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MODULAR KOSZUL DUALITY

SIMON RICHE, WOLFGANG SOERGEL, AND GEORDIE WILLIAMSON

Abstract. We prove an analogue of Koszul duality for category O of a reduc-
tive group G in positive characteristic ℓ larger than 1 plus the number of roots
of G. However there are no Koszul rings, and we do not prove an analogue of
the Kazhdan–Lusztig conjectures in this context. The main technical result
is the formality of the dg-algebra of extensions of parity sheaves on the flag
variety if the characteristic of the coefficients is at least the number of roots
of G plus 2.

1. Introduction

1.1. The scaffolding of Koszul duality. Given a Z-graded ring E let us consider
the abelian categoryModZ−E of all Z-graded right E-modules. There are two ways
to “forget a part of the grading” on its derived category. That is, there are two
triangulated functors:

D(Mod−E) D(ModZ−E)
v //voo dgDer−E.

On the left is simply the derived functor v of forgetting the grading ModZ−E →
Mod−E. On the right is the derived category of the differential graded ring
(E, d = 0), which is obtained as the localisation of homotopy category of differ-
ential graded right modules at quasi-isomorphisms (see for example [BL94] for a
thorough discussion). The right-hand functor v sends a complex of graded modules,
thought of as a bigraded abelian group (M i,j) (with (·a) : M i,j → M i,j+|a| for all
a ∈ E homogeneous of degree |a| and differential d : M i,j →M i+1,j) to the differ-
ential graded E-module vM with (vM)n :=

⊕
i+j=nM

i,j and obvious differential.
It is this construction which provides the basic homological scaffolding of Koszul
duality.

In order to obtain Koszul duality in the sense of [BGS96] we equip the above
picture with some finiteness conditions. Let k be a field and let E be a finite di-
mensional Z-graded k-algebra of finite global dimension. Consider the categories
Modf−E (resp. ModfZ−E) of finite dimensional (resp. finite dimensional Z-graded)
right E-modules. Let dgDerf−E ⊂ dgDer−E denote the full triangulated subcate-
gory with objects finite dimensional differential graded right E-modules (see §5.4).
In this setting Koszul duality for category O means the existence of a finite dimen-
sional Z-graded C-algebra E together with vertical equivalences of categories:

(1.1.1)

Db(Modf−E) Db(ModfZ − E)
voo v // dgDerf−E

Db(O0)

≀

OO

Db
(B)(G/B,C)

≀

OO
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Here G denotes a complex semi-simple group with Borel subgroup B ⊂ G and
Db

(B)(G/B,C) denotes the full subcategory of the bounded derived category of

sheaves of C-vector spaces on the flag variety G/B whose cohomology sheaves are
constructible with respect to the stratification by Bruhat cells. Such complexes will
be called “Bruhat constructible” from now on. On the left O0 denotes the principal
block of category O for the Langlands dual group G∨.

We can choose our Z-graded C-algebra E and our vertical equivalences of cat-
egories so that the left-hand equivalence preserves the t-structures (and hence is

induced from an equivalence of abelian C-categoriesModf−E
∼
−→ O0) and such that

for all x in the Weyl group W there exists a finite dimensional Z-graded E-module

M̃x, which specializes on the left-hand side to the Verma module with highest
weight x · 0, and on the right-hand side to the derived direct image of the constant
perverse sheaf on the Bruhat cell BxB/B under the embedding in G/B. We can
depict the situation as follows:

M(x · 0) ←[ M̃x 7→ ix∗CBxB/B[ℓ(x)].

Here x · 0 means as usual xρ− ρ where ρ is half the sum of the positive roots, that
is those roots whose weight spaces act locally nilpotently on all objects in O.

1.2. The modular setting. The goal of the current work is to establish analogous
statements in the modular setting. To do this, let us choose a field F of characteristic
ℓ > 0 and consider the full subcategory

Db
(B)(G/B,F) ⊂ D

b(G/B,F)

of Bruhat constructible complexes of sheaves on the complex flag variety as above,
the only difference being that now we consider sheaves with coefficients in F. On
the other side we consider O0(F), the “subquotient around the Steinberg weight”
as defined in [Soe00]. This is a subquotient of the category of finite dimensional
rational representations of the group G∨

F
over F. In order for this to make sense

we need to restrict to the case where the characteristic is bigger than the Coxeter
number. This ensures that we can find a dominant weight in the interior of an
alcove obtained by stretching an alcove of the affine Weyl group by ℓ.

Under more restrictive assumptions on the characterstic of our coefficients we
prove modular analogues of the previous statements:

Theorem 1.2.1 (“Modular Koszul duality”). Suppose that ℓ > |R| + 1, where R
is the root system of G. Then there exists a graded finite dimensional F-algebra E
of finite global dimension together with vertical equivalences of categories:

(1.2.2)

Db(Modf−E) Db(ModfZ − E)
voo v // dgDerf−E

Db(O0(F))

≀

OO

Db
(B)(G/B,F)

≀

OO

Moreover, for all x ∈W there exists a finite dimension graded E-module M̃x which
specialises to the standard object Mx in O0(F) on the left and to ix∗FBxB/B[ℓ(x)]
on the right. In formulas:

Mx ←[ M̃x 7→ ix∗FBxB/B[ℓ(x)].
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Let us emphasize, however, the difference to the non-modular case: in the mod-
ular case it is not clear whether the Z-graded algebra E can be chosen such that it
vanishes in negative degrees and is semi-simple in degree 0 (unless we make some
strong assumptions, see §5.7 and §7.3). Hence we are in no position to discuss the
Koszulity of E in general.

We believe that the subquotient around the Steinberg weight has no special
meaning in itself. However this subquotient does see some of the multiplicities
of simple modules in Weyl modules. One of the goals of this paper was to try
to develop an accessible model which might help us approach Lusztig’s modular
conjecture. (Indeed Lusztig’s conjecture for multiplicities around the Steinberg
weight is equivalent to the existence of a positive grading as discussed above.)

A large part of the proof of this modular Koszul duality can already be found
in [Soe00]. More precisely in [Soe00] the second author considered the full sub-
category K ⊂ Db

(B)(G/B,F) consisting of all direct images of constant sheaves on

Bott–Samelson varieties, together with their direct sums, summands and shifts. It
was then showed that for all y ∈ W there exists a unique indecomposable object
Ey in K whose support is contained in ByB/B and whose restriction to ByB/B
is isomorphic to FByB/B[ℓ(y)]. In modern language Ey is a parity sheaf and in

[JMW09] their existence and uniqueness is shown by purely geometric arguments,
without restriction on the characteristic. Finally, one of the main results of [Soe00]
is an equivalence of categories

Modf−E
∼
−→ O0(F)

where E = Ext•(E , E) is the algebra of self-extensions of E :=
⊕

y∈W Ey. More pre-

cisely, Ei consists of all morphisms E → E [i] in the derived category Db
(B)(G/B,F)

and O0 denotes the regular subquotient around the Steinberg weight from [Soe00,
§2.3]. Hence all that remains in order to construct a diagram as in (1.1.1) is the
construction of an equivalence of triangulated F-categories

dgDerf−E
∼
−→ Db

(B)(G/B,F).

1.3. Some homological algebra. We briefly recall some general constructions of
homological algebra, which allow us to establish such an equivalence. Let A be an
abelian category. We call a set of complexes C “end-acyclic” if, for all T, T ′ ∈ C
and n ∈ Z the natural map gives an isomorphism

HomK(A)(T, T
′[n])

∼
−→ HomD(A)(T, T

′[n])

between morphisms in the homotopy and derived categories. Given a finite end-
acyclic family T1, . . . , Tm of complexes we can consider the complex T =

⊕
i Ti.

Its endomorphism complex E := End•A(T ) has a natural structure of a dg-ring
with idempotents 1i ∈ E given by the projection to each factor. Then the func-
tor Hom•

A(T,−) induces an equivalence of triangulated categories between the full
triangulated subcategory

〈T1, . . . , Tm〉∆ ⊂ D(A)

generated by the objects Ti and the full subcategory

〈11E, . . . , 1mE〉∆ ⊂ dgDer−E
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generated by the right dg-modules 1iE. An important stepping stone in proving
this claim is provided by the full triangulated subcategory

〈T1, . . . , Tm〉∆ ⊂ K(A)

which by assumption is equivalent to the first triangulated subcategory above. It
is on this category that the functor Hom•

A(T,−) first really makes sense.

Furthermore, it it known that for any quasi-isomorphism D
qis
−−→ E of dg-rings

(that is, a homomorphism of dg-rings which induces an isomorphism on cohomol-
ogy) the restriction induces an equivalence of triangulated categories

dgDer−E → dgDer−D.

Possible sources for statements of this type are [Ri89, Kel94].

1.4. Construction of the equivalence. We apply the above to the abelian cat-
egory of all sheaves of F-vector spaces. It is straightforward to see that the parity
sheaves generate the triangulated subcategory of Bruhat constructible sheaves. In
formulas:

〈Ey | y ∈W 〉∆ = Db
(B)(G/B,F).

Let us choose a bounded below injective resolution E•y of each parity sheaf Ey and

set E• :=
⊕

y∈W E
•
y . If we consider the endomorphism dg-ring E• := End•(E•)

together with the obvious idempotents 1y then the constructions of §1.3 give an
equivalence of triangulated categories

Db
(B)(G/B,F)

∼
−→ 〈1yE

• | y ∈ W 〉∆ ⊂ dgDer−E•.

By definition the cohomology of the dg-ring E• is the graded ring E = Ext•(E , E)
from above. Suppose that we can find another dg-ring D and quasi-isomorphisms
E

∼
← D

∼
→ E• together with homogeneous idempotents 1y ∈ D which are sent to

the appropriate idempotents in E• and E. Then we obtain a further equivalence
of derived categories

Db
(B)(G/B,F)

∼
−→ 〈1yE | y ∈W 〉∆ ⊂ dgDer−E.

Hence, having found D together with these idempotents, all that remains is to
compare finiteness conditions and deduce that the above can also be described
using dgDerf−E

In order to find our dg-ring D and the desired quasi-isomorphisms we adapt the
techniques of [DGMS75] to the context of modular étale sheaves. Here the Frobenius
action plays the part which Hodge theory plays in [DGMS75]. In particular, we
do not actually work on a complex flag variety, but rather on the flag variety over
a finite field Fp of characteristic different from the characteristic ℓ of F. Also, in
order to construct our dg-ring E• with compatible Frobenius action we instead
work with perverse sheaves (and projective resolutions). These technical demands
account in part for the length of this paper. We explain in Remark 7.1.4 how to
deduce Theorem 1.2.1 from its étale counterpart.

1.5. Formality in characteristic zero. Except in special situations it is a diffi-
cult problem to establish whether or not a given dg-algebra is formal (i.e. quasi-
isomorphic to its cohomology). However there is a trick, orginally due to Deligne,
which gives a general method of establishing formality: any bigraded dg-algebra
R =

⊕
Ri,j with d(Ri,j) ⊂ Ri+1,j and cohomology concentrated on the diagonal

{i = j} is formal. The proof is easy: it suffices to shear the bigrading by setting
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R(i,j) = Ri−j,j to arrive at a bigraded dg-ring with cohomology concentrated in the
cohomological degree i = 0, which is well known to be formal.

In particular this trick can be applied to establish the formality of the extension
algebra of Bruhat constructible intersection cohomology sheaves on the flag vari-
ety. The idea being that if E denotes this extension algebra then E can often be
equipped with an additional “weight” grading. The pointwise purity of intersection
cohomology complexes means that this grading is diagonal. Hence if the dg algebra
E• computing E can also be equipped with a “weight” grading then the above trick
can be used to conclude that E• is formal.

There are at least two settings where this approach can be carried out. The first
one is mixed étale sheaves on the flag variety over the algebraic closure of a finite
field Fq, and the second one is mixed Hodge modules on the complex flag variety.
In both settings a key role is played by the “realization” equivalence

Db(Perv(B)(G/B))
∼
−→ Db

(B)(G/B)

between Db
(B)(G/B) and the corresponding bounded derived category of perverse

sheaves. In this context, we define Db
(B)(G/B) to consist of all constructible com-

plexes of sheaves on G/B satisfying the condition that when restricted to a Bruhat
cell their cohomoloy sheaves are constant, and Perv(B)(G/B) means the category of
all perverse sheaves inside. These are the objects we call Bruhat-constructible. It
will turn out that the Bruhat-constructible complexes form a triangulated category
and the Bruhat constructible perverse sheaves form the heart of a t-structure. It is
much easier to work in the abelian category of Bruhat constructible perverse sheaves
than the abelian category of all sheaves on G/B. For example, Perv(B)(G/B) has
enough projective objects and one even has an inductive algorithm for their con-
struction.

In both settings Perv(B)(G/B) has an “enhancement” (given by perverse sheaves
on the flag variety over the finite field Fq in the étale case, and by mixed Hodge
modules in the complex case). Moreover, one can construct resolutions of the inter-
section cohomology complexes in this enhanced category, which become projective
resolutions when one forgets the enhancement. It is the existence of these enhanced
resolutions that allows one to equip the dg algebra E• with an extra grading and
deduce formality. (For a lucid explanation of this argument in the case of mixed
Hodge modules the reader is referred to [Sch11].)

1.6. Formality in characteristic ℓ. In this paper we adapt the above arguments
to coefficients in a finite field F of positive characteristic ℓ. In order to have a
suitable enhancement we work on a flag variety defined over a finite field. (As we
have already remarked, the case of the flag variety over C can be deduced from
this.) More precisely, fix a finite field Fq of characteristic different from ℓ and let
G◦ denote a split semi-simple group over Fq with Borel subgroup B◦ ⊂ G◦ and flag
variety G◦/B◦. We follow the convention of [BBD82]: a subscript “◦” denotes an
object (variety or sheaf) defined over Fq, and suppression of the subscript denotes
the extension of scalars to the algebraic closure. Recall that our goal is to obtain
an algebraic description of Db

(B)(G/B,F) in terms of the extension algebra of parity

sheaves.
Here the first natural question arises: why do we consider parity sheaves rather

than intersection cohomology complexes? With coefficients in F there seems to
be no good notion of purity and intersection cohomology complexes can be badly
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behaved. (For example, their stalks may not satisfy parity vanishing as they do
in characteristic 0.) Instead, one can consider indecomposable direct summands
of “Bott–Samelson sheaves”: those sheaves obtained as direct images from Bott–
Samelson resolutions. These are the parity sheaves and it is straightforward to see
that their Ext algebra satisfies a weak form of purity (Theorem 5.1.5): it vanishes
in odd degree and all eigenvalues of Frobenius in degree 2n are equal to the image
of q−n in Fℓ.

