Dengue virus RdRp conserves the correct 59- and 39-ends of the genome. DV RdRp conducts strict ATP-specific de novo initiation
in the absence of a template and in the presence of the correct template using the indicated catalytic ions Mn2+ or Mg2+. The pppAG primer is then
elongated. When DV RdRp encounters templates with incorrect 39-end nucleotides it refuses de novo initiation (when Mg2+ is present) or corrects the
error by preferentially generating and elongating pppAG (using Mn2+ as catalytic ion). The structure of the DV2 RdRp domain is shown in the
background.
doi:10.1371/journal.ppat.1002912.g008
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consistent with properties observed biologically. A second reason

for giving the preference to Mg2+ is its cellular abundance in

comparison to Mn2+ (i.e., 0.5 mM free Mg2+ versus 0.7 mM free

Mn2+ in rat hepatocytes [38,39] and 0.1 mM–40 mM Mn2+ in

blood, brain and other tissues [35] versus 0.2 to 0.7 mM Mg2+ in

human blood [40]. Nevertheless, some events especially involved

in correct and efficient de novo RNA synthesis initiation may

require the specific use of Mn2+ by viral RdRps under

physiological conditions (our study and [10,36,41,42]).

The pppAG primer synthesis by the DV RdRp can be

considered as the first line of control of the conservation of

Flavivirus genome and antigenome ends. However, there might be

other mechanisms to tighten the selection. The first one could be

the base pairing of the genome ends maintaining specific RNA

secondary structures, which are necessary to recruit the replication

machinery. Computer simulations of such structures [43] indicate

that the last U of the 39-end of the genome may be unpaired or

paired (structure I or II, respectively in [43]). Thus, requested base

pairing may exert selective pressure to keep a U at the end of the

Flavivirus genome. Another selection level concerns only the 59-end

of the genome and is due to the counterselection of incorrect 59-

ends through the NS5 RNA-cap methyltransferase. Indeed,

several crystal structures of the cap-dependent bi-functional

methyltransferase domain of NS5 show that specific binding of

the 59-cap involves specific recognition of the first transcribed 59-

adenosine through its N1 position and residue Asn18 [44,45].

Therefore, for the genomic strand, methylation at the cap N7-

guanine and the subsequent 29-O position of the first transcribed

adenosine should be efficiently achieved only when ATP is the

starting 59-nucleotide. Finally, cap addition seems to involve 59-

ATP selectivity as well [20]. Collectively, we propose that the

RdRp of flaviviruses is the first actor responsible for the

conservation of the correct ends of their genome, and that other

mechanisms such as genome cyclization and the specificity of

guanylyltransferase and methyltransferase activites add to the

selective pressure. These mechanisms of maintenance might also

apply to other RNA virus genera with conserved genome ends and

viral RdRps initiating RNA synthesis de novo.

Materials and Methods

RNA templates
DV1039+ (59-AACAGGUUCU-39) and DV1039- (59-ACUAA-

CAACU-39) were synthesized at the RIBOXX GmbH Dresden

and by Dharmacon. The templates are devoid of stable secondary

structure when submitted to the Mfold server [46]

(DG = 3.60 kcal/mol for DV1039+ and no folding for DV1039-).

Large-scale chemical synthesis and purification of pppAG
Chemical synthesis of AG on solid support. Chemical

synthesis of the diribonucleotide AG was performed on an ABI

394 synthesizer (Applied Biosystems) from commercially available

(Link Technologies) long chain alkylamine controlled-pore glass

(LCAA-CPG) solid support with a pore size of 1000 Å derivatized

through the succinyl linker with 59-O-dimethoxytrityl-29-O-acetyl-

N2-dimethylformamide guanosine. The dinucleotide AG was

assembled at a 8-mmol scale in Twist oligonucleotide synthesis

columns (861-mmol scale) (Glen research) using 59-O-DMTr-29-O-

pivaloyloxymethyl-N6-phenoxyacetyladenosine]-39-O-(O-cya-

noethyl-N,N-diisopropyl-phosphoramidite (Chemgenes) and fol-

lowing a previously described procedure [47]. After assembly

completion, the CPG beads in the eight columns were dried under

a stream of argon. The beads were pooled, divided in two, and

around 4 mmol AG transferred into two Twist oligonucleotide

synthesis columns (size for 10-mmol scale). The 59-functionalization

of AG with triphosphate moiety was performed in parallel with

both columns following previously described conditions [48].

