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Abstract: Restoration of images degraded by spatially varying blurs is an issue of increasing importance. Many new op-

tical systems allow to know the system point spread function at some random locations, by using microscopic

luminescent structures. Given a set of impulse responses, we propose a fast and efficient algorithm to recons-

truct the blurring operator in the whole image domain. Our method consists in finding an approximation of

the integral operator by operators diagonal in the wavelet domain. Interestingly, this method complexity scales

linearly with the image size. It is thus applicable to large 3D problems. We show that this approach might out-

perform previously proposed strategies such as linear interpolations (Nagy and O’Leary, 1998) or separable

approximations (Zhang et al., 2007). We provide various theoretical and numerical results in order to justify

the proposed methods. We also show preliminary deblurring results illustrating the relevance of our formalism.

1 INTRODUCTION

Image restoration in the presence of spatially varying

blur is a problem of increasing importance. It was first

studied in the context of satellite imaging with Hubble

space telescope (Nagy and O’Leary, 1998). It is now

becoming increasingly important with the emergence

of new fluorescence microscopes, producing highly

deteriorated images, since light interacts with the bio-

logical tissues. In microscopy, it is often possible to

incorporate micro-beads in the medium surrounding

the sample or even in the sample itself, giving ac-

cess to the point spread function (PSF) of the system

at some known locations (see e.g. (Preibisch et al.,

2010; Temerinac-Ott et al., 2011)). This information

allows to interpolate the PSF in the whole space and

thus to get approximations of the degradation opera-

tor for further processing.

In the case of spatially invariant blur, fast decon-

volution algorithms can be devised since the convo-

lution is diagonal in the Fourier domain. This allows

using O(dnd log(n)) algorithms (where d denotes the

space dimension and nd denotes the number of pixels)

based on the fast Fourier transform. These approaches

are unsuitable in the case of spatially varying blurs

and it appeals for the development of new fast nume-

rical algorithms. Our aim in this paper is to propose

fast O(nd) algorithms based on the wavelet or wavelet

packet transforms.

We consider a blurring operator H in Rd and defi-

ned for any u ∈ L2(Ω) as the following integral ope-

rator :

∀x ∈ Ω,(Hu)(x) :=
∫

y∈Ω
K(x,y)u(y)dy, (1)

where Ω ⊆ Rd is the image domain. The function

K(x, ·) is a spatially varying kernel defining the PSF

at each location x. In all the following, we assume that

H is a bounded linear operator from L2(Ω) to L2(Ω).
The most naive approach to compute Hu numerically

consists in discretizing (1) by :

∀x ∈ X ,Hu(x) = ∑
y∈X

K(x,y)u(y),

where X ⊂ Ω denotes the set of pixels locations. This

approach is simple to implement, but costs O(n2d)
arithmetic operations. This is unsuitable for large 2D

images or medium sized 3D images. Two alternative

approaches are commonly used :

– The first one consists in approximating K(x, ·)
by a tensor product of kind :

K(x,(y1, · · · ,yd)) =
d

∏
k=1

Kk(x,yk).



FIGURE 1 – An orthogonal view of a Variable Refractive
Gibson and Lanni PSF obtained with the PSF Generator
plugin for ImageJ (Kirshner et al., 2011)

This reduces the computational cost to

O(dnd+1) operations which is usually tractable

even in large scale scenarii. Moreover this

model is exact for Gaussian PSF which some-

times accurately describe perfect microscopy

systems (Zhang et al., 2007). Unfortunately, it

is too rough to describe more complex patterns

commonly encountered in optical diffraction or

sample induced degradations. Figure 1 shows a

typical PSF in three dimensions, which cannot

be approximated by separable functions.

– The second one consists in using piecewise

constant blurs using local FFT (Nagy and

O’Leary, 1998; Hansen et al., 2006). Its com-

plexity is roughly the same as that of spatially

invariant blurs in O(dnd log(n)). Moreover, this

approach also allows to use linear interpolations

of the PSF. This might be interesting in our case

since the PSF is known only at a few positions

and linear interpolations allow an operator re-

construction on the whole image domain. Un-

fortunately, piecewise constant blurs or linear

interpolations are too rough to describe some

practical settings. This is illustrated on Figure

9(b), where we can observe that the linear in-

terpolation gives a cross like PSF in the middle,

that would be undesirable in practical cases.