Analogously to the case of coefficients of characteristic zero one can construct res-
olutions of Bott–Samelson sheaves in Perv(B◦)(G◦/B◦,F) which become projective
resolutions when pulled back to G/B. Taking endomorphisms we obtain a dg alge-
bra E• of F-vector spaces with compatible automorphism induced by the Frobenius.
It turns out that all eigenvalues of Frobenius on E• belong to the subgroup Σ ⊂ F×

generated by the image of q. Here we encounter a problem: with coefficients in
characteristic zero the decomposition into generalized Frobenius eigenspaces gives
a Z × Z-grading, whereas with coefficients in Fℓ we only obtain a Z × Σ-grading.
We have tried to depict the difference between these two situations in the figure. In
order to apply the trick to deduce formality we would need to know, for example,
that any fixed Frobenius eigenspace of E• (the columns in the figure) has coho-
mology concentrated in only one degree. It is possible to conclude in this way but
leads to unpleasant bounds on ℓ in terms of the dimension of G/B.

*

*

*

*

*

*

*

*

*

*

*

←
c
o
h
o
m

o
lo
g
ic
a
l
d
e
g
r
e
e
→

← Frobenius eigenvalues →

characteristic ℓ = 0

↔

∗

∗

∗

∗

∗

∗

∗
∗

∗
∗
∗
∗

∗

∗

characteristic ℓ > 0

1.7. Formality over O. Instead we fix a finite extension O of the ℓ-adic integers
Zℓ with residue field F and work with coefficients in O. It turns out that all
essential parts of the construction of E• can be lifted to O: projective perverse
sheaves over F admit lifts to O, morphism spaces between these sheaves are free O-
modules and the Bott–Samelson sheaves admit resolutions via perverse O-sheaves
on G◦/B◦ which become projective resolutions when pulled back to G/B. Taking
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endomorphisms we obtain a dg-algebra E•
O
which is free as an O-module and has a

compatible Frobenius automorphism φ, all of whose eigenvalues are integral powers
of q. However, an O-module with an endomorphism, even if it is free of finite rank
over O, need not decompose as the direct sum of its generalized eigenspaces (see
§3.1). In order to conclude we need to prove that E•

O
is “q-decomposable”: that

is, that E•
O

is isomorphic to the direct sum of its generalized φ-eigenspaces with
eigenvalues powers of q.

To explain the proof of the q-decomposability we need to recall in more detail
how the resolutions of Bott–Samelson sheaves are constructed. We first obtain a
purely algebraic description of the category of perverse O-sheaves on G◦/B◦ by
constructing a perverse sheaf PO

◦ on G◦/B◦ such that its pullback PO to G/B is a
projective generator of Perv(B)(G/B,O). Hence, if we write A = End(PO) we have
an equivalence

Perv(B)(G/B,O)
∼
−→ Modf−A.

Moreover, because PO is obtained by pullback from G◦/B◦, A is equipped with an
automorphism φ and we have an equivalence

Perv(B◦)(G◦/B◦,O)
∼
−→ Modf−(A, φ)

where Modf−(A, φ) denotes the category of pairs (M,φM ) where M is a finitely
generated right A-module and φM is an automorphism ofM compatible with φ (see
§3.1) and Perv(B◦)(G◦/B◦,O) denotes the category of perverse sheaves on G◦/B◦

whose pullback belongs to Perv(B)(G/B,O). Under these equivalences the pullback
functor from G◦/B◦ to G/B is given by forgetting the endomorphism φM of M .
These considerations allow us to conclude that the realization functor

Db(Perv(B◦)(G◦/B◦,O))
∼
−→ Db

(B◦)
(G◦/B◦,O)

is an equivalence (see Proposition 3.4.1). We also prove similar results for par-
tial flag varieties G◦/Ps,◦, where B◦ ⊂ Ps,◦ ⊂ G◦ is a minimal parabolic subgroup
corresponding to a simple reflection s ∈W : there exists an O-algebra As with auto-
morphism φs such that the analogues for G/Ps of the above results hold. Moreover,
for any such s we have a morphism of algebras A→ As and the direct and inverse
image functors πs! and π!

s (where πs : G/B → G/Ps denotes the projection) can
be described algebraically in terms of derived induction and restriction along this
morphism (Proposition 5.2.6).

Finally, the Bott–Samelson sheaves may be obtained by repeatedly applying
the functors π!

sπs! to the skyscraper sheaf on the base point B/B ∈ G/B. The
above results allow us to translate the problem of constructing resolutions of the
Bott–Samelson sheaves into a purely algebraic construction involving the algebras
A and As. In particular, this allows us to conclude that the dg algebra E•

O
is q-

decomposable if A and As are (Proposition 5.3.6). We prove that A and As are
q-decomposable if the order of q in F× is at least the number of roots by examining
the eigenvalues of Frobenius that may occur during the inductive construction of
projective perverse sheaves. This in turn is a consequence of explicit bounds on
the weights in the cohomology of an intersection of a Bruhat cell with an opposite
Bruhat cell in G/B (see §§4.2–4.4).

1.8. Organization of the paper. This paper contains three parts.
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Part 1: The first two sections after the introduction are devoted to proving
basic properties of the category of perverse sheaves with coefficients in
a finite extension O of Zℓ on a sufficiently nice stratified variety. The
corresponding statements for coefficients in a field are all well known.
Section 2: We consider projective perverse sheaves when our variety is

defined over an algebraically closed field.
Section 3: We consider varieties defined over a finite field (with coeffi-

cients in O or its residue field).
Part 2: In the next two sections, we specialize our results to perverse sheaves

on the flag variety of a reductive group.
Section 4: We prove results on the action of Frobenius on morphisms

between standard objects, and derive consequences for the structure
of projective perverse sheaves.

Section 5: We prove our formality theorem.
Part 3: The last two sections are concerned with modular Koszul duality.

Section 6: We recall the results of [Soe00] concerning the modular cat-
egory O.

Section 7: We prove Theorem 1.2.1.

This article is the result of our efforts to join the two partially wrong and quite
incomplete preprints [Soe11] and [RW11] into one readable article.

1.9. Acknowledgments. We thank Annette Huber-Klawitter and Patrick Polo
for helpful discussions.

Some of this work was completed whilst G.W. visited the Université Blaise Pascal
- Clermont-Ferrand II and S.R. visited the MPIM in Bonn. We would like to thank
both institutions for their support. S.R. was supported by ANR Grants No. ANR-
09-JCJC-0102-01 and No. ANR-10-BLAN-0110. W.S. acknowledges the support of
the DFG in the framework of SPP 1388.

1.10. Notation. IfD is a ring (resp. Z-graded ring) we letMod−D (resp.ModZ−D)
be the category of right D-module (resp. Z-graded right D-modules). We denote by
Modf−D, resp. ModfZ−D, the subcategory of finitely generated modules. We also
denote by Projf−D the category of finitely generated projective right D-modules.
We write Hom−D(−,−) for HomMod−D(−,−). We denote by

〈1〉 : ModZ−D → ModZ−D

the auto-equivalence which sends a graded moduleM = ⊕iM i to the graded module
whose i-th component is M i−1. We denote by 〈n〉 the n-th power of 〈1〉. With this
convention, the functor v satisfies

v(M〈1〉) = v(M)[−1].

Similarly, we denote by D−Modf the category of finitely generated left modules
over the ring D.

If D is a dg-ring, we denote by dgHo−D the homotopy category of right D-dg-
modules, and by dgDer−D the associated derived category.

In the whole paper, we fix a prime number ℓ. We also fix a finite extension K
of Qℓ, and denote its ring of integers by O. It is a finite extension of Zℓ. We fix a
uniformizer π, and set F = O/(π); it is a finite field of characteristic ℓ. We denote
by K an algebraic closure of K.
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Part 1. Generalities on O-perverse sheaves

2. Projective and tilting perverse sheaves

Let us an integer p which is either 0 or a prime number different from ℓ. In
this section, X is a variety (i.e. a separated reduced scheme of finite type) over an
algebraically closed field of characteristic p, endowed with a finite stratification by
locally closed subvarieties

X =
⊔

s∈S

Xs

each isomorphic to an affine space. For each s ∈ S we denote by is : Xs →֒ X the
inclusion.

Note that the constructions in this section work similarly if we assume X is a
complex algebraic variety, and work with the classical topology instead of the étale
topology.

2.1. Definitions and first results. Consider the constructible derived categories
Db
c (X,O) and Db

c (X,F) see e.g. [BBD82, §2.2] or [Jut09, §2] for definitions. For
any m ∈ Z≥1 ∪ {∞} let Ls,m denote the constant local system on Xs with stalk
O/(πm). (Here, by convention, O/(π∞) = O.) For simplicity we sometimes write
Ls for Ls,∞. We write Ls,F for the constant F-local system of rank one on Xs. We
assume that the following condition is satisfied:

(2.1.1) for all s, t ∈ S and n ∈ Z, Hn(i∗t is∗Ls) is constant.

(If p > 0 then the strata Xs are not simply-connected unless Xs is a point and
so this condition is a priori stronger than requiring that Hn(i∗t is∗Ls) be locally
constant.) This implies the analogous condition for Ls,m and Ls,F. (See [Yun09,
§2.1] for a discussion of this condition; note that in our case an extension of constant
sheaves on a stratum is constant.)

For E = O or F we denote by Db
S
(X,E) the full subcategory of Db

c (X,E) con-
sisting of objects F such that for any s ∈ S and n ∈ Z, Hn(i∗sF) is a constant
local system of finitely generated E-modules. Our assumption (2.1.1) guarantees
that if i : Y →֒ X is a locally closed inclusion of a union of strata the functors i∗,
i!, i

∗, i! restrict to functors between Db
S
(X,E) and Db

S
(Y,E) (where for simplicity

we write S also for the restriction of the stratification S to Y ), so that Db
S
(X,E)

can be endowed with the perverse t-structure whose heart we denote by

PervS (X,E) ⊂ Db
S (X,E).

Recall (see e.g. [BBD82, Jut09]) that if we take coefficients in O we cannot speak of
the subcategory of perverse sheaves on X with respect to this stratification. Instead
one has two “natural” perverse t-structures p and p+ with hearts PervS (X,O) and
Perv+

S
(X,O) respectively; Verdier duality exchanges these two hearts. (The reader

unfamiliar with these facts is encouraged to think about the case of X = pt.) In
this paper we will only ever need to consider the perversity p (except in Lemma
2.1.2). Note that the category PervS (X,O) is noetherian but not artinian.

We have a modular reduction functor

F := F
L

⊗O (−) : Db
S (X,O)→ Db

S (X,F).

By definition, an objectM of Db
S
(X,O) is a collection (Mk)k≥1 (where eachMk

is an object of the derived category of étale sheaves of O/(πk)-modules satisfying



10 SIMON RICHE, WOLFGANG SOERGEL, AND GEORDIE WILLIAMSON

certain properties) together with isomorphismsMk+1
L

⊗O/(πk+1)O/(π
k) ∼=Mk; then

we have F(M) = M1. By definition, this functor commutes with all direct and
inverse image functors, see e.g. [KW01, Appendix A] and references therein.

The functor F does not preserve the subcategory of perverse sheaves (again, this
is already false for a point). However it is right exact and if F ∈ PervS (X,O) then
pHi(FF) = 0 if i 6= 0,−1.

Below we will need the following result.

Lemma 2.1.2. The functors is∗ and is! are exact for the perverse t-structure, for
coefficients O or F.

Proof. 1 The morphism is is affine. Hence, in the case of coefficients F the result
is proved in [BBD82, Corollaire 4.1.3]. Let us consider now the case of coefficients
O. As Verdier duality exchanges the t-structures p and p+, it is sufficient to prove
that the functor is∗ is exact for both t-structures p and p+. As the subcategories
pD≥0 and p+D≥0 are defined in terms of functors i!t, it is easy to check that this
functor is right exact for both t-structures. The same arguments as for F prove
that is∗ is also right exact for the t-structure p. Finally, it is explained in [BBD82,
3.3.4] that an O-linear triangulated functor from Db

S
(Xs) to Db

S
(X) is right exact

for the t-structure p iff it is for the t-structure p+, which finishes the proof. �

Remark 2.1.3. Similar arguments show more generally that if f is an affine mor-
phism and for coefficientsO, f∗ is right exact and f! is left exact for both t-structures
p and p+. The case of coefficients in a field (F or K) is proved in [BBD82, Théorème
4.1.1, Corollaire 4.1.2].

If Y ⊂ X is a locally closed union of strata, and if E is O or F, we denote by

IC(Y,−) : PervS (Y,E)→ PervS (X,E)

the intermediate extension functor. This functor is fully-faithful ([Jut09, Proposi-
tion 2.29])) and preserves injections and surjections ([Jut09, Proposition 2.27]), but
is not exact.2 If L is a local system on Y we will sometimes abuse notation and
write IC(Y,L) for IC(Y,L[dim Y ]).

Lemma 2.1.4. Any object in PervS (X,O) is a successive extension of IC(Xs,Ls,m)
for some s ∈ S and m ∈ Z≥1 ∪ {∞}.

Proof. We prove this result by induction on the number of strata, the case when
X consists of a single stratum being obvious (since in this case the category
PervS (X,O) is equivalent to Modf−O).

Let Xs be an open stratum, and let Y = X r Xs (a closed union of strata).
Let i : Y →֒ X denote the inclusion. Because the functor i∗ : PervS \{s}(Y,O) →
PervS (X,O) is fully-faithful we may assume by induction that the lemma is true
for objects supported on Y . Now let F be an arbitrary object of PervS (X,O). The
morphism F → i∗

pH0(i∗F) induced by adjunction is surjective [BBD82, Proposi-
tion 1.4.17(ii)] and hence we have an exact sequence of perverse sheaves

Ker →֒ F ։ i∗
pH0(i∗F).

1We thank Daniel Juteau and Carl Mautner for explaining this proof to us.
2In [Jut09], it is assumed on p. 1196 that the categories of perverse sheaves are noetherian and

artinian; however this assumption is not used in the proofs of Propositions 2.27 and 2.29.
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Hence by induction it is enough to prove the result for Ker. One sees easily that
i∗
pH0(i∗Ker) = 0 and hence Ker has no non-zero quotient supported on Y . Now,

we have a dual exact sequence (again by [BBD82, Proposition 1.4.17(ii)])

i∗
pH0(i!Ker) →֒ Ker ։ Coker

and hence it is sufficient to prove the result for Coker. Similarly to above one sees
that Coker has no non-trivial subobject or quotient supported on Y . By definition
PervS (X,O) is obtained by recollement from PervS \{s}(Y,O) and Perv{s}(Xs,O),
and hence we can apply [BBD82, Corollaire 1.4.25] to conclude that Coker ∼=
IC(X, i∗sCoker). By definition of Perv{s}(Xs,O), i∗sCoker is a constant local sys-
tem, hence isomorphic to a direct sum of local systems of the form Ls,m. The
lemma now follows. �

Remark 2.1.5. One can deduce from this lemma (using induction on the number of
strata) that the category PervS (X,O) is generated (under extensions) by a finite
number of objects, namely the collection of objects IC(Xs,Ls,1) and IC(Xs,Ls,∞)
for s ∈ S .