59-triphosphorylation of solid-supported AG. A solution

(8 ml) of 1 M diphenyl phosphite (1.6 ml) in dry pyridine (6.4 ml)

was manually passed with a glass syringe through the columns

containing AG still attached to the solid support and left to stand

for 30 minutes at room temperature. After several washings, the

oxidation solution containing imidazole (375 mg, 5 mmol) in N,O-

bis-trimethylsilylacetamide (1 ml, 4.1 mmol), CH3CN (1.875 ml),

CCl4 (1.875 ml) and triethylamine (0.25 ml) was added under

argon and left to react for 5 h at 30uC. After washing and drying

the support, the TBAPP solution (0.23 M, 2 ml) was applied to the

column and left to react for 18 h at 30uC. The solution was

removed and the support was washed with dry CH3CN (468 ml).

Finally, the column was dried by 1-min argon flush.

Deprotection and release of solid-supported pppAG. A

0.1 M solution of 1,8-diazadicyclo-[5,4,0]undec-7-ene (DBU)

(1.2 ml) in anhydrous CH3CN (6.8 ml) was applied to each

column for 3 min. Subsequently, a 30% aqueous ammonia

solution was applied to each column in three batches (6 ml,

4 ml, 2 ml) for 30 min each. The three ammonia fractions were

collected in screw-capped glass vials and were left to react at 30uC
for 1.5 h. The fully deprotected pppAG was transferred to 50 ml

round-bottomed flasks and isopropylamine (15% of total volume)

was added to the solutions. Then the mixtures were evaporated

under reduced pressure at 30uC until the volumes were reduced to

0.5 ml. The residues were redissolved in water (1.5 ml), trans-

ferred to 2 ml Eppendorf-vials and then lyophilized.

Analysis and purification of pppAG by reverse-phase

HPLC. Analytical and semi-preparative HPLC was performed

on a Dionex DX 600 HPLC system equipped with reverse-phase

columns (Nucleodur C18, 100 Å, 3 mm, 4.6670 mm for analysis

and Nucleodur C18, 100 Å, 7 mm, 86125 mm for purification,

Macherey Nagel). The following solvent system was used: 5%

CH3CN in 50 mM TEAB buffer, pH 8 (buffer A) and 80%

CH3CN in 50 mM TEAB buffer, pH 8 (buffer B). Flow rates were

1 ml.min21 and 2 ml.min21 for analysis and semi-preparative

purposes, respectively. Elution was performed with a linear

gradient of 0% to 10% buffer B in buffer A in 20 min. The

fractions containing the pure pppAG were pooled in a 100 ml

round-bottomed flask and were concentrated to a volume of

0.5 ml under reduced pressure at 30uC. The residue was

coevaporated ten times with 2 ml of water. The residue was

redissolved in 1.5 ml water, transferred to 2 ml Eppendorf-vials

and lyophilized. MALDI-TOF mass spectra were recorded on a

Voyager-DE spectrometer (Perseptive Biosystems, USA) using a

10:1 (m/m) mixture of 2,4,6-trihydroxyacetophenone/ammonium

citrate as a saturated solution in acetonitrile/water (1:1, v/v) for

the matrix. Analytical samples were mixed with the matrix in a 1:5

(v/v) ratio, crystallized on a 100-well stainless steel plate and

analyzed. UV quantitation of pppAG was performed on a Varian

Cary 300 Bio UV/Visible spectrometer by measuring absorbance

at 260 nm. Two mmol of pure pppAG were obtained correspond-

ing to 25% total yield. Lyophilized aliquots of 100 nmol have been

stored at 220uC for several months without any sign of

degradation.