In this work, we propose to approximate H by

operators diagonal in wavelet or wavelet packet trans-

forms. More precisely, we show that H ≃ ΨΣΨ∗,

where Ψ denotes the wavelet transform and Σ is a dia-

gonal matrix. The computation of Hu is thus reduced

to O(nd) operations.

The structure of the paper is as follows. In section

3, we justify the use of such a structure by theoretical

and numerical results. In section 4, we propose an al-

gorithm to reconstruct the diagonal operator Σ when

the impulse response of H is given at some known lo-

cations. Finally, we present a deconvolution algorithm

and some results in section 5.

2 NOTATION

In order to simplify the notation, we consider wave-

let transforms and not wavelet packet transforms. We

present the theoretical results in 1D for the sake of

simplicity and clarity and the experimental results in

2D. The proposed approaches can be extended to any

dimensions and would be particularly suited to large

3D problems.

We consider an orthogonal wavelet basis of

L2(R) :

{φl0,n}n∈Z∪{ψ j,n} j≤l0,n∈Z,

where

ψ j,n(t) =
√

2− jψ(2− jt −n), (2)

and ψ is the mother wavelet. The function φl0,n is de-

fined by

φl0,n(t) =
√

2−l0 φ(2−l0t −n),

where φ is the scaling function.

In all the paper, Ψ∗ denotes the forward wavelet

transform and Ψ denotes its inverse (in the discrete

and in the continuous setting). F ∗ denotes the Fourier

transform (discrete or continuous) and F denotes its

inverse. The convolution between u and h is denoted

h⋆u. The Fourier transform of u is denoted û or F ∗u

The indicator function of a convex and closed set

C ⊆ Rn is denoted χ and defined as :

χC(x) =

{
0 if x ∈C

+∞ otherwise.

The proximal operator or resolvent of a convex, clo-

sed function F : Rn → R∪ {+∞} is defined for all

x0 ∈ Rn by :

(I +∂F∗)−1(x) = argmin
x∈Rn

F(x)+
1

2
‖x− x0‖2

2.

For a discrete image in Rd , we define the discrete

partial derivative in direction i by :

∂iu(·,k, ·)=
{

u(·,k+1, ·)−u(·,k, ·) if 1 ≤ k < n

0 if k = n.



where the indice k is that the i-th position in the array.

The discrete gradient operator in Rd is defined by :

∇ =




∂1

∂2

...

∂d




Let q ∈ (Rnd
)d represent a discrete vector field. We

set

q =




q1

q2

...

qd


 .

The isotropic l1-norm in (Rnd
)d is defined by :

‖q‖1,2 =
nd

∑
i=1

√√√√
d

∑
j=1

q j(i)2.

Finally, the discrete total variation of u ∈ Rnd
is defi-

ned by :

TV (u) = ‖∇u‖1,2.

3 DIAGONALIZATION OF THE

VARIABLE BLUR OPERATOR

IN A WAVELET BASIS

The main ingredient allowing the design of efficient

deconvolution algorithms is the fact that a convolu-

tion is diagonalized in the Fourier domain. For any

kernel h, h ⋆ u = F ΣF ∗u where Σ can be considered

as a diagonal operator that multiplies F ∗u by F ∗h.

The main idea of this paper is to mimic this property

for spatially varying blur operators. We propose to ap-

proximate H by an operator H̃ diagonal in the wavelet

domain :

Hu ≃ H̃u

:= ΨΣΨ∗u

= ∑
n∈Z

〈φl0,n,u〉φl0,n + ∑
j≤l0,n∈Z

σ j,n〈ψ j,n,u〉ψ j,n

where (σ j,n) j,n is a sequence of weights that should be

selected in order to provide “precise” approximations.

This approximation allows to compute an approxima-

tion of Hu in O(nd) arithmetic operations, which is

doable even for very large scale problems.