Recall that an additive category A satisfies the Krull–Schmidt property if every
object in A is isomorphic to a finite direct sum of indecomposable objects, and
EndA(M) is local for any indecomposable object M . In such a category, the de-
composition as a direct sum of indecomposable objects is unique up to isomorphism
and permutation of factors.

Lemma 2.1.6. The category PervS (X,O) satisfies the Krull–Schmidt property.

Proof. The endomorphism ring of any object of PervS (X,O) is a finitely generated
O-module, and hence is semi-perfect by [Lam01, Example 23.3]. Now it is easily
checked (using e.g. [Lam01, Theorem 23.6]) that if A is an abelian category in
which every object has a semi-perfect endomorphism ring, then A satisfies the
Krull–Schmidt property. �

2.2. Standard and costandard objects over O and F. For anym ∈ Z≥1∪{∞},
set

∆s,m = is!Ls,m[dimXs], ∇s,m = is∗Ls,m[dimXs], ICs,m = IC(Xs,Ls,m).

These objects are all in PervS (X,O) (see Lemma 2.1.2). We often abbreviate
∆s = ∆s,∞, ∇s = ∇s,∞, ICs = ICs,∞.

Let Ls,F denote the constant local system on s with stalk F. We use the following
notation for the analogous objects over F

∆s,F = is!Ls,F[dimXs], ∇s,F = is∗Ls,F[dimXs], ICs,F = IC(Xs,Ls,F)

in PervS (X,F). We have F(∆s) ∼= ∆s,F, F(∇s) ∼= ∇s,F.

Lemma 2.2.1. Let F be in Db
S
(X,O). If F(F) = 0, then F = 0.

Proof. We always have an exact triangle F → F → F(F)
[1]
→ with the first map

multiplication by π. The result follows, taking cohomology of the stalks and using
Nakayama’s lemma. �

We will say that an object F of PervS (X,O) has a ∆-filtration (resp. a ∇-
filtration) if it admits a filtration in the abelian category PervS (X,O) with sub-
quotients of the form ∆t (resp. ∇t) for t ∈ S . Note that here we only allow free
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(co-)standard objects. Similarly, we will say that an object F of PervS (X,F) has a
∆F-filtration (resp. a ∇F-filtration) if it admits a filtration in the abelian category
PervS (X,F) with subquotients of the form ∆t,F (resp. ∇t,F) for t ∈ S .

Lemma 2.2.2. Let F be in PervS (X,O). Assume that F(F) is in PervS (X,F),
and has a ∆F-filtration. Then F has a ∆-filtration.

Proof. We proceed by induction on the number of strata. We can assume that the
support of M is X , and let Xs be an open stratum. Let Y = X r Xs, and let
i : Y →֒ X be the (closed) inclusion.

Consider the restriction i∗sF . It is a shift of a constant local system on Xs. We
have F(i∗sF) = i∗s(F(F)), hence by assumption F(i∗sF) is also a shift (by the same
integer) of a local system on Xs. This implies that i∗sF has no torsion, hence that
is!i

∗
sF is a direct sum of finitely many copies of ∆s. Consider the exact triangle

(2.2.3) is!i
∗
sF → F → i∗i

∗F
[1]
→ .

Its modular reduction is the similar triangle for FF :

is!i
∗
sFF → FF → i∗i

∗FF
[1]
→ .

As FF has a filtration with subquotients of the form ∆s,F, this triangle is an exact
sequence of perverse sheaves. In particular, F(i∗i∗F) is a perverse sheaf.

We claim that i∗i
∗F is a perverse sheaf. Indeed, using (2.2.3) it can have non-zero

perverse cohomology sheaves only in degrees −1 and 0. Consider the truncation
triangle

pH−1(i∗i
∗F)[1]→ i∗i

∗F → pH0(i∗i
∗F)

[1]
→,

and its modular reduction

F(pH−1(i∗i
∗F))[1]→ F(i∗i

∗F)→ F(pH0(i∗i
∗F))

[1]
→ .

We have seen above that the middle term is a perverse sheaf, while the left-hand side
(resp. the right-hand side) is concentrated in perverse degrees −2 and −1 (resp. −1
and 0). It easily follows that F(pH−1(i∗i

∗F)) = 0, hence pH−1(i∗i
∗F) = 0 by

Lemma 2.2.1, which proves the claim.
By this claim, triangle (2.2.3) is an exact sequence of perverse sheaves. Moreover,

i∗i
∗F again satisfies the conditions of the lemma. Hence, by induction, it has a

filtration with subquotients of the form ∆t. The result follows. �

2.3. Projective objects: existence.

Proposition 2.3.1. For any s ∈ S there exists a projective object P in the category
PervS (X,O) which admits a ∆-filtration and a surjection P ։ ICs.

Proof. We prove the proposition by induction on the number of strata. First, the
result is clearly true when X consists of a single stratum.

Now, let Xs be an open stratum, and set Y = X r Xs. We will abbreviate
P = PervS (X,O) and PY = PervS (Y,O). Given F ∈ P, we have that F ∈ PY if
and only if i!sF(= i∗sF) = 0. Also, note that if F ,G ∈ PY then

Ext1PY
(F ,G) = Ext1P(F ,G).

(If one thinks about both groups as classifying extensions, then any such extension
has to be supported on Y .) Similarly,

Ext1P(F ,G)
∼= Ext1Db

S
(X,O)(F ,G)
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if F ,G ∈ P. These equalities allow us to omit the subscript from Ext1’s below.
By adjunction, for any F in P we have

Ext1(∆s,F) = Hom(∆s,F [1]) = HomDb
{s}

(Xs,O)(Ls, i
!
sF [1]) = 0,

which implies that ∆s ∈ P is projective (and ∆-filtered). Hence we have found our
first surjection ∆s ։ ICs.

To construct the other projectives we will adopt the following strategy (essen-
tially copying [BGS96]): by induction we may assume that for each t ∈ S r {s}
we can find a surjection P ։ ICt, with P projective and ∆-filtered in PY ; we then
see what needs to be done to enlarge P , so that it is projective in P.

So, fix t ∈ S r {s} and assume that PY is a ∆-filtered projective object in PY
which surjects to ICt. Certainly we have

(2.3.2) Ext1(PY ,F) = 0 for any F ∈ PY .

Now, consider E = Ext1(PY ,∆s) and let Efree be a finitely generated free O-
module endowed with a surjection to E. We denote by E∗

free the dual O-module.
The sequence of canonical morphisms

O→ E∗
free ⊗O Efree → E∗

free ⊗O Ext1(PY ,∆s) ∼= Ext1(PY , E
∗
free ⊗O ∆s)

gives us a distinguished extension

E∗
free ⊗O ∆s →֒ P ։ PY

in P. Composing P ։ PY with PY ։ ICt yields a surjection of P onto ICt, and
P is ∆-filtered. We claim that P is projective, which will conclude the proof. To
prove this claim we need four preliminary steps.

Step 1: Ext1(P ,F) = 0 for F ∈ PY . This is clear from (2.3.2), the long exact
sequence

· · · → Ext1(PY ,F)→ Ext1(P ,F)→ Ext1(E∗
free ⊗O ∆s,F)→ . . .

and the fact (already used above) that ∆s ∈ P is projective.
Step 2: Ext1(P ,∆s) = 0. Consider the long exact sequence:

· · · → Hom(E∗
free ⊗O ∆s,∆s)→ Ext1(PY ,∆s)→ Ext1(P ,∆s)

→ Ext1(E∗
free ⊗O ∆s,∆s)→ . . .

Because Ext1(∆s,∆s) = 0 it is enough to show that the first map above is surjective.
However under the canonical isomorphisms

Hom(E∗
free ⊗O ∆s,∆s) ∼= Efree ⊗O Hom(∆s,∆s) ∼= Efree

this map corresponds to the map Efree → Ext1(PY ,∆s), which is surjective by
construction.

Step 3: Ext2Db
S

(X,O)(P ,F) = 0 for all F ∈ P. By Lemma 2.1.4 it is enough to

show that Ext2Db
S

(X,O)(P , ICt,m) = 0 for all t ∈ S , m ∈ Z≥1 ∪ {∞}. The short

exact sequence

ICu,m →֒ ∇u,m ։ Coker

leads to a long exact sequence

· · · → Ext1(P ,Coker)→ Ext2Db
S

(X,O)(P , ICu,m)→ Ext2Db
S

(X,O)(P ,∇u,m)→ . . .
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Now Coker ∈ PY and hence Ext1(P ,Coker) = 0 by Step 1. Also, P is ∆-filtered,
and hence Ext2Db

S
(X,O)(P ,∇u,m) = 0. It follows that Ext2Db

S
(X,O)(P , ICu,m) = 0 as

claimed.
Step 4: Ext1(P , ICs,m) = 0 for all m. The short exact sequence

Ker →֒ ∆s ։ ICs,m

leads to a long exact sequence:

· · · → Ext1(P ,∆s)→ Ext1(P , ICs,m)→ Ext2Db
S

(X,O)(P ,Ker)→ . . .

Step 2 and Step 3 show that the first and third terms are zero, which proves the
claim.

Finally, we have shown in Steps 1 and 4 that Ext1(P , ICt,m) = 0 for all t ∈ S

and m ∈ Z≥1 ∪ {∞}. Hence P is projective by Lemma 2.1.4. �

Corollary 2.3.3. There are enough projective objects in PervS (X,O). More pre-
cisely, for anyM in PervS (X,O) there exists a projective object P in PervS (X,O)
which admits a ∆-flag and a surjection P ։M.

Proof. By Lemma 2.1.4, it is enough to prove the result for M = ICs,m (s ∈ S ,
m ∈ Z≥1 ∪{∞}). The case m =∞ is treated in Proposition 2.3.1; the general case
follows from the fact that the natural morphism ICs,∞ → ICs,m is surjective, since
intermediate extension preserves surjections. �

Corollary 2.3.4. (1) The realization functor

DbPervS (X,O)→ Db
S (X,O)

(see [Bĕı87]) is an equivalence of categories.
(2) The category PervS (X,O) has finite projective dimension, i.e. every object

admits a finite projective resolution.

Proof. (1) The idea of this proof is taken from [BGS96, Corollary 3.3.2]. As
PervS (X,O) generates the category Db

S
(X,O), it is enough to prove that the re-

alization functor is fully faithful, or equivalently that it induces an isomorphism

(2.3.5) Homi
DbPervS (X,O)(F ,G)

∼
−→ Homi

Db
S

(X,O)(F ,G).

for all i ∈ Z and all F ,G in PervS (X,O).
First, we claim that both sides in (2.3.5) vanish if F is projective with a ∆-

filtration and i ≥ 1 (and for any G). This claim is obvious by definition for the
left-hand side. We prove the claim for the right-hand side by induction on i. If
i = 1, then morphism (2.3.5) is an isomorphism by [BBD82, Remarque 3.1.17],
which proves the vanishing of the right-hand side. Now let i ≥ 2, and assume the
claim is known for i− 1. By Lemma 2.1.4 it suffices to treat the case G = ICs,m for
s ∈ S and m ∈ Z≥1 ∪ {∞}. Consider the exact sequence

ICs,m →֒ ∇s,m ։ Coker.

Applying Hom(F ,−) we obtain an exact sequence:

Homi−1
Db

S
(X,O)

(F ,Coker)→ Homi
Db

S
(X,O)(F , ICs,m)→ Homi

Db
S

(X,O)(F ,∇s,m).

The left term vanishes by induction. The right term vanishes because F has a
∆-filtration. Hence the middle term also vanishes, which finishes the proof of the
claim.
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Now we deduce that (2.3.5) is an isomorphism in general. First, both sides vanish
if i < 0, and the realization functor induces an isomorphism for i = 0 by definition
and for i = 1 by [BBD82, Remarque 3.1.17]. We treat the case i ≥ 2 by induction.
So, assume that that i ≥ 2 and that the result is known for i − 1. Let P be a
projective object with a ∆-filtration surjecting onto F (see Corollary 2.3.3), and
consider an exact sequence

Ker →֒ P ։ F .

We have a commutative diagram with exact rows

Homi−1

DbP
(P ,G) //

��

Homi−1

DbP
(Ker,G) //

��

Homi
DbP

(F ,G) //

��

Homi
DbP

(P ,G)

��
Homi−1

D (P ,G) // Homi−1
D (Ker,G) // Homi

D(F ,G) // Homi
D(P ,G)

where P = PervS (X,O) and D = Db
S
(X,O). By our claim above, the terms in the

right and the left column vanish. And by induction the second vertical arrow is an
isomorphism. It follows that the third vertical arrow is also an isomorphism.

(2) The idea for this proof is taken from [BGS96, Corollary 3.2.2]. By Lemma
2.1.4 it is enough to prove that any object ICs,m (s ∈ S , m ∈ Z≥1 ∪ {∞}) has a
finite projective resolution. Then, by induction on dim(Xs), it is enough to prove
the claim for objects ∆s,m (s ∈ S , m ∈ Z≥1 ∪ {∞}). If m 6=∞, there is an exact
sequence

∆s →֒ ∆s ։ ∆s,m

since the functor is! is exact (see Lemma 2.1.2). Hence we only have to prove the
claim for objects ∆s, s ∈ S . Then we use a decreasing induction on dim(Xs). If
this dimension is maximal, then ∆s is projective. The induction step follows from
the property that there exists a projective Ps surjecting onto ∆s such that the
kernel has a ∆-filtration with subquotients ∆t with dim(Xt) > dim(Xs) (see the
proof of Proposition 2.3.1). �

Thanks to Corollary 2.3.4, we do not have to mention whether we consider Ext-
groups in PervS (X,O) or in Db

S
(X,O). For simplicity, for F ,G in PervS (X,O) we

will write ExtiX(F ,G) for ExtiPervS (X,O)(F ,G)
∼= Homi

Db
S

(X,O)(F ,G).

2.4. Projective objects: properties. Recall that the projective objects in the
category PervS (X,F) can be described using [BGS96, Theorem 3.2.1]. In par-
ticular, there are enough projective objects in this category, and any such object
has a ∆F-filtration. Moreover, by the arguments of [BGS96, Corollary 3.3.2] the
realization functor

DbPervS (X,F) → Db
S (X,F)

is an equivalence of categories. For s ∈ S , we denote by Ps,F the projective cover
of ICs,F in PervS (X,F).