Protein expression and purification
The gene coding for N-terminal His6-tagged NS5PolDV

(serotype 2, New Guinea C) as defined in [14] cloned in a

pQE30 plasmid was expressed in E.coli (Tuner (Novagen) or NEB

Express (New England Biolabs)) cells carrying helper plasmid

pRare2LacI (Novagen). Expression was carried out in Luria broth

Nucleotide Conservation of Dengue Virus RNA Ends

PLOS Pathogens | www.plospathogens.org 11 September 2012 | Volume 8 | Issue 9 | e1002912



overnight at 17uC after induction with 50 mM IPTG, addition of

2% EtOH and a cold shock (2 h at 4uC). Sonication was done in

50 mM sodium phosphate lysis buffer, pH 7.5, 500 mM NaCl,

20% glycerol, 0.8% Igepal (10 ml of this lysis buffer for around 2 g

cell pellet from 1l culture) in the presence of DNase I (22 mg/ml),

0.2 mM benzamidine, protease inhibitor cocktail (SIGMA), 5 mM

b-mercaptoethanol and 1 mg/ml lysozyme after 30 min incuba-

tion at 4uC. After centrifugation the soluble fraction was incubated

in batch with 2 ml TALON metal-affinity resin slurry (Clontech)

for 40 min at 4uC. Protein bound to the beads was washed once

with 10 volumes of sonication buffer containing 1 M NaCl and

10 mM imidazole and once with the former buffer without Igepal.

Protein fractions were then eluted with sonication buffer

containing 250 mM imidazole, no Igepal and 250 mM glycine.

After dialysis into 10 mM Tris buffer, pH 7.5 containing 300 mM

NaCl, 20% glycerol, 250 mM glycine and 1 mM DTT the protein

was diluted with the same volume of this buffer without NaCl and

loaded onto a HiTrap heparin column (GE Healthcare). Pure

NS5PolDV was then eluted in a single peak applying a gradient

from 150 mM to 1 M NaCl. Alternatively, gel filtration was used

as a second purification step using a Superdex 75 HR 16/60

column (GE Healthcare) and the dialysis buffer. NS5PolDV was

stored at 220uC at a concentration of 40 to 60 mM after a final

extensive dialysis into 10 mM Tris buffer, pH 7.5 containing

300 mM NaCl, 40% glycerol and 1 mM DTT. Purity was higher

than 98% as judged by SDS-PAGE.

Mutant NS5PolDV genes and proteins
Mutant TGGK, W795A and H798A NS5PolDV expression

plasmids were generated using the kit QuikChange (Stratagene).

Protein expression and purification was done as for the wt protein.

Analysis by gel filtration showed a single peak eluting at the same

volume as wt NS5PolDV.

Determination of Tm values
Melting temperature (Tm) values of wt and mutant NS5PolDV

were determined using a thermofluor-based assay [49]. In 96-well

thin-wall PCR plates 3.5 ml of a fluorescent dye (Sypro Orange,

Molecular Probes, 714-fold diluted in H2O) was added to 21.5 ml

protein solutions at a concentration of 0.5 or 1 mg/ml (6.7 or

13.4 mM) in storage buffer. Thermal denaturation of the proteins

was followed by measuring fluorescence emission at 575 nm

(excitation 490 nm). Tm values were calculated using GraphPad

Prism software and the Boltzmann equation as in [49].