Such approximations have been deeply analyzed

from a theoretical point of view in various articles

or monographs (see e.g. (Beylkin et al., 1991; Coif-

man and Meyer, 1997)). However, we found very few

image processing applications in the literature. To our

knowledge, the closest practical application is dedica-

ted to the fast computation of image foveation (Chang

et al., 1999). However, this work is only adapted to

very particular kind of kernels K met in foveation that

do not correspond to our practical problems.

Since H is a linear operator in a Hilbert space, it

can be written as :

H = ΨΘΨ∗
,

where Θ : l2 → l2 is characterized by the coefficients,

(θ j,m,k,n) j,m,k,n := (〈T ψ j,m,ψk,n〉) j,m,k,n
.

In order to justify the proposed approach, we first

recall some theoretical results presented in (Beylkin

et al., 1991) that assess the decrease of θ j,m,k,n away

from the diagonal (i.e. when |m−n|> 0 and | j−k|>
0). Then we provide an interpretation of the coeffi-

cients σ j,n in terms of amplitudes of the Fourier coef-

ficients of the local PSF.

3.1 Decay of Θ Away from the Diagonal

In (Beylkin et al., 1991), it has been proved that,

for compactly supported wavelets possessing M va-

nishing moments and smoothly varying kernels, the

values of Θ are small away from the diagonal in the

one and two-dimensional cases. Typical results are as

follow :

Theorem 1 ((Beylkin et al., 1991)). Suppose that

|K(x,y)| ≤ 1
|x−y| and that K(x,y) is of class CM+1 with

,

|∂M
x K(x,y)+∂M

y K(x,y)| ≤ CM

|x− y|(1+M)
,

where M denotes the number of vanishing moments of

ψ. Then θ j,m,k,n satisfies the following inequality :

|θ j,m,k,n| ≤ O

(
1

1+ | j− k|M+1

)
.

Moreover, for compactly supported kernels K :

|θ j,m,k,n|= 0,

for sufficiently large |m−n|.
The authors also show that the operator norm

‖H −ΨΘ̃Ψ∗‖ can be made arbitrarily small if Θ̃ is

obtained by thresholding Θ in such a way that only

O(nd) coefficients are kept. It roughly means that if K

is a smooth kernel, computing Hu can be performed

in O(nd) operations, rather than O(n2d), by making

use of the wavelet transform. In this work, rather than

considering sparse matrices Θ̃, we use simpler diago-

nal matrices.



We illustrate these results experimentally in the

discrete setting on Figure 3. We consider an operator

H whose kernel is a two-dimensional Gaussian with

variances linearly increasing in the vertical direction,

see Figure 2(c). This operator applied to the mandrill

image results in the image Figure 2(b). The matrix Θ
is shown on Figure 3. It is seen that Θ is dominated

by its diagonal entries and that the coefficients away

from the diagonal decrease extremely fast (actually

much faster than the result in Theorem 1).

(a) Original Image (b) Blurred Image

(c) PSF at various locations

FIGURE 2 – Image blurred using the operator H. The kernel
K of the operator is a Gaussian which grows linearly in the
vertical direction.

3.2 Interpretation of the Diagonal

Values

In this paragraph, we show that the values σ j,n can

be interpreted as local frequency responses of H̃. We

assume that ψ is a compactly supported wavelet on

the interval [−β,β].
Let us analyze the impulse response of H̃ at point

x :

H̃δx = ΨΣΨ∗δx

= ∑
n∈Z

φl0,n(x)φl0,n + ∑
j≤l0,n∈Z

σ j,nψ j,n(x)ψ j,n

= ∑
n∈Z

φl0,n(x)φl0,n + ∑
j≤l0,

n∈k(x, j)

σ j,nψ j,n(x)ψ j,n,

where

k(x, j) :=
{

n ∈ Z such that
∣∣2− jx−n

∣∣< β
}
.

(a) In a linear scale

(b) In a log10 scale

FIGURE 3 – Matrix Θ for the variable operator illustrated
in Figure 2. This matrix is obtained using Daubechies 8 wa-
velets and a decomposition level J = 2.

The sets k(x, j) are represented in Figure 4 in the

two-dimensional case. They contain at most ⌊2β⌋ ele-

ments.