Proposition 2.4.1. Let P be a projective object in PervS (X,O).

(1) The object F(P) is a perverse sheaf, which is projective in PervS (X,F).
(2) For any s ∈ S , the O-module Hom(P ,∆s) is free, and the natural mor-

phism
F⊗O HomO(P ,∆s) → HomF(F(P),∆s,F)

is an isomorphism.
(3) P admits a ∆-filtration.
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(4) For any Q projective in PervS (X,O), the O-module

HomO(P ,Q)

is free. Moreover, the natural morphism

F⊗O HomO(P ,Q) → HomF(F(P),F(Q))

is an isomorphism.

Proof. We prove (1) and (2) simultaneously. By Corollary 2.3.3, there exists a
projective object Q of PervS (X,O) which admits a ∆-filtration and a surjection
Q։ P . By projectivity, P is direct factor of Q. As Q admits a ∆-filtration, F(Q)
is a perverse sheaf; it follows that F(P) is also perverse.

Now we observe that we have

F
(
RHomO(P ,∆s)

)
∼= RHomF(F(P),∆s,F).

The left hand side is concentrated in degrees −1 and 0 by Corollary 2.3.4, and
the right-hand side is in non-negative degrees since F(P) is perverse. It follows
that both complexes are concentrated in degree 0, and (2) follows. Then one easily
deduces the projectivity of F(P) from the fact that Ext>0(F(P),∆s,F) = 0 for any
s ∈ S .

(3) By (1) and the remarks before the corollary, F(P) is a perverse sheaf and it
admits a ∆F-filtration. The result follows using Lemma 2.2.2.

(4) follows easily from (2) and (3). �

Corollary 2.4.2. For any s ∈ S , there exists, up to isomorphism, a unique inde-
composable projective object Ps in PervS (X,O) such that F(Ps) ∼= Ps,F. Moreover,
these objects are pairwise non isomorphic, and any projective object in PervS (X,O)
is a direct sum of objects Ps, s ∈ S .

Proof. By Proposition 2.3.1 and its proof, there exists an indecomposable projective
Ps surjecting onto ∆s. By Proposition 2.4.1(1), F(Ps) is a projective perverse sheaf.
Moreover it surjects onto ∆s,F, hence to ICs,F. Next, recall that PervS (X,O) and
PervS (X,F) both satisfy the Krull–Schmidt property (see Lemma 2.1.6), and hence
an object is indecomposable if and only if its endomorphism ring is local. Then
indecomposability of F(Ps) follows from Proposition 2.4.1(4), using the fact (see
[Fei82, Theorem 12.3]) that one can lift idempotents from F⊗O EndPervS (X,O)(Ps)
to EndPervS (X,O)(Ps). As F(Ps) surjects to ICs,F, we deduce that F(Ps) ∼= Ps,F.

Let us show uniqueness. Let Qs be another indecomposable projective such that
F(Qs) ∼= Ps,F. By Proposition 2.4.1, the identity of Ps,F can be lifted to a morphism
f : Ps → Qs. By Lemma 2.2.1, f is an isomorphism.

The fact that the Ps’s are pairwise non isomorphic is obvious, since so are the
Ps,F’s. Finally, let P be any projective object in PervS (X,O). Then F(P) is
a projective perverse sheaf by Proposition 2.4.1(1), hence there exist integers ns
(s ∈ S ) and an isomorphism

F(P) ∼=
⊕

s∈S

P⊕ns

s,F .

By Proposition 2.4.1(4) this isomorphism can be lifted to a morphism

P →
⊕

s∈S

P⊕ns
s ,

which is an isomorphism again by Lemma 2.2.1. �
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3. Perverse sheaves on a variety over a finite field

3.1. Generalities on O-modules with an endomorphism. Given an endomor-
phism φ of an O-module M and λ ∈ O let us put

Mλ := {m ∈M | (φ − λ · id)n(m) = 0 for n≫ 0}.

We call Mλ the generalized eigenspace of M with eigenvalue λ.

Proposition 3.1.1. Let M be a free finite rank O-module with an endomorphism
φ. Suppose that χ(φ) = 0 for some χ ∈ O[X ] such that χ =

∏
λ∈Λ(X − λ)

nλ for
some finite set Λ ⊂ O and some positive integers nλ. Assume moreover that if
λ, µ ∈ Λ have the same image in F then λ = µ. Then M decomposes into the direct
sum of its generalized eigenspaces, i.e. the natural map

(3.1.2)
⊕

λ∈O

Mλ → M

is an isomorphism.

Proof. First observe that Mλ = {0} unless λ ∈ Λ, so that the sum in the left hand
side of (3.1.2) reduces to

⊕
λ∈ΛMλ. Then, considerM as a module over O[X ]/〈χ〉.

The natural morphism

Pχ : O[X ]/〈χ〉 →
∏

λ∈Λ

O[X ]/〈(X − λ)nλ〉

is a morphism between two free O-modules of the same finite rank, and its reduction
modulo π is an isomorphism by our assumption on Λ and the Chinese Remainder
Theorem. We deduce that Pχ is already an isomorphism. Pulling back the obvious
idempotents from the right hand side gives us idempotents eλ ∈ O[X ]/〈χ〉 (λ ∈ Λ)
such that the assignment m 7→ (eλ ·m)λ∈Λ is an inverse to (3.1.2). (To prove this
ones uses the property that 〈(X − λ)nλ〉 + 〈(X − µ)nµ〉 = O[X ] for λ, µ ∈ Λ with
λ 6= µ.) �

Given a free finite rank O-module M with an endomorphism φ let us say that
M is decomposable under φ if the natural map is an isomorphism

⊕

λ∈O

Mλ
∼
−→ M.

Lemma 3.1.3. Let M be a free finite rank O-module M which is decomposable
under an endomorphism φ. Then given a φ-stable submodule N ⊂ M such that
M/N is free over O as well, both N and M/N are decomposable under the induced
endomorphisms.

Proof. What we have to show is that if m =
∑
mλ is the generalized eigenspace

decomposition of m ∈ N , then all mλ already belong to N . Linear algebra tells us
that all mλ belong to K ⊗O N ⊂ K ⊗O M . It follows that for every λ there exists
n > 0 such that πnmλ ∈ N . Therefore the image of mλ in M/N is killed by some
power of π, hence is zero since M/N has no torsion, i.e. mλ ∈ N . �

Remark 3.1.4. (1) The assumption that M/N has no torsion cannot be re-
moved. For example, assume that O = Zℓ. Then M = Z2

ℓ is clearly
decomposable under φ acting by the matrix

(
1 0
0 1 + ℓ

)
,
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and its submodule N := Zℓ(1, 1) ⊕ Zℓ(0, ℓ) is stable under φ. However N
is not decomposable under φ, as will be explained right after.

(2) Observe that in the setting of the lemma, it can happen that both N and
M/N are decomposable, but M is not. For a counterexample consider
M = Z2

ℓ , with φ acting as
(

1 0
1 1 + ℓ

)
;

and N = Zℓ(0, 1). Then M is indecomposable, since on its reduction mod-
ulo π our φ is just a Jordan block. By the way, this M is as a Zℓ-module
with endomorphism isomorphic to our N from the previous example.

Next let A be an O-algebra which is finitely generated as an O-module, endowed
with an O-algebra automorphism φ. We switch here to automorphisms as opposed
to endomorphisms to avoid the introduction of additional terminology later. We
denote by

Modf−(A, φ)

the abelian category of pairs (M,φM ) where M is a finitely generated right A-

module and φM :M
∼
−→M is an automorphism which satisfies

φM (m · a) = φM (m) · φ(a)

for a ∈ A, m ∈ M . Morphisms in Modf−(A, φ) between objects (M,φM ) and
(N,φN ) are morphisms of A-modules f :M → N such that f◦φM = φN◦f . Objects
of Modf−(A, φ) will sometimes be called (A, φ)-modules. By our assumptions on A,
objects of Modf−(A, φ) are always finitely generated as O-modules. We will often
omit the automorphism φM from notation. An important particular case is when
A = O and φ = id; in this case we call our objects (O, φ)-modules.

Lemma 3.1.5. Let (A, φ) be an O-algebra which is finitely generated as an O-
module, together with an automorphism φ. For any (M,φM ) in Modf−(A, φ), there
exists an object (P, φP ) in Modf−(A, φ) such that P is A-free and a surjection
(P, φP ) ։ (M,φM ) in Modf−(A, φ).

Proof. First, consider (M,φM ) as an (O, φ)-module. Then there exists (N,φN ) in
Modf−(O, φ) such that N is O-free and a surjection (N,φN ) ։ (M,φM ). Indeed,
let e1, . . . , en be a family of vectors in M whose images in F ⊗O M form a basis.
By Nakayama’s lemma, this family generates M as an O-module. Choose a matrix
D ∈ Mn(O) such that φM (ei) =

∑
j ajiej ; this matrix is automatically invertible

since its image inMn(F) is invertible. Then one can take N = On, with φN acting
with matrix D, and the natural surjection N ։ M . Finally, set P := N ⊗O A,
endowed with the automorphism φP induced by φN . �

Now let us fix a unit q ∈ O× which is not a root of unity. Suppose M is an
object in Modf−(O, φ), i.e. a finitely generated O-module with an automorphism
φ. Given some finite subset I ⊂ Z, we say that M has q-weights obtained from I, if

∏

i∈I

(φ− qi · id)

acts nilpotently on M . In addition, let us call M q-decomposable if it is decom-
posable under φ and has q-weights obtained from some finite subset of Z. Observe
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that if we have an exact sequence

N →֒M ։ P

and if N , resp. P , has q-weights obtained from I, resp. J , then M has q-weights
obtained from I ∪ J . Similarly, if M has q-weights obtained from I and N has
q-weights obtained from J , then M ⊗O N has q-weights obtained from I + J =
{i+ j | i ∈ I, j ∈ J}.

Remark 3.1.6. If (M,φ) is free of finite rank over O and has q-weights obtained
from I, and if moreover the map i 7→ q̄i is an injection I →֒ F (where q̄ is the image
of q in F), then M is q-decomposable by Proposition 3.1.1. This criterion will be
crucial for our proofs.

Lemma 3.1.7. Let M be in Modf−(O, φ), and assume M has q-weights obtained
from I. Then there exists an object M ′ in Modf−(O, φ), which is O-free and has
q-weights obtained from I, together with a surjection M ′

։M .

Proof. M can be considered as a finitely generated module over the O-free algebra

R := O[X ]/〈
∏

i∈I

(X − qiid)n〉

for some positive integer n. Then take M ′ to be a free finite rank R-module sur-
jecting to M , with φ acting as multiplication by X . Observe that multiplication by
X is an automorphism since its reduction modulo π is invertible by our assumption
q ∈ O×. �

Now let (A, φ) be an O-algebra, which is a free finite rank O-module, endowed
with an O-algebra automorphism φ, such that A is q-decomposable. We denote by

Modfdec−(A, φ)

the full subcategory of Modf−(A, φ) whose objects are free of finite rank over O
and q-decomposable as (O, φ)-modules .

Lemma 3.1.8. Assume that (A, φ) is O-free of finite rank and q-decomposable as
above. For any M in Modfdec−(A, φ) there exists an object Q in Modfdec−(A, φ)
which is projective as an A-module along with a surjection Q։M .

Proof. Take Q :=M ⊗O A, with the natural automorphism. �

3.2. Categories with an autoequivalence. Let A be an abelian category en-
dowed with an autoequivalence Φ : A

∼
−→ A. Let A[Φ] be the category defined as

follows:

• objects are pairs (M, sM ) where M is an object of A and sM :M
∼
−→ Φ(M)

is an isomorphism;
• morphisms between (M, sM ) and (N, sN ) are morphisms f : M → N in A

such that the following diagram commutes:

M
sM //

f

��

ΦM

Φf

��
N

sN // ΦN.
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We might think of A as an abelian category with an action of the group Z and of
A[φ] as the category of some sort of Z-equivariant objects of A. Certainly A[Φ] is
again abelian.

Example 3.2.1. With the notation of §3.1, the categoryModf−(A, φ) is the category
A[Φ] where A = Modf−A and Φ sends M to the right A-module whose underlying
O-module is M , and whose A-action is the morphism M ⊗O A → M given by
m⊗ a 7→ m · φ(a).

Lemma 3.2.2. Let (A,Φ) be an abelian category with an autoequivalence, and let
(P, t) ∈ A[Φ] be an object with P ∈ A projective. Then for any (M, s) ∈ A[Φ] we
have

Homi
Db(A[Φ])((P, t), (M, s)) = 0 for i ≥ 2.

Proof. By definition, a morphism from (P, t) to (M, s)[i] in Db(A[Φ]) is a diagram
of morphisms of complexes

(M, s)[i]← C• qis
−−→ (P, t)

where C• is a bounded complex of object of A[Φ]. Clearly, one can assume that
this complex is concentrated in non-positive degrees. To prove the lemma it suffices
to prove that there exists a complex D• and a quasi-isomorphism f : D• → C•

whose composition with our morphism C• → (M, s)[i] is zero. To establish this it
is enough to show that there exists a complex D• concentrated in degrees −1 and
0 and a quasi-isomorphism f : D• → C•.

Write the complex C• as

C• = (· · · → (C−2, u−2)
d−2

−−→ (C−1, u−1)
d−1

−−→ (C0, u0)→ 0→ · · · ).

Let B−1 := C−1/ ker(d−1), and let p−1 : C−1 → B−1 be the projection. We

consider the object (B−1, v−1) in A[Φ], where v−1 : B−1 ∼
−→ Φ(B−1) is the iso-

morphism induced by u−1. As C• maps quasi-isomorphically to (P, t), we have an
exact sequence

(B−1, v−1) →֒ (C0, u0) ։ (P, t).

As P is projective, the image of this exact sequence in A splits, hence we have an
isomorphism (C0, u0) ∼= (B−1 ⊕ P,w0) in A[Φ], where

w0 =

(
v−1 a
0 t

)
: B−1 ⊕ P

∼
−→ Φ(B−1)⊕ Φ(P )

for some morphism a : P → Φ(B−1) in A. Let us fix such an isomorphism. As P is
projective, there exists a morphism b : P → Φ(C−1) in A whose composition with
the projection Φ(p−1) : Φ(C−1)→ Φ(B−1) is a. Then define D0 := C−1 ⊕ P , and
consider the object (D0, x0) of A[Φ], where

x0 :=

(
u−1 b
0 t

)
: C−1 ⊕ P

∼
−→ Φ(C−1)⊕ Φ(P ).