In vitro RdRp assays on DV1039+ and DV1039-
Reactions were done in 50 mM HEPES buffer, pH 8.0

containing 10 mM KCl, 10 mM DTT and template, NS5PolDV,

non-labeled NTPs, and catalytic ions at final concentration as

given in the figure legends. Radiolabeled [c-32P]-ATP, [a-32P]-

GTP, or [a-32P]-UTP was used at 0.4 mCi per ml reaction volume

(3000 Ci/mmol, Perkin-Elmer). Reactions were started by addi-

tion of a mixture of HEPES buffer, KCl, catalytic ions and UTP

and CTP when used (given in Figures). After given time points

samples were taken and reactions stopped by adding an equal

volume of formamide/EDTA gel-loading buffer. Reaction prod-

ucts were separated using sequencing gels of 20% acrylamide-

bisacrylamide (19:1), 7 M Urea with TTE buffer (89 mM Tris

pH 8.0, 28 mM taurine (2-aminoethanesulfonic acid), 0.5 mM

EDTA). RNA product bands were visualized using photo-

stimulated plates and the Fluorescent Image Analyzer FLA3000

(Fuji) and quantified using Image Gauge (Fuji). The oligoG marker

was produced as explained in [14].

In vitro RdRp assays on minigenomic template
The minigenomic template was produced by in vitro transcrip-

tion and tests carried out as described in [14].

Reactions analyzed by filter-binding and liquid scintillation

counting contained 50 mM HEPES buffer, pH 8.0, 10 mM KCl,

10 mM DTT, 100 nM RNA template, 200 nM NS5PolDV,

500 mM NTP except for UTP (4 mM), [3H]-UTP at 0.2 mCi/ml

and either 5 mM MgCl2 or 2 mM MnCl2. Reactions were started

by the addition of a mixture of HEPES, KCl, catalytic ions, CTP,

and UTP. After 30, 60, 90, and 120 min 10-ml samples were taken

and diluted into 50 ml of 100 mM EDTA, pH 8.0 to quench the

reaction. Samples were then transferred onto a DEAE filter mat.

Non-incorporated [3H]-UTP was removed by washing with

300 mM ammonium formate and the radioactively labeled

product quantified in counts per minute (cpm) using liquid

scintillation counting. Product formation was then plotted against

time and initial velocities calculated in cpm/min.

Reactions analyzed on formaldehyde-agarose gels contained

50 mM HEPES buffer, pH 8.0, 10 mM KCl, 10 mM DTT,

100 nM RNA template, 200 nM NS5PolDV, 500 mM NTP except

for UTP (4 mM), [a-32P]-UTP at 0.4 mCi/ml, and 5 mM MgCl2.

Reactions were started by a mixture of HEPES, KCl, MgCl2, CTP

and UTP and stopped after 60 and 120 min by adding an equal

volume of sample buffer (40 mM MOPS pH 7.0, 83.3% formam-

ide, 2 M formaldehyde, 10 mM sodium acetate, 85 mM EDTA).

Samples were denatured for 10 min at 70uC and 1/10 of loading

buffer (50% glycerol, 10 mM EDTA, xylene cyanol and bromphe-

nol) added. Samples were then analyzed on a 1.2% agarose-

formaldehyde gel in 20 mM MOPS buffer pH 7.0, 5 mM sodium

acetate, 1 mM EDTA. Gels were dried and RNA product bands

visualized using photo-stimulated plates and the Fluorescent Image

Analyzer FLA3000 (Fuji) and quantified using Image Gauge (Fuji).

Modeling of the NS5PolDV initiation complex
A homology model of NS5PolDV serotype 2 strain New Guinea

C was generated using the Swiss-model server [50] and the X-ray

structure of NS5PolDV serotype 3 (PDB code 2J7W [16]).

NS5PolDV and the RdRp of bacteriophage w6 in complex with

a template RNA strand and initiating NTPs (PDB code 1HI0)

were then superimposed using the three catalytic aspartate

residues of both proteins. The structural model of the initiation

complex of NS5PolDV serotype 2 was then generated by changing

the RNA template to UUCU (39-end of the DV genome) and the

initiating NTP to ATP, and by manually adapting the conforma-

tion of the priming loop using the UCSF Chimera software [51].