Now, if we assume that σ j,n varies little in k(x, j)
and satisfies σ j,n ≃ σ j,x we obtain :

ΨΣΨT δx ≃ ∑
n∈k(x,l0)

φl0,n(x)φl0,n

+ ∑
j≤l0

σ j,x

(
∑

n∈k(x, j)

ψ j,n(x)ψ j,n

)
.



FIGURE 4 – The sets k(x, j) are indicated in orange at each
scale.

The local frequency response of H̃ is thus

Ψ̂ΣΨ∗δx

≃ ∑
n∈Z

φl0,n(x)φ̂l0,n + ∑
j≤l0

σ j,x

(
∑

n∈k(x, j)

ψ j,n(x)ψ̂ j,n

)

= ∑
n∈Z

φl0,n(x)φ̂l0,n + ∑
j≤l0

σ j,xα j,xψ̂ j,

where α j,x is a complex coefficient that depends on

the choice of ψ and ψ j(x) =
√

2− jψ(2− jx). Since ψ̂ j

is well localized in the frequency domain, the coeffi-

cient σ j,xα j,x can be interpreted as a local frequency

attenuation in a certain frequency band that depends

solely on the scale j. This principle is illustrated in

Figure 5.

3.3 Spatial Regularity of the

Eigenvalues

A simple way to find a matrix Σ such that H̃ ≃ H

consists in setting Σ = Diag(Θ). If the kernel K va-

ries sufficiently smoothly in space, the discrete values

(σ j,n)n∈Z also vary smoothly, meaning that σ j,n ≃
σ j,n+1. This can be verified experimentally : Figure

6 represents the diagonal of Θ for an operator H dis-

played in Figure 2(c) in the usual wavelet domain.

The eigenvalues vary smoothly in each sub-band. This

remark is central to understand the interpolation algo-

rithm proposed in the next section.

Also notice that the coefficients σ j,n decrease

from the top to the bottom of the image at each scale.

It means that the high-frequencies are attenuated on

the image bottom. This clearly corresponds to the

operator H shown in Figure 2(c).

(a) In blue
∣∣ψ̂ j

∣∣2 and in red ∑ j

∣∣ψ̂ j

∣∣2

(b) In blue |σ j,xα j,x

∣∣ψ̂ j

∣∣ | and in red |∑
j

σ j,xα j,xψ̂ j|

FIGURE 5 – Local Fourier attenuation are determined by the
coefficients σ j,xα j,x.

FIGURE 6 – Diagonal of the matrix Θ.

3.4 Wavelet and Basis Choice

An important parameter in the proposed algorithm

is the mother wavelet ψ. According to Theorem 1,

ψ should have many vanishing moments for H̃ to



approximate H correctly. This condition can be ve-

rified experimentally. In the following, we will al-

ways consider Daubechies 8 orthogonal wavelet bases

which appeared to produce good practical results.

It was shown in (Malgouyres, 2002; Kalifa et al.,

2003), that wavelet packet bases are more adapted to

deconvolution problems than standard wavelet bases.

The reason is that they provide more precise fre-

quency tilings, notably in the high frequencies. This

is illustrated in Figure 7. The frequency tiling of the

standard wavelet decomposition is much coarser than

that of a wavelet packet transform.

Finally, the non translation invariance of dis-

crete wavelets tend to produce ringing artifacts. They

can be reduced using redundant bases such as the

translation invariant wavelets. In this work we use

cycle spinning (Coifman and Donoho, 1995), which

consists in averaging wavelet transforms translated in

the set {0,1}d . This transform is a tight frame with a

redundancy of 2d .

(a) In a wavelet wasis

(b) In a wavelet packet basis

FIGURE 7 – Frequency tilings for Daubechies-8 wavelets
in the wavelet and wavelet packet basis. Each color corres-
ponds to the Fourier transform of a wavelet at a given scale.

4 OPERATOR

RECONSTRUCTION FROM

LOCALLY KNOWN PSF

In this section, we propose a method to recover the

matrix Σ from the knowledge of local impulse res-

ponses. This setting corresponds to various practical

applications. In astronomy, stars may sometimes be

considered as Diracs. Their observation thus provides

the impulse response of the system K(x, ·), where x

denotes the star location. In microscopy, micro-beads

may be inserted in the sample and provide the impulse

responses at locations spread in the whole image do-

main.