Let also (D−1, x−1) := (C−1, u−1). Then (D0, x0) is an object of A[Φ], and there
exists a natural injection (D−1, x−1) →֒ (D0, x0) whose cokernel is (P, t). Moreover
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we have a quasi-isomorphism

· · · // 0 //

��

(D−1, x−1) // (D0, x0)

c

��

// 0 //

��

· · ·

· · · // (C−2, u−2) // (C−1, u−1) // (C0, u0) // 0 // · · ·

where

c =

(
p−1 0
0 idP

)
: C−1 ⊕ P → B−1 ⊕ P.

This finishes the proof. �

3.3. Perverse sheaves on a variety over a finite field. In this subsection we
write E for either O or F.

Let X◦ be a variety over a finite field Fq, endowed with a finite stratification

X◦ =
⊔

s∈S

Xs,◦

by affine spaces. Let also X := X◦ ×Spec(Fq) Spec(Fq), endowed with the induced
stratification (which we also denote by S ). We assume that this stratification
satisfies the condition (2.1.1). Let

For : Db
c (X◦,E)→ D

b
c (X,E)

be the inverse image functor under the natural projection X → X◦. We denote
by Db

S
(X◦,E) the full subcategory of Db

c (X◦,E) consisting of objects F such that
For(F) is in Db

S
(X,E). As for X , Db

S
(X◦,E) is endowed with the perverse t-

structure whose heart we denote by PervS (X◦,E) (for the perversity p if E = O).
Note that ifM◦ is in Db

S
(X◦,E) thenM◦ is in PervS (X◦,E) if and only if For(M◦)

is in PervS (X,E). As in [BBD82], objects of PervS (X◦,E) will always be denoted
with a subscript “◦”. Their image under the functor For will usually be denoted
by the same symbol, with the subscript removed.

Let pt◦ := SpecFq and f : X◦ → pt◦ denote the projection. Let E(m) ∈
Db
c (pt◦,E) denote the mth Tate sheaf (see [Del74, §2.13]). Given any object F◦ ∈

Db
c (X◦,E) we define its mth Tate twist by F◦(m) := F◦

L
⊗E f

∗E(m).
Before we go into the technical details, let us discuss some generalities concerning

Galois actions on étale cohomology. Given a scheme X◦ over a field k and a field
extension K/k, certainly the Galois group will act on the scheme X = K×kX◦ and
thus also will act on its étale cohomology. More generally, given an étale sheaf F◦

on X◦ and its pullback F to X , the Galois group will act on the étale cohomology
of X with coefficients in F . Formally, if ω : X → X◦ is the extension of scalars, for
any γ in the Galois group and letting γ = γ× id, we have ω ◦ γ = ω and from there
get isomorphisms γ∗ω∗F◦

∼
−→ ω∗F◦ alias γ∗F

∼
−→ F , which make F to what one

might call a Galois equivariant sheaf on X . The action of γ on Hn(X ;F) is then
defined as the composition Hn(X ;F)→ Hn(X ; γ∗F)→ Hn(X ;F) of the pull-back

by γ on cohomology with the map induced by our isomorphism γ∗F
∼
−→ F . Even

more generally, if G◦ is another étale sheaf or complex of sheaves on X◦, we will
get a Galois action the Ext groups between F and G by structure transport, and
we could go on like that.
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We will use these Galois actions in the case that the field extension K/k consists
of our finite field Fq with an algebraic closure Fq. In this case, additional features
try to create confusion. Namely, given a prime p, on any commutative ring A over
Z/pZ, even on any scheme S over Z/pZ there is a canonical endomorphism, the
absolute Frobenius Frab : S → S, given on rings as the map Frab : A → A with
a 7→ ap. This is a natural transformation from the identity functor on the category
of schemes over Z/pZ to itself. In particular, given two schemes S, T over Z/pZ,
on their product we have Frab = (Frab × id) ◦ (id×Frab). From the remarkable fact
that for any étale morphism π : T → S the diagram

T
Frab //

π

��

T

π

��
S

Frab // S

is cartesian, we get for any étale sheaf F on S a natural isomorphism Fr∗abF
∼
−→ F ,

and the map induced by this on the étale cohomology of F is just the identity.
Now in our case of a scheme X◦ over Fq with q = pr, on the scheme X =

Fq ×Fq
X◦ we have as endomorphisms the arithmetic Frobenius Fra = Frrab × id

and the geometric Frobenius Fr = Frg = id×Frrab = id×Fr◦. Clearly Frg ◦ Fra =
Fra ◦ Frg = Frrab, thus our natural isomorphism leads to a natural isomorphism

Fr∗a(Fr
∗F)

∼
−→ F for any étale sheaf F on X . On the other hand, it also leads

to a natural isomorphism F◦
∼
−→ Fr∗◦F◦ and by pulling back we obtain a natural

isomorphism F
∼
−→ Fr∗F for any étale sheaf F◦ on X◦. To get back from this

isomorphism our Galois equivariance γ∗F
∼
−→ F alias Fr∗aF

∼
−→ F from above, just

apply Fr∗a to it and postcompose with the natural isomorphism Fr∗a(Fr
∗F)

∼
−→ F

discussed before. This is explained in [SGA4 1
2 , p. 84]. In the following, we always

work directly with the Frobenius action coming from the natural isomorphism F
∼
−→

Fr∗F , which might be conceptually a less direct approach, but permits to connect
much more directly to the existing literature

So let Fr : X → X be the Frobenius endomorphism, obtained from the Frobenius
Fr◦ : X◦ → X◦ by base change. For anyM◦ in Db

S
(X◦,E) there exists a canonical

isomorphism M◦
∼
−→ Fr

∗
◦M◦, hence also a canonical isomorphism ψM : M

∼
−→

Fr∗M, whereM = For(M◦). For details, see [SGA5, Exposé XIV, §2.1] or [Mil80,
§VI.13]. We will need the following well-known result.

Lemma 3.3.1. The functor

Fr
∗ : Db

S (X,E)→ Db
S (X,E)

is an equivalence of categories, which restricts to an equivalence PervS (X,E)
∼
−→

PervS (X,E).

Proof. The category Db
S
(X,E) is generated by the essential image of the functor

For : Db
S
(X◦,E) → Db

S
(X,E) (e.g. by standard or costandard objects). Hence

it is enough to prove that for any M◦,N◦ in Db
S
(X◦,E), with M := For(M◦),

N := For(N◦), the morphism

HomDb
S

(X,E)(M,N )→ HomDb
S

(X,E)(Fr
∗M,Fr∗N )

is an isomorphism. To prove this fact it is enough to prove that the adjunction
morphism N → Fr∗Fr

∗N is an isomorphism. However this morphism is obtained
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by extension of scalars from the adjunction morphism N◦ → Fr◦∗Fr
∗
◦N◦, which is

an isomorphism since Fr◦ is a universal homeomorphism, see [SGA5, Exposé XIV,
§1, Proposition 2(a)]. �

Recall that, by [BBD82, Proposition 5.1.2], the functor which sends M◦ to
the pair (M, ψM), where M = For(M◦) and ψM is defined above, induces an
equivalence of abelian categories

(3.3.2) PervS (X◦,E)
∼
−→ PervS (X,E)[Fr∗].

Using this equivalence, one can make sense of the tensor product V ⊗EM◦ of an
object M◦ of PervS (X◦,E) with an E-free (E, φ)-module (V, φV ). Indeed using
(3.3.2) one can see (V, φV ) as an object of Perv(pt◦,E), and we define V ⊗EM◦ as
the tensor product of the pullback of this object to X◦ withM◦.

Example 3.3.3. When X◦ = pt◦ = Spec(Fq), we have Fr = id, and Perv(pt,E) ∼=
Modf−E. The image of E(m) ∈ Perv(pt◦,E) under (3.3.2) is a rank 1 free right
E-module endowed with the automorphism given by multiplication by qm.

Lemma 3.3.4. There exists an object P◦ in PervS (X◦,E) such that P = For(P◦)
is a projective generator of PervS (X,E).

Proof. We write the details only for E = O; the case E = F is similar. By the
proof of Corollary 2.3.3(1), it is enough to prove that the objects P constructed
in Proposition 2.3.1 can be chosen in such a way that they are in the essential
image of the functor For or equivalently, using equivalence (3.3.2), in such a way

that there exists an isomorphism P
∼
−→ Fr∗P . Now, using the notation of this

proof, the O-module E has a natural automorphism φ induced by Fr∗; it is enough
to observe that Efree can be endowed with an automorphism φfree such that the
quotient Efree ։ E is compatible with φ and φfree, which follows from Lemma
3.1.5 (for A = O). (See the proof of Proposition 4.4.1 below for details on this
construction.) �

LetM◦,N◦ be in Db
S
(X◦,E), withM := For(M◦), N := For(N◦). Composing

the isomorphism
{

HomDb
S

(X,E)(M,N ) → HomDb
S

(X,E)(Fr
∗M,Fr∗N )

f 7→ ψN ◦ f ◦ ψ
−1
M

with the inverse of the isomorphism

HomDb
S

(X,E)(M,N )→ HomDb
S

(X,E)(Fr
∗M,Fr∗N )

induced by Fr∗ (see Lemma 3.3.1) we obtain an automorphism φM,N of the E-
module HomDb

S
(X,E)(M,N ). Hence HomDb

S
(X,E)(M,N ) is naturally an object of

Modf−(E, φ), which we denote by HomE(M,N ) for simplicity.

Remark 3.3.5. Using the same arguments as in Lemma 3.3.1, for any varietyX◦ over
Spec(Fq) (not necessarily satisfying our assumptions) we obtain an automorphism
of H•

c(X,E) = Hom•(Ept, f!EX) induced by the Frobenius morphism. (Here, f :
X◦ → pt◦ is the projection.) For example, with our conventions the automorphism
of H2

c(A
1,E) ∼= H2

c(A
1 r {0},E) is multiplication by q−1, and the automorphism of

H1
c(A

1 r {0},E) is the identity.
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Let us fix an object P◦ as in Lemma 3.3.4, and let

A := EndPervS (X,E)(P).

Since P is a projective generator of PervS (X,E) we have an equivalence of cate-
gories

(3.3.6) FP := Hom(P ,−) : PervS (X,E)
∼
−→ Modf−A

(see [Bas68, Exercise on p. 55]). Moreover, as P = For(P◦), we have an automor-
phism φ := φP,P of A, so that we can consider the category Modf−(A, φ) as in
§3.1.

Lemma 3.3.7. The functor which sends M◦ to (Hom(P ,M), φP,M) (where as
usualM = For(M◦)) induces an equivalence of abelian categories

(3.3.8) PervS (X◦,E)
∼
−→ Modf−(A, φ).

Moreover the following diagram commutes

PervS (X◦,E) ∼

(3.3.8) //

For

��

Modf−(A, φ)

��
PervS (X,E) ∼

(3.3.6) // Modf−A,

where the right vertical functor sends (M,φM ) to M .

Proof. Consider the equivalences

PervS (X◦,E)
(3.3.2)
∼= PervS (X,E)[Fr∗] ∼=

(
Modf−A

)
[FP ◦ Fr

∗ ◦ (FP)
−1]

where the second equivalence is induced by FP . We claim that the functors Φ
(defined as in Example 3.2.1) and FP ◦ Fr

∗ ◦ (FP)
−1 are isomorphic, or equivalently

that the functors Φ ◦ FP and FP ◦ Fr
∗ are isomorphic: indeed an isomorphism is

provided by the composition of isomorphisms

Hom(P ,M)
Fr∗

−−→ Hom(Fr∗P ,Fr∗M)
(−)◦ψP
−−−−−→ Hom(P ,Fr∗M)

forM in PervS (X,E). Equivalence (3.3.8) follows. We leave it to reader to check
that this equivalence can be described by the formula in the lemma, and that the
diagram commutes. �

3.4. Derived categories of perverse sheaves. In this subsection we keep the
same assumptions and notation as in §3.3. The subcategories PervS (X◦,E) ⊂
Db

S
(X◦,E), PervS (X,E) ⊂ Db

S
(X,E) are hearts of t-structures, and the triangu-

lated categories Db
S
(X◦,E) and Db

S
(X,E) have natural filtered analogues. Hence

by [Bĕı87] one has realization functors

real◦ : DbPervS (X◦,E)→ D
b
S (X◦,E), real : DbPervS (X,E)→ Db

S (X,E).

Moreover, these functors fit in the following commutative diagram:

DbPervS (X◦,E)
real◦ //

��

Db
S
(X◦,E)

��
DbPervS (X,E)

real // Db
S
(X,E)
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where vertical functors are induced by For (see [Bĕı87, Lemma A.7.1]). It is known
that the functor real is an equivalence of categories, see Corollary 2.3.4 if E = O
and [BGS96, Corollary 3.3.2]3 if E = F.

Proposition 3.4.1. The functor real◦ is an equivalence of categories.

Proof. The category PervS (X◦,E) generates Db
S
(X◦,E). Hence it is enough to

prove that for anyM◦,N◦ in PervS (X◦,E) and any i ∈ Z the natural morphism

Homi
DbPervS (X◦,E)

(M◦,N◦)→ Homi
DS (X◦,E)(M◦,N◦)

is an isomorphism. We prove this fact by induction on i. In fact both sides vanish
if i < 0; if i = 0 then the morphism is an isomorphism by definition; and the
morphism is an isomorphism also if i = 1 by [BBD82, Remarque 3.1.7(ii)].

Now, assume that i ≥ 2, and that the result is known for i−1 (and anyM◦,N◦).
Let P◦ be an object of PervS (X◦,E) surjecting ontoM◦ and such that For(P◦) is
projective. (Such an object exists by Lemma 3.3.7 and Lemma 3.1.5, or an obvious
analogue if E = F.) Consider an exact sequence

ker◦ →֒ P◦ ։M◦,

and the associated commutative diagram with exact rows

Homi−1

DbP◦
(P◦,N◦) //

��

Homi−1

DbP◦
(ker◦,N◦) //

��

Homi
DbP◦

(M◦,N◦) //

��

Homi
DbP◦

(P◦,N◦)

��
Homi−1

D◦
(P◦,N◦) // Homi−1

D◦
(ker◦,N◦) // Homi

D◦
(M◦,N◦) // Homi

D◦
(P◦,N◦).

Here P◦ := PervS (X◦,E) and D◦ := Db
S
(X◦,E). The first two vertical morphisms

in this diagram are isomorphisms by induction. We claim that both E-modules in
the right column vanish, which will conclude the proof. Indeed the top right term
is 0 by Lemma 3.3.7 and Lemma 3.2.2 (since i ≥ 2). The lower right term is also 0
by the exact sequences [BBD82, (5.1.2.5)] and the fact that

Homk
Db

S
(X,E)(For(P◦),For(N◦)) = 0

for k ≥ 1. (The latter vanishing follows from the facts that real is an equivalence
and that For(P◦) is a projective perverse sheaf.) �

Remark 3.4.2. Let Φ be the equivalence considered in Example 3.2.1. We denote
similarly the equivalence induced on derived categories, so that every object M◦

in DbModf−(A, φ), with image M in DbModf−A, comes equipped with an iso-

morphism φM : M
∼
−→ Φ(M). If M◦, N◦ are in DbModf−(A, φ) then there is

a canonical automorphism of HomDbModf−A(M,N) which sends a morphism f to

Φ−1(φN ◦ f ◦φ
−1
M ). It is not difficult to check that ifM◦,N◦ are in Db

S
(X◦,E) and

if M◦, N◦ are their images under the equivalence

Db
S (X◦,E)

real−1
◦−−−−→ DbPervS (X◦,E)

(3.3.8)
−−−−→ DbModf−(A, φ),

then this automorphism of Hom(M,N) coincides with the automorphism φM,N of
Hom(M,N ) defined in §3.3 under the isomorphism Hom(M,N ) ∼= Hom(M,N)

induced by the equivalence FP ◦ real
−1.

3In [BGS96] the authors work with coefficients in Qℓ; however the same proof applies to
coefficients in F.
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Part 2. Formality of the constructible derived category of the flag

variety

4. Bounding weights

As in §3.3 we use E to denote either F or O. We fix a finite field Fq (where q is

a prime power which is invertible in F) and an algebraic closure Fq of Fq.

4.1. Notation. We let G◦ be a split connected reductive algebraic group over Fq,
B◦ ⊂ G◦ be a Borel subgroup, and T◦ ⊂ B◦ be a maximal torus. We let W be the
Weyl group of G◦ with respect to T◦. The main player in the rest of this paper will
be the flag variety

X◦ := G◦/B◦,

endowed with the Bruhat stratification

X◦ =
⊔

w∈W

Xw,◦, Xw,◦ := B◦wB◦/B◦.

For any subset I ⊂W , we denote by XI,◦ the union of the Xv,◦ for v ∈ I. Following
the notation in the previous sections, we denote by iw : Xw,◦ →֒ X◦ the inclusion,
and we omit the index “◦” when considering the varieties obtained by extension of
scalars from Fq to Fq. The category of E-perverse sheaves on X◦ (resp. X) for the
Bruhat stratification will be denoted by Perv(B◦)(X◦,E) (resp. Perv(B)(X,E)), and
similarly for derived categories. We use similar notation for B◦-stable subvarieties
of X◦.

Let B−
◦ ⊂ G◦ be the Borel subgroup opposite to B◦ with respect to T◦. We will

also consider the opposite Bruhat cells

X−
w,◦ := B−

◦ wB◦/B◦ ⊂ X◦

(w ∈W ).
The choice of B◦ ⊂ G◦ determines a subset S ⊂ W of simple reflections and of

positive roots, which we choose such that the Lie algebra of the unipotent radical
of B◦ is spanned by positive root spaces. If s ∈ S, we denote by Ps,◦ the associated
minimal standard parabolic subgroup. We let Xs

◦ := G◦/Ps,◦. This variety has a
natural stratification by Bruhat cells:

Xs
◦ =

⊔

w∈W s

Xs
w,◦, Xs

w,◦ := B◦wPs,◦/Ps,◦

where W s := {w ∈ W | ws > w}. As for X◦, we denote by Perv(B◦)(X
s
◦ ,E)

(resp. Perv(B)(X
s,E)) the category of E-perverse sheaves on Xs

◦ (resp. Xs) for the
Bruhat stratification.

We denote by ℓ the length function onW with respect to S and by w0 the longest
element of W .

We denote by πs : X◦ → Xs
◦ the natural projection. We have functors

Perv(B◦)(X◦,E)
πs[!]:=

pH0(πs!(−)[1])
//
Perv(B◦)(X

s
◦ ,E),

π[!]
s :=π!

s[−1]

oo

and similarly for the categories Perv(B)(X,E) and Perv(B)(X
s,E). The functor π

[!]
s

is exact, and is right adjoint to πs[!]. It follows that πs[!] sends projective objects
in Perv(B)(X,E) to projective objects in Perv(B)(X

s,E).
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4.2. Morphisms between standard perverse sheaves. For any w ∈ W , fol-
lowing the notation of §2.2 we set ∆w,◦ := iw!EXw,◦

[ℓ(w)] ∈ Perv(B◦)(X◦,E), and
∆w := For(∆w,◦). Recall (see §3.3 and Remark 3.3.5) that for u, v ∈ W and i ∈ Z
the E-modules Homi

E(∆u,∆v) and Hic(Xv ∩ X−
u ,E) have a natural automorphism

induced by the Frobenius morphism.

Proposition 4.2.1. For any u, v ∈W there exists an isomorphism of graded (E, φ)-
modules

Ext•E(∆u,∆v) ∼= H•+ℓ(v)−ℓ(u)
c

(
Xv ∩X

−
u ,E

)
.

Proof. If u � v, then both modules are 0, hence there is nothing to prove. Assume
from now on that u ≤ v.

Fix n ∈ Z. First, adjunction provides an isomorphism of (E, φ)-modules

ExtnE(∆u,∆v) ∼= Hn+ℓ(v)−ℓ(u)(Xu, i
!
uiv!EXv

).

Consider the following diagram:

Xv
jv //

iv

$$
Xv

iv // X

Xu

iu,v

OO

iu

>>}}}}}}}}

We obtain isomorphisms

i!uiv!EXv

∼= i!u,vi
!
viv!jv!EXv

∼= i!u,vjv!EXv
.

Now, consider the following diagram with cartesian square:

Xv

�

� � jv // Xv

(Xv ∩X−
u )×Xu

?�

j′

OO

� � j′v // (Xv ∩X−
u )×Xu

?�

j

OO

p

��
Xu

k

OO
iu,v

hh

where j and j′ are the open inclusions considered in [KL80, §1.4], and k (resp. p)
is the obvious inclusion (resp. projection). Then we have

i!u,vjv!EXv

∼= k!j!jv!EXv

∼= k!j∗jv!EXv

∼= k!j′v!E(Xv∩X
−
u )×Xu

,

where the second isomorphism follows from the fact that j is an open embedding,
and the third one from base change.

The adjunction (k!, k
!) provides a morphism of functor k!k

! → id. Composing
with p! gives a morphism of functors k! → p!. By [Soe89, Proposition 1], this
morphism induces an isomorphism

k!j′v!E(Xv∩X
−
u )×Xu

∼
−→ p!j

′
v!E(Xv∩X

−
u )×Xu

.

Combining these isomorphisms we obtain

ExtnE(∆u,∆v) ∼= Hn+ℓ(v)−ℓ(u)(Xu, (p ◦ j
′
v)!E(Xv∩X

−
u )×Xu

).
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Now, consider the following (tautological) cartesian diagram:

(Xv ∩X−
u )×Xu

q //

p◦j′v
��

�

Xv ∩X−
u

b

��
Xu

a // pt,

where q, a, b are the natural projections. Then by the base change theorem we have

(p ◦ j′v)!E(Xv∩X
−
u )×Xu

∼= (p ◦ j′v)!q
∗EXv∩X

−
u

∼= a∗b!EXv∩X
−
u
.

We deduce isomorphisms

ExtnE(∆u,∆v) ∼= Hn+ℓ(v)−ℓ(u)(Xu, a
∗b!EXv∩X

−
u
)

∼= Hn+ℓ(v)−ℓ(u)(pt, a∗a
∗b!EXv∩X

−
u
).

Finally, since Xu is an affine space, we observe that the adjunction (a∗, a∗) induces
an isomorphism

Hn+ℓ(v)−ℓ(u)(pt, b!EXv∩X
−
u
)

∼
−→ Hn+ℓ(v)−ℓ(u)(pt, a∗a

∗b!EXv∩X
−
u
),

which finishes the proof. �

4.3. Weights of cohomology of Deodhar varieties. In the next two lemmas
we let k be an arbitrary field, and we use the notation G, B, X , etc. for a split
reductive algebraic group, a Borel subgroup, the flag variety, etc. over k. We will
use these results only when k = Fq.

The following result is well known, and probably due to Deodhar (see [Deo85];
see [Cur88] for a more general result). For this reason we call the varieties Xv ∩X−

u

“Deodhar varieties”.

Lemma 4.3.1. Let u, v ∈ W and s ∈ S be such that u ≤ v, vs > v and us > u.

(1) There exists an isomorphism of k-varieties

Xvs ∩X
−
us
∼= Xv ∩X

−
u .

(2) There exists a closed subvariety Z ⊂ Xvs ∩ X−
u , with complement U , and

isomorphisms of k-varieties

Z ∼= (Xv ∩X
−
us)× A1

k, U ∼= (Xv ∩X
−
u )× (A1

k r {0}).

Proof. Set Xs,−
u := B−uPs/Ps ⊂ Xs. Then we have

(πs)
−1(Xs,−

u ) = X−
u ⊔X

−
us, (πs)

−1(Xs
v) = Xvs ⊔Xv.

In each of these decompositions, the first term is open and the second term is closed.
On the other hand, as the restriction of πs to Xv (resp. X−

us) is an isomorphism
with Xs

v (resp. Xs,−
u ) we have isomorphisms

Xv ∩X
−
u
∼= πs(Xv ∩X

−
u ), Xv ∩X

−
us
∼= πs(Xv ∩X

−
us),

Xvs ∩X
−
us
∼= πs(Xvs ∩X

−
us),

and

Xs
v ∩X

s,−
u = πs(Xv ∩X

−
u ) ⊔ πs(Xv ∩X

−
us)

= πs(Xvs ∩X
−
us) ⊔ πs(Xv ∩X

−
us).
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(In each of these decompositions the first term is open and the second one is closed.)
It follows that

πs(Xv ∩X
−
u ) = πs(Xvs ∩X

−
us),

which proves (1).
Now, set

Z := (Xvs ∩X
−
u ) ∩ (πs)

−1
(
πs(Xv ∩X

−
us)

)
,

U := (Xvs ∩X
−
u ) ∩ (πs)

−1
(
πs(Xv ∩X

−
u )

)
.

To prove (2) it is enough to prove that πs|Z : Z → πs(Xv ∩ X−
us) is a trivial

A1
k
-fibration, and that πs|U : U → πs(Xv ∩ X−

u ) is a trivial (A1
k
r {0})-fibration.

Consider the A1
k
-fibration

f : (Xvs ∩X
−
u ) ⊔ (Xvs ∩X

−
us)→ Xs

v ∩X
s,−
u

induced by πs, which is trivial since it is the restriction of the trivial A1
k
-fibration

Xvs → Xs
v to the inverse image of Xs

v ∩X
s,−
u . We claim that

(4.3.2) f−1
(
πs(Xv ∩X

−
us)

)
= Z,

which will prove our claim about Z. Indeed, let x ∈ πs(Xv ∩X−
us). Then π

−1
s (x) ∩

Xv = pt, and π−1
s (x) ∩ X−

us = pt, and by assumption these points coincide. It
follows that π−1

s (x) ∩ Xvs = π−1
s (x) ∩ X−

u , hence that π−1
s (x) ∩ (Xvs ∩X−

us) = ∅.
This proves (4.3.2).

On the other hand, consider f−1
(
πs(Xv ∩X−

u )
)
, and denote by g the restriction

of f to this open subvariety. Then the restriction of g to

(Xvs ∩X
−
us) ⊂ f

−1
(
πs(Xv ∩X

−
u )

)

is an isomorphism. Hence the claim about U follows from Lemma 4.3.4 below. �

Remark 4.3.3. In case (2), the closed subvariety Z is empty if us � v.

Lemma 4.3.4. Let M be a k-variety, and consider the trivial fibration

a :M × A1
k →M.

Assume there exists a subvariety N ⊂ M × A1
k
such that the restriction of a to N

is an isomorphism N
∼
−→ M . Then the restriction of a to the complement of N is

a trivial (A1
k
r {0})-fibration.

Proof. Let ξ be the composition M
∼
−→ N →֒ M × A1

k
→ A1

k
. Then the automor-

phism
M × A1

k
→ M × A1

k

(m, t) 7→ (m, t− ξ(m))

identifies the complement of N with M × (A1
k
r {0}) as a fibration over M . �

Now we come back to our varieties over Fq and Fq.

Proposition 4.3.5. Let u, v ∈W , with u ≤ v. The cohomology

H•
c(Xv ∩X

−
u ,O)

is concentrated in degrees between ℓ(v)− ℓ(u) and 2(ℓ(v)− ℓ(u)). Moreover, for any
n ∈ Jℓ(v) − ℓ(u), 2(ℓ(v)− ℓ(u))K, the (O, φ)-module Hnc (Xv ∩X−

u ,O) has q-weights
obtained from J−⌊n2 ⌋,−n+ ℓ(v)− ℓ(u)K.
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Proof. We prove the claim by induction on the Bruhat order on v. It is obvious if
v = 1.

Now, assume the result is known for v, and let s ∈ S be such that vs > v. Let
u ∈ W such that u ≤ vs. If us < u (and then us ≤ v), by Lemma 4.3.1(1) we have
an isomorphism

Xvs,◦ ∩X
−
u,◦
∼= Xv,◦ ∩X

−
us,◦.

As ℓ(vs)− ℓ(u) = ℓ(v)− ℓ(us), the result follows by induction.
Now, assume that us > u (and then u ≤ v). Then, by Lemma 4.3.1(2), Xvs,◦ ∩

X−
u,◦ is the disjoint union of a closed subvariety Z◦ isomorphic to (Xv,◦∩X−

us,◦)×A
1
◦

and an open subvariety U◦ isomorphic to (Xv,◦ ∩X−
u,◦)× (A1

◦ r {0}). Consider the
associated long exact sequence

· · · → Hnc (U,O)→ Hnc (Xvs ∩X
−
u ,O)→ Hnc (Z,O)→ · · ·

Both H•
c(A

1,O) and H•
c(A

1 r {0},O) are free O-modules and so we can apply the
Künneth formula to obtain

H•
c(Z,O) ∼= H•

c(Xv ∩X
−
us)⊗O H•

c(A
1,O) ∼= H•−2

c (Xv ∩X
−
us)⊗O H2

c(A
1,O)

and

H•
c(U,O) ∼= H•

c(Xv ∩X
−
u )⊗O H•

c(A
1 r {0},O)

∼= H•−1
c (Xv ∩X

−
u )⊗O H1

c(A
1 r {0},O)⊕ H•−2

c (Xv ∩X
−
u )⊗O H2

c(A
1 r {0},O).

Our claim follows, using Remark 3.3.5. �

Remark 4.3.6. The bounds on weights in Proposition 4.3.5 are exactly the same as
the bounds provided in a very general setting for cohomology with coefficients in
K by [Del80, Corollaire 3.3.3]. In particular, if one is only interested in H•

c(Xv ∩
X−
u ,K), then the information on the structure of Xv ∩X

−
u given by Lemma 4.3.1

does not give improved bounds. However, here we work with integral coefficients,
which are not considered in [Del80].

Combining Proposition 4.2.1 and Proposition 4.3.5 we obtain the following result,
which will play a crucial role in the rest of this section.

Corollary 4.3.7. Let u, v ∈W such that u ≤ v. Then

ExtnO(∆u,∆v)

vanishes unless 0 ≤ n ≤ ℓ(v)− ℓ(u). If n ∈ J0, ℓ(v)− ℓ(u)K, this (O, φ)-module has

q-weights obtained from J−⌊n+ℓ(v)−ℓ(u)2 ⌋,−nK.

4.4. Weights in the ∆-flag of projective covers.

Proposition 4.4.1. For any u ∈W , there exists an object Pu,◦ in Perv(B◦)(X◦,O)
such that For(Pu,◦) is projective in Perv(B)(X,O), together with an exact sequence

Mu,◦ →֒ Pu,◦ ։ ∆u,◦

such that Mu,◦ has a filtration whose subquotients are of the form

Ev,u ⊗O ∆v,◦

for v > u, where Ev,u is an (O, φ)-module which is O-free and has q-weights obtained
from J1, ℓ(v)− ℓ(u)K.
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Proof. We prove by induction that for any I ⊂ W containing u with XI closed,
there exists an object PIu,◦ in Perv(B◦)(XI,◦) such that PIu := For(PIu,◦) is projective
in Perv(B)(XI) together with an exact sequence

MI
u,◦ →֒ P

I
u,◦ ։ ∆I

u,◦

such thatMI
u,◦ has a filtration whose subquotients are of the form

EIv,u ⊗O ∆I
v,◦

for v > u (v ∈ I), where EIv,u is an (O, φ)-module which is O-free and has q-weights

obtained from J1, ℓ(v)− ℓ(u)K. (Here, ∆I
w,◦ is the standard perverse sheaf on XI,◦

associated with w.) The case I = W will give the proposition. If u is maximal in
I, then PIu,◦ = ∆I

u,◦ satisfies these requirements.
Now we take I = I ′ ∪ {v} with XI′ closed and containing Xu. Consider the

(O, φ)-module

E := Ext1O(P
I′

u ,∆
I
v).

(Here we consider PI
′

u as a perverse sheaf on XI .) We claim that this module
has q-weights obtained from Jℓ(u) − ℓ(v),−1K. Indeed, by induction hypothesis

PI
′

u,◦ has a filtration with subquotients EI
′

w,u ⊗O ∆I
w,◦, where E

I′

w,u has q-weights

obtained from J0, ℓ(w)−ℓ(u)K, and moreover by Corollary 4.3.7 Ext1O,XI
(∆I

w,∆
I
v) =

Ext1O,X(∆w,∆v) has q-weights obtained from

J−⌊
1 + ℓ(v)− ℓ(w)

2
⌋,−1K ⊂ Jℓ(w) − ℓ(v),−1K.

Using Lemma 3.1.7, we deduce that there exists an (O, φ)-module Efree which is
O-free, with q-weights obtained from Jℓ(u) − ℓ(v),−1K and a surjection of (O, φ)-
modules Efree ։ E. By [BBD82, (5.1.2.5)], there exists a natural surjection

Ext1PervS (X◦,O)(P
I′

u,◦, E
∗
free ⊗O ∆I

v,◦) ։
(
Ext1PervS (X,O)(P

I′

u , E
∗
free ⊗O ∆I

v)
)φ−inv

.

The element of Ext1PervS (X,O)(P
I′

u , E
∗
free ⊗O ∆I

v) considered in the proof of Proposi-

tion 2.3.1 is φ-invariant by construction, hence defines an extension of E∗
free⊗O∆

I
v,◦

by PI
′

u,◦, which we denote by PIu,◦. By the proof of Proposition 2.3.1, For(PIu,◦) is
projective, which proves the induction. �

For any u ∈W we fix an object Pu,◦ as in Proposition 4.4.1, and we set

P◦ :=
⊕

u∈W

Pu,◦.

Note that this object satisfies the condition of Lemma 3.3.4 (see the proof of Corol-
lary 2.3.3).

Proposition 4.4.2. The (O, φ)-module

EndO(P)

is O-free, and has q-weights obtained from J−ℓ(w0), ℓ(w0)K. In particular, this
(O, φ)-module is q-decomposable if the order of q in F is strictly bigger than 2ℓ(w0).
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Proof. The fact that this O-module is free follows from Proposition 2.4.1(4).
To prove the statement about weights, it is sufficient to prove that for any

u, v ∈ W the q-weights of HomO(Pu,Pv) are in J−ℓ(w0), ℓ(w0)K. Now recall that
Pv,◦ has a filtration with subquotients of the form

Ew,v ⊗O ∆w,◦

for w ≥ v, where Ew,v is an (O, φ)-module which has q-weights obtained from
J0, ℓ(w) − ℓ(v)K. Hence HomO(Pu,Pv) has a filtration (as an (O, φ)-module) with
subquotients of the form

Ew,v ⊗O HomO(Pu,∆w).

Similarly, Pu,◦ has a filtration with subquotients of the form

Ew′,u ⊗O ∆w′,◦

for w′ ≥ u, where Ew′,u is an (O, φ)-module which has q-weights obtained from
J0, ℓ(w′)− ℓ(u)K. Hence it is enough to study weights in

Fu,v,w,w′ := E∗
w′,u ⊗O HomO(∆w′ ,∆w)⊗O Ew,v.

By Corollary 4.3.7, HomO(∆w′ ,∆w) has q-weights obtained from J ℓ(w
′)−ℓ(w)
2 , 0K.

Hence Fu,v,w,w′ has q-weights obtained from

Jℓ(u)−
ℓ(w′) + ℓ(w)

2
, ℓ(w)− ℓ(v)K ⊂ J−ℓ(w0), ℓ(w0)K,

which finishes the proof of the claim on weights.
Finally, the last claim of the statement follows from Remark 3.1.6. �

4.5. Partial flag varieties. In this subsection we fix a simple reflection s, and
consider the variety Xs. For any v ∈ W s, we denote by ∆s

v the standard object
associated to the stratum Xs

v .

Lemma 4.5.1. For u, v ∈ W s, the (O, φ)-module

ExtnO(∆
s
u,∆

s
v)

vanishes unless 0 ≤ n ≤ ℓ(v) − ℓ(u), in which case it has q-weights obtained from

J−⌊n+ℓ(v)−ℓ(u)2 ⌋,−nK.

Proof. The restriction of πs to Xv is an isomorphism onto Xs
v , hence we have

πs∗∆v = ∆s
v. Using adjunction, we deduce isomorphisms

ExtnO,Xs(∆s
u,∆

s
v)
∼= ExtnO,Xs(∆s

u, πs∗∆v) ∼= ExtnO,X(π∗
s∆

s
u,∆v).

By the base change theorem we have π∗
s∆

s
u = isu!OXu⊔Xus

[ℓ(u)], where isu : Xu ⊔

Xus →֒ X is the inclusion. We have an exact sequence of sheaves on Xu ⊔Xus:

j!OXus
→֒ O

Xu⊔Xus
։ i∗OXu

,

where i (resp. j) denotes the inclusion of Xus (resp. Xu) which induces a distin-
guished triangle

∆us[−1]→ isu!OXu⊔Xus
[ℓ(u)]→ ∆u

[1]
→ .

Hence we obtain an exact sequence for any n ≥ 0:

ExtnO,X(∆u,∆v)→ ExtnO,Xs(∆s
u,∆

s
v)→ Extn+1

O,X(∆us,∆v).

Then the result follows from Corollary 4.3.7. �
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Using this lemma, the same proof as that of Proposition 4.4.1 gives the following
result.

Proposition 4.5.2. For any u ∈W s, there exists an object Psu,◦ in Perv(B◦)(X
s
◦ ,O)

such that For(Psu,◦) is projective in Perv(B)(X
s,O), together with an exact sequence

Ms
u,◦ →֒ P

s
u,◦ ։ ∆s

u,◦

such that Ms
u,◦ has a filtration whose subquotients are of the form

Esv,u ⊗O ∆s
v,◦

for v > u (v ∈ W s), where Esv,u is an (O, φ)-module which is O-free and has
q-weights obtained from J1, ℓ(v)− ℓ(u)K.

As in §4.4 we choose objects Psu,◦ as in Proposition 4.5.2, and we define the
object

Ps◦ :=
⊕

u∈W s

Psu,◦.

Again we observe that this object satisfies the conditions of Lemma 3.3.4 (see the
proof of Corollary 2.3.3). We let P◦ denote the same object as in §4.4.

Lemma 4.5.3. The (O, φ)-module

HomO(πs [!]P ,P
s)

is O-free, and has q-weights obtained from J−ℓ(w0) + 1, ℓ(w0)K. In particular, it is
q-decomposable if the order of q in F is bigger than 2ℓ(w0).

Proof. First, the object πs[!]P ∈ Perv(B)(X
s,O) is projective (see §4.1), hence the

fact that Hom(πs[!]P ,P
s) is O-free follows from Proposition 2.4.1(4).

Next, by adjunction we have

HomO(πs[!]P ,P
s) ∼= HomO(P , π

[!]
s P

s) ∼= HomO(P , π
!
sP

s[−1]).

Now there exists an isomorphism of functors π!
s
∼= π∗

s [2](1) since πs is smooth of
relative dimension 1, hence we obtain an isomorphism of (O, φ)-modules

HomO(πs[!]P ,P
s) ∼= HomO(P , π

∗
sP

s[1])(1).

By construction, Ps◦ has a filtration with subquotients of the form

Esv,u ⊗O ∆s
v,◦

for v ≥ u (v, u ∈ W s), where Esv,u is an (O, φ)-module which has q-weights obtained
from J0, ℓ(v)− ℓ(u)K. Hence π∗

sP
s
◦ [1] has a filtration with subquotients

Esv,u ⊗O π
∗
s∆

s
v,◦[1],

and then Hom(πs[!]P ,P
s) has a filtration with subquotients

Av,u := Esv,u ⊗O HomO(P , π
∗
s∆

s
v[1])(1).

As in the proof of Lemma 4.5.1, we have a surjection ∆vs ։ π∗
s∆

s
v[1], which

induces a surjection

HomO(P ,∆vs)(1) ։ HomO(P , π
∗
s∆

s
v[1])(1).

We have seen in the proof of Proposition 4.4.2 that Hom(P ,∆vs) has q-weights ob-
tained from J−ℓ(w0), 0K. It follows that Av,u has q-weights obtained from J−ℓ(w0)+
1, ℓ(w0)K, finishing the proof of the claim concerning weights.

The last claim of the statement again follows from Remark 3.1.6. �
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Proposition 4.5.4. The (O, φ)-module

EndO(πs[!]P)

is O-free. If the order of q in F is bigger than 2ℓ(w0), then it is q-decomposable.

Proof. As πs[!]P is projective (see §4.1), by Proposition 2.4.1(4) its endomorphism
algebra is O-free.

By Lemma 4.5.5 below, the morphism

EndO(πs[!]P)→ EndEnd(Ps)

(
HomO(πs[!]P ,P

s)
)

induced by the functor HomO(−,Ps) is an isomorphism of (O, φ)-modules. By
Lemma 4.5.3, HomO(πs[!]P ,P

s) is a q-decomposable, O-free (O, φ)-module, hence
the same holds for the (O, φ)-module

Vs := EndO(HomO(πs[!]P ,P
s)).

As EndEnd(P s)(HomO(πs[!]P ,P
s)) is a sub-(O, φ)-module of Vs with torsion-free

quotient, by Lemma 3.1.3, it is also q-decomposable, which finishes the proof. �

Lemma 4.5.5. Let R be a right noetherian ring, and Q be a projective generator
of Modf−R. Then the functor

Hom−R(−, Q) : Modf−R→ End−R(Q)−Mod

is fully faithful on projectives.

Proof. To simplify notation, let R′ := End−R(Q). Let also Projf−R, resp. R−Projf
denote the category of finitely generated projective right, resp. left, R-modules, and
similarly for R′.

By [Bas68, Exercise on p. 55], R′ is a right noetherian ring and the functor
Hom−R(Q,−) induces an equivalence of categories betweenModf−R andModf−R′.
In particular, for any P in Projf −R the morphism

(4.5.6) Hom−R(P,Q) → Hom−R′

(
Hom−R(Q,P ), R

′
)

induced by Hom−R(Q,−) is an isomorphism, and moreover Hom−R(Q,P ) is in
Projf − R′. Using isomorphism (4.5.6), the functor Hom−R(−, Q) : Projf − R →
R′−Mod is isomorphic to the composition

Projf −R
Hom−R(Q,−)
−−−−−−−−−→ Projf −R′ Hom−R′(−,R′)

−−−−−−−−−−→ R′−Mod.

As explained above the first functor is fully faithful, and the second one is easily
seen to be fully faithful also. �

5. Formality

As above, in §§5.1-5.2 we let E be either O or F.

5.1. Bott–Samelson sheaves and parity sheaves. Recall [JMW09, Definition
2.4] that a complex F ∈ Db

(B)(X,E) is called parity if it admits a decomposition

F ∼= F0 ⊕F1 such that for all w ∈ W , ? ∈ {!, ∗} and j ∈ Z we have

(1) Hj(i?wFk) = 0 if j 6≡ k mod 2;
(2) Hj(i?wFk) is an E-free constant local system if j ≡ k mod 2.
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An indecomposable parity complex is called a parity sheaf. Note that, as the cate-
gory Db

(B)(X,E) satisfies the Krull–Schmidt property, every parity complex decom-

poses (uniquely) as a direct sum of parity sheaves (see [JMW09, §2.1] for details).
One has the following theorem ([JMW09, Theorem 2.12]):

Theorem 5.1.1. For all w ∈ W there is (up to isomorphism) at most one parity
sheaf Ew supported on Xw and extending the constant local system EXw

[ℓ(w)] on
Xw. Moreover, any parity sheaf is isomorphic to Ew[m] for some w ∈ W and
m ∈ Z.