Subsequently using the same program the computed free energy of

the model was minimized.
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32. Cauët E, Rooman M, Wintjens R, Lievin J, Biot C (2005) Histidine-Aromatic
Interactions in Proteins and Protein-Ligand Complexes: Quantum Chemical

Study of X-ray and Model Structures. J Chem Theory Comput 1:472–483.
33. Firoz A, Malik A, Joplin KH, Ahmad Z, Jha V, et al. (2011) Residue

propensities, discrimination and binding site prediction of adenine and guanine

phosphates. BMC Biochem 12:20.
34. Malet H, Masse N, Selisko B, Romette JL, Alvarez K, et al. (2008) The flavivirus

polymerase as a target for drug discovery. Antiviral Res 80:23–35.
35. Versieck J (1985) Trace elements in human body fluids and tissues. Crit Rev Clin

Lab Sci 22:97–184.
36. Teramoto T, Kohno Y, Mattoo P, Markoff L, Falgout B, et al. (2008) Genome

39-end repair in dengue virus type 2. RNA 14:2645–2656.

37. Massey DM, Lenard J (1987) Inactivation of the RNA polymerase of vesicular
stomatitis virus by N-ethylmaleimide and protection by nucleoside triphosphates.

Evidence for a second ATP binding site on L protein. J Biol Chem 262:8734–
8737.

38. Ash DE, Schramm VL (1982) Determination of free and bound manganese(II) in

hepatocytes from fed and fasted rats. J Biol Chem 257:9261–9264.
39. Gaussin V, Gailly P, Gillis JM, Hue L (1997) Fructose-induced increase in

intracellular free Mg2+ ion concentration in rat hepatocytes: relation with the
enzymes of glycogen metabolism. Biochem J 326:823–827.

40. Wang S, McDonnell EH, Sedor FA, Toffaletti JG (2002) pH effects on
measurements of ionized calcium and ionized magnesium in blood. Arch Pathol

Lab Med 126:947–950.

41. Wright S, Poranen MM, Bamford DH, Stuart DI, Grimes JM (2012)
Noncatalytic ions direct the RNA-dependent RNA polymerase of bacterial

double-stranded RNA virus varphi6 from de novo initiation to elongation. J Virol
86:2837–2849.

42. Ranjith-Kumar CT, Kim YC, Gutshall L, Silverman C, Khandekar S, et al.

(2002) Mechanism of de novo initiation by the hepatitis C virus RNA-dependent
RNA polymerase: role of divalent metals. J Virol 76:12513–12525.

43. Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV (2005)
Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol

79:6631–6643.
44. Egloff MP, Decroly E, Malet H, Selisko B, Benarroch D, et al. (2007) Structural

and functional analysis of methylation and 59-RNA sequence requirements of

short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol
Biol 372:723–736.

45. Yap LJ, Luo D, Chung KY, Lim SP, Bodenreider C, et al. (2010) Crystal
structure of the dengue virus methyltransferase bound to a 59-capped octameric

RNA. PLoS One 5:e12836.

46. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res 31:3406–3415.

47. Lavergne T, Bertrand JR, Vasseur JJ, Debart F (2008) A base-labile group for 29-
OH protection of ribonucleosides: A major challenge for RNA synthesis.

Chemistry 14:9135–9138.

48. Zlatev I, Lavergne T, Debart F, Vasseur JJ, Manoharan M, et al. (2010) Efficient
solid-phase chemical synthesis of 59-triphosphates of DNA, RNA, and their

analogues. Org Lett 12:2190–2193.
49. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006)

Thermofluor-based high-throughput stability optimization of proteins for
structural studies. Anal Biochem 357:289–298.

50. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an

environment for comparative protein modeling. Electrophoresis 18:2714–2723.
51. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al.

(2004) UCSF Chimera-a visualization system for exploratory research and
analysis. J Comput Chem 25:1605–1612.

Nucleotide Conservation of Dengue Virus RNA Ends

PLOS Pathogens | www.plospathogens.org 13 September 2012 | Volume 8 | Issue 9 | e1002912