The problem tackled in this section is the recons-

truction of K everywhere, from the knowledge of

K(xi, ·) at a few locations (xi)i∈{1,··· ,m}. We assume

that two images are available :

– An image

u =
m

∑
i=1

δxi
,

that describes the Dirac locations.

– An image uo = Hu which provides the impulse

responses at locations xi.

Figure 8 illustrates two images u and uo. The Diracs

could be randomly located on the image rather than on

a uniform grid. We considered this simple setting for

experimental reasons. The number of known impulse

responses can also be considerably reduced as will be

shown later.

(a) The dirac map u (b) uo = Hu

FIGURE 8 – Dirac map and the associated impulse res-
ponses. This information is used to reconstruct an approxi-
mation of the blurring operator H.

The knowledge of uo allows to reconstruct the ei-

genvalues σ j,n of H̃ only close to the known locations

xi in each sub-band. These eigenvalues should thus be

interpolated in order to recover K everywhere. Note

that this problem is not standard since is consists in in-

terpolating an operator eigenvalues and not an image.

Since the eigenvalues vary smoothly in space, we

propose to use bi-harmonic splines which are well

adapted to scattered data interpolation (Wahba, 1990).



The approximation problem we propose formulates as

the following variational problem :

Find Σ ∈ argmin‖ΨΣΨ∗u−uo‖2
2 +λR(Σ) , (3)

where λ > 0 is a regularization parameter. We also

set :

R(Σ) = ∑
j≤l0

‖∆σ j‖2
2,

where ∆ denotes the discrete Laplacian and σ j de-

notes the set of eigenvalues at scale j. This energy

provides the approximation of minimal curvature. It

is equivalent to using bi-harmonic splines (Wahba,

1990).

The quadratic structure of problem (3) allows the

use of conjugate gradient like methods for the minimi-

zation. We are currently investigating the use of pre-

conditionners in the wavelet domain for accelerating

the convergence.

We present approximation results in Figures 9 and

10. Figure 10 displays a interpolated matrix Σ. This

result can be evaluated by comparing it with the true

diagonal of Θ presented in Figure 6. Overall, the re-

construction leads to near perfect results. Figure 9

compares the interpolation provided by Fourier based

methods such as (Nagy and O’Leary, 1998) with the

proposed approach. Our method produces some ar-

tifacts, however, the proposed interpolation is rather

close to the reality in the image center. Note that this

result is obtained using knowing the PSF at only 4 lo-

cations in the plane. Deblurring an image with kernel

9(b) would be disastrous, since horizontal and verti-

cal frequencies would be enhanced, leading to strong

ringing artifacts.

5 DEBLURRING ALGORITHM

AND RESULTS

5.1 Deblurring Method

In this section, we assume that the diagonal Σ has

been reconstructed using the method proposed in sec-

tion 4. We propose a total variation (TV) based algo-

rithm to tackle the deblurring problem. We suppose

that a degraded image vo is obtained according to the

following discrete model :

vo = Hv+η,

where H :Rnd →Rnd
is the spatially varying blur ope-

rator, v ∈ Rnd
is the unaltered image and η ∈ Rnd

is a

white Gaussian noise, η ∼ N (0,ση Idnd ). Our aim is

to recover v knowing v0. Since H̃ and H are usually

(a) Exact PSF

(b) Linearly Interpolated PSF

(c) Our Interpolated PSF

FIGURE 9 – Operator reconstruction using different me-
thods. The operator is reconstructed using the information
available in the red rectangles.

FIGURE 10 – The matrix Σ reconstructed using bi-harmonic
splines. It should be compared to the real diagonal presented
on Figure 6.

compact, the inverse problem of recovering v should

be regularized. We propose to use a standard total va-



riation based reconstruction approach. It reads :

Find argmin

v∈Rnd
,‖H̃v−vo‖2

2≤α

TV (v), (4)

where α> 0 is a user fixed parameter and TV (v) is the

isotropic total variation of v defined in the notation.