If f = (s, t, · · · , r) is a sequence of simple reflections, we consider the correspond-
ing Bott–Samelson complex

BSEf,◦ := π!
sπs!π

!
tπt! · · ·π

!
rπr!IC

E

e,◦ ∈ Db
(B◦)

(X◦,E),

where e ∈W is the unit element and ICE

e,◦ is the corresponding IC-sheaf. As usual,

we denote by BSEf the object obtained by base change to Fq. The following is
an immediate consequence of Proposition 5.1.7 below in the case E = O; the case
E = F follows (or can alternatively be proved along the same lines).

Proposition 5.1.2. For any sequence f of simple reflections, BSEf is parity. If

f is a reduced expression for w−1 then BSEf is supported on Xw and i∗wBS
E

f
∼=

EXw
[2ℓ(w)].

Remark 5.1.3. Theorem 5.1.1 says nothing about the existence of parity sheaves,
and for an arbitrary stratified variety existence may be difficult to establish. The
above proposition combined with Theorem 5.1.1 gives the existence and unique-
ness of parity sheaves on the flag variety (see [Soe00, Theorem 1.2] and [JMW09,
Theorem 4.6]).

Given a sequence f = (s, t, · · · , r) as above we set f := st · · · r ∈ W . Let us
fix a family F = {f1, · · · , fn} of sequences of simple reflections such that W =
{f1, · · · , fn}. Then we set

BSE◦ :=
⊕

f∈F

BSEf,◦,

and denote by BSE the object obtained by base change to Fq.

Lemma 5.1.4. (1) The category Db
(B)(X,E) is generated, as a triangulated

category, by the objects BSEf for f ∈ F .

(2) The category Db
(B)(X

s,E) is generated, as a triangulated category, by the

objects πs!BS
E

f for f ∈ F .

Proof. (1) A straightforward induction on the support using standard distinguished
triangles shows that the set {∆E

x | x ∈ W} generates D
b
(B)(X,E) as a triangulated

category. (If E = O, one has to observe that for any m ∈ Z≥1 there is a natural
exact sequence ∆O

x →֒ ∆O
x ։ ∆O

x,m.) Hence it is enough to show that one can obtain

∆E
x as a successive extension of the complexes BSEf . However, if f = x−1 then, by

Proposition 5.1.2, BSEf is supported on Xx and i!xBS
E

f
∼= i∗xBS

E

f
∼= EXx

[2ℓ(x)].
Hence we have a distinguished triangle

∆E

x[2ℓ(x)]→ BS
E

f → C
[1]
→
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with the support of C contained in Xx \Xx. By induction, C belongs to the trian-
gulated subcategory generated by Bott–Samelson complexes, hence so does ∆E

x.
(2) One can easily check that Db

(B)(X
s,E) is generated, as a triangulated cate-

gory, by the essential image of the functor πs! : Db
(B)(X,E)→ D

b
(B)(X

s,E). Hence
the result follows from (1). �

Consider the algebras

EE := Ext•Db
(B)

(X,E)(BS
E,BSE),

EsE := Ext•Db
(B)

(Xs,E)(πs!BS
E, πs!BS

E)

for s ∈ S. These graded algebras will play a major role in the rest of the paper.
Note that, as BSE = For(BSE◦ ) and E

s
E
= For(πs!BSE◦ ) these algebras are endowed

with a natural automorphism φ (see §3.3). We denote by ef the idempotent in
EE, resp. E

s
E
, given by projection to BSEf , resp. πs!BS

E

f . Note that the functor πs!
induces a ring morphism EE → Es

E
sending ef to ef , which justifies our notation.

From now on we concentrate on the case E = O. The aim of the rest of this
section is to prove the following theorem.

Theorem 5.1.5. The (O, φ)-algebras EO and Es
O

are O-free and vanish in odd

degree. Moreover, for any m ∈ Z, the (O, φ)-modules E2m
O

and (Es
O
)2m have q-

weights obtained from {−m}.

Recall (see Example 3.3.3) that that under the natural equivalence Perv(pt◦,O) ∼=
Modf−(O, φ) (see Lemma 3.3.7 with P◦ = O

pt◦
), the perverse sheaf O

pt◦
(m) cor-

responds to the O-module O endowed with the automorphism a 7→ qma. By abuse
of notation, we also denote this (O, φ)-module by O(m).

Using the observation that by adjunction we have

ExtnO,Xs(πs!BS
O

f , πs!BS
O

g )
∼= ExtnO,X(BSOf , π

!
sπs!BS

O

g )
∼= ExtnO,X(BSOf ,BS

O

(s,g)),

Theorem 5.1.5 is a consequence of the following result.

Proposition 5.1.6. Given sequences of simple reflections f and g, the (O, φ)-
module ExtnO(BS

O

f ,BS
O
g ) is zero for odd n and is an extension of copies of O(−m)

for n = 2m even.

Proof. By adjunction and the isomorphisms πs! ∼= πs∗, π
!
s
∼= π∗

s [2](1) we can assume
that g is the empty sequence. Then the result follows from the case v = e of
Proposition 5.1.7(1) below. �

Proposition 5.1.7. Let f be a sequence of simple reflections.

(1) For any v ∈W , Hj(i∗vBS
O

f,◦) = 0 for odd j and Hj(i∗vBS
O

f,◦) is an extension

of copies of O
Xv,◦

(−k) if j = 2k is even.

(2) If f is a reduced expression for w−1 then BSOf,◦ is supported on Xw,◦ and

i∗wBS
O

f,◦
∼= O

Xw,◦
[2ℓ(w)](ℓ(w)).

Proof. (1) It is enough to show that if s is a simple reflection and S is a complex
satisfying the conclusions of (1) then so is π!

sπs!S. To this end fix y ∈W s. Consider
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the locally closed subvariety Z◦ of X◦ defined via the Cartesian diagram:

Z◦

�πs

��

� � u // X◦

πs

��
Xs
y,◦

� � v // Xs
◦

Then Z◦ is the disjoint union of the closed subvarietyXy,◦ and its open complement
Xys,◦. Denote by i and j the corresponding inclusions:

Xys,◦
j
→֒ Z◦

i
←֓ Xy,◦.

On Z◦ we have a distinguished triangle

j!j
!u∗S → u∗S → i∗i

∗u∗S
[1]
→ .

Applying πs∗ = πs! to this triangle and keeping in mind the base change isomor-
phism πs!u

∗ ∼= v∗πs! and the identity j! = j∗ we obtain a distinguished triangle:

(5.1.8) (πs ◦ j)!i
∗
ysS → v∗πs!S → (πs ◦ i)!i

∗
yS

[1]
→ .

Now (πs ◦ i) is an isomorphism of varieties and (πs ◦ j) is a trivial fibration with
fibre A1

◦. The direct image with compact supports along such a fibration sends
the constant sheaf O to the (shifted and twisted) constant sheaf O[−2](−1). Our
assumptions on S now guarantee that the long exact sequence of cohomology of the
triangle (5.1.8) has only zeros in odd degree, and extensions of the constant sheaf
O
Xs

y,◦

(−k) in degree 2k. Pulling back to X◦ via π!
s
∼= π∗

s [2](1) now yields (1).

(2) Assume that f = (s, t, · · · , r) is a reduced expression for w−1 and let f ′ =
(t, · · · , r); then f ′ is a reduced expression for sw−1 = (ws)−1. By induction the

support of BSOf ′,◦ is contained in Xws,◦ and i
∗
wsBS

O

f ′,◦ = O
Xws,◦

[2ℓ(ws)](ℓ(ws)). Fix

y ∈ W s. The distinguished triangle (5.1.8) shows that

(a) if i∗ysS = i∗yS = 0 then i∗ys(π
!
sπs!S) = i∗y(π

!
sπs!S) = 0;

(b) if i∗ysS = 0 and i∗yS
∼= O[m](r) then i∗ys(π

!
sπs!S)

∼= O[m+ 2](r + 1).

It follows that the support of BSOf,◦ is contained in Xw,◦ and that i∗wBS
O

f,◦
∼=

O
Xw,◦

[2ℓ(w)](ℓ(w)) as claimed. �

5.2. Algebraic description of direct and inverse image. Let P be a projective
generator of the category Perv(B)(X,E).

Lemma 5.2.1. The object πs[!]P is a projective generator of Perv(B)(X
s,E).

Proof. In this proof we assume that E = O; the case E = F is similar. By the
remarks after the definition of πs[!] (see §4.1), πs[!]P is projective. By the remarks
in the proof of Corollary 2.3.3, it is sufficient to prove that for any v ∈ W s, there
exists n > 0 such that πs[!]P

⊕n surjects to ICv. Fix such a v. As P is a projective
generator there exists n > 0 and a surjection

f : P⊕n
։ ICvs ∼= π[!]

s ICv.

By adjunction we obtain a morphism g : πs[!]P
⊕n → ICv such that f factors as

P⊕n → π[!]
s πs[!]P

⊕n π[!]
s g−−−→ π[!]

s ICv.
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Hence π
[!]
s g is surjective. As the functor π

[!]
s is exact and fully faithful (see [BBD82,

Proposition 4.2.5]), hence kills no object, we deduce that g is surjective. �

We set

A := EndPerv(B)(X,E)(P), As := EndPerv(B)(Xs,E)(πs[!]P),

so that we have equivalences

Π := Hom(P ,−) : Perv(B)(X,E)
∼
−→ Modf−A,

Πs := Hom(πs[!]P ,−) : Perv(B)(X
s,E)

∼
−→ Modf−As.

We denote similarly the induced equivalences between derived categories. There is
a natural algebra morphism A→ As induced by the functor πs[!], hence associated
functors

(5.2.2) Modf−A
(−)⊗AA

s

//
Modf−As.

res
oo

Lemma 5.2.3. The following diagram commutes up to natural transformations:

Perv(B)(X,E)

πs[!]

��

Π

∼
// Modf−A

(−)⊗AA
s

��
Perv(B)(X

s,E)

π[!]
s

OO

Πs

∼
// Modf−As.

res

OO

Proof. The fact that

res ◦Hom(πs[!]P ,−) ∼= Hom(P ,−) ◦ π[!]
s

follows from the property that πs[!] is left adjoint to π
[!]
s . The second isomorphism

of functors follows from the first one by adjunction. �

As recalled above, the functor π
[!]
s is exact; we denote similarly the functor

induced between derived categories. The functor πs[!] is right exact; we denote its
left derived functor by Lπs[!]. The values of this functor can be computed using
projective resolutions (which exist thanks to Corollary 2.3.3). In particular, it
follows from Corollary 2.3.4(2) that Lπs[!] restricts to a functors between bounded

derived categories. Note that the functor Lπs[!] is left adjoint to π
[!]
s . The same

remarks apply to the functors (5.2.2)
We denote by

real : DbPerv(B)(X,E)→ D
b
(B)(X,E),

reals : DbPerv(B)(X
s,E)→ Db

(B)(X
s,E)

the realization functors. Recall that these functors are equivalences of categories
(see Corollary 2.3.4(1) if E = O, and [BGS96, Corollary 3.3.2] if E = F).

Proposition 5.2.4. The following diagram commutes up to natural transforma-
tions:

Db
(B)(X,E)

πs![1]

��

DbPerv(B)(X,E)

Lπs[!]

��

Π
∼

//real

∼
oo Db

(
Modf−A

)

(−)
L
⊗AA

s

��
Db

(B)(X
s,E)

π!
s[−1]

OO

DbPerv(B)(X
s,E)

π[!]
s

OO

Πs

∼
//reals

∼
oo Db

(
Modf−As

)
.

res

OO
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Proof. Commutativity of the right square follows from Lemma 5.2.3. Let us con-
sider the left square. The isomorphism

real ◦ π[!]
s
∼= π!

s[−1] ◦ real
s

follows from [Bĕı87, Lemma A.7.1]. The second isomorphism follows by adjunction,
since real and reals are equivalences. �

Now we assume that there exists P◦ in Perv(B◦)(X◦,E) such that P = For(P◦).
(This is possible thanks to Lemma 3.3.4 or §4.4.) Then the algebra A, resp. As, is
endowed with a natural automorphism φ, resp. φs. By Lemma 3.3.7, the functors
HomE(P ,−) and HomE(πs[!]P ,−) induce natural equivalences of categories

Π◦ : Perv(B◦)(X◦,E)
∼
−→ Modf−(A, φ),

Πs◦ : Perv(B◦)(X
s
◦ ,E)

∼
−→ Modf−(As, φs).

The morphism A → As commutes with the automorphisms φ and φs, so that we
obtain functors

res : Modf−(As, φs)→ Modf−(A, φ),

(−)⊗A A
s : Modf−(A, φ)→ Modf−(As, φs)

which are compatible with the functors (5.2.2) in the obvious sense. The proof of
the following result is similar to that of Lemma 5.2.3.

Lemma 5.2.5. The following diagram commutes up to natural transformations:

Perv(B◦)(X◦,E)

πs[!]

��

Π◦

∼
// Modf−(A, φ)

(−)⊗AA
s

��
Perv(B◦)(X

s
◦ ,E)

π[!]
s

OO

Πs
◦

∼
// Modf−(As, φs).

res

OO

We denote by

real◦ : DbPerv(B◦)(X◦,E)→ D
b
(B◦)

(X◦,E),

reals◦ : DbPerv(B◦)(X
s
◦ ,E)→ D

b
(B◦)

(Xs
◦ ,E)

the realization functors. These functors are equivalences by Proposition 3.4.1. It is
easy to prove that the functor (−)⊗A As admits a left derived functor, which can
be computed using resolutions in Modf−(A, φ) whose terms have a flat underlying
right A-module. This derived functor will be denoted by

(−)
L

⊗AA
s : Db

(
Modf−(A, φ)

)
→ Db

(
Modf−(As, φs)

)
.

Using Lemma 5.2.5, one deduces (or one proves directly) that the functor πs[!] also
admits a left derived functor

Lπs[!] : D
bPerv(B◦)(X◦,E)→ D

bPerv(B◦)(X
s
◦ ,E).

The proof of the following result is similar to that of Proposition 5.2.4.
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Proposition 5.2.6. The following diagram commutes up to natural transforma-
tions:

Db
(B◦)

(X◦,E)

πs![1]

��

DbPerv(B◦)(X◦,E)

Lπs[!]

��

Π◦

∼
//real◦

∼
oo Db

(
Modf−(A, φ)

)

(−)
L
⊗AA

s

��
Db

(B◦)
(Xs

◦ ,E)

π!
s[−1]

OO

DbPerv(B◦)(X
s
◦ ,E)

π[!]
s

OO

Πs
◦

∼
//reals◦

∼
oo Db

(
Modf−(As, φs)

)
.

res

OO

5.3. Existence