In settings where H is perfectly known, users should

set α = σ2n. The proposed approach slightly differs

since total variation serves as a regularizer for both the

noise and the errors in the operator approximation. In

practice we found that setting α = (1+ ε)σ2n where

ε> 0 is a small parameter provides good experimental

results.

Problem (4) can be rewritten as :

min
v∈Rnd

F(Av)+G(v), (5)

where

A : Rnd → Rdnd ×Rnd

v 7→
(

∇v

H̃v

)
,

F : Rdnd ×Rnd → R+

(y1,y2) 7→ ‖y1‖1,2

+X{y,‖y2−vo‖2≤α}(y2)

and

G = 0.

This reformulation allows to use the primal-dual

algorithm proposed in 1 detailed in algorithm 1.

Algorithm 1: Primal-Dual Algorithm (Cham-

bolle and Pock, 2011)

Input:

ε : the desired precision ;

(x0,y0) : a starting primal-dual pair ;

Output:

x : an approximate solution to the problem.

begin
Choose, τ,σ > 0, θ ∈ [0,1] ;

k = 0; v̄0 = v0;

while Convergence Criterion > ε do

yk+1 = (I +σ∂F∗)−1(yk +σAx̄k) ;

xk+1 = (I + τ∂G)−1(xk + τA∗yk+1) ;

x̄k+1 = xk+1 +θ(xk+1 − xk) ;

k = k+1;
end

end

This algorithm is easy to implement and it can be

shown to converge in O
(

1
k

)
. This rate is somehow op-

timal in the class of first order methods (Nemirovs-

kii and Yudin, 1979). The proximal operators of F∗

and G are easy to compute analytically and we refer

the reader to (Combettes et al., 2006; Chambolle and

Pock, 2011) for more details. The steps sizes τ and

σ should satisfy στ‖A‖2
< 1 for convergence, where

‖A‖ = max
j,n

|σ j,n|. In practice, this algorithm requires

around 100 low cost iterations to provide satisfactory

results for the visual system. Note that H̃ and H̃ must

be applied to a vector at each iteration. This is perfor-

med in O(nd) arithmetic operations due to the special

structure of H̃.

5.2 Results for Different Noise

Variances

Now we will present some results of the deblurring

algorithm.

We used the Mandrill Figure 11(a) rescaled in

[0,1] and blurred with an operator having a two-

dimensional Gaussian PSF with variance increasing

linearly in the vertical direction. It impulse responses

are displayed in 11(b). In Figures 12 and 13 we res-

pectively added a noise of variance ση = 0 and ση =

3.10−2.

In the case ση = 0, Figure 12 shows that the algo-

rithm is able to recover thin details of the image even

in the coat and the beard of the Mandrill in the bottom

of the image. This highlights the fact that the approxi-

mation of H by H̃ is sufficiently good for the sake of

deblurring.

In the case of a larger noise, ση = 3.10−2, Figure

13 shows that the image quality is improved but suf-

fers from the standard defects of total-variation based

regularizations : stair-case appears and thin details are

not recovered. Overall, these results confirm that the

proposed approximation is capable of producing nice

reconstruction results with low computational costs.

CONCLUSION

This paper contains various contributions. First, we

showed that spatially varying blur operators can be

well approximated by operators diagonal in the wave-

let domain. Second, we proposed an original approach

that allows to reconstruct blur operators when their

PSF is known only at a few discrete locations. Com-

pared to previously proposed approaches, this me-

thod allows a much wider class of interpolation al-

gorithms. In particular, we showed that bi-harmonic

splines interpolations produce near perfect results on

a few examples and outperform standard approaches.

Finally we presented preliminary deblurring results.

These results outline that the proposed approxima-

tions provide results similar to what would be obtai-

ned with a perfect knowledge of the blur operator.



(a) Original Image

(b) The PSF

FIGURE 11 – The original Image and the impulse response
of the blurring operator.

The proposed algorithm will be validated on real

data coming from emergent microscopes such as the

selective plane illumination microscope.
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(a) Original Image

(b) Degraded Image SNR = 22.51

(c) Deblurred Image, SNR = 29.02

FIGURE 12 – Restoration results for ση = 0.
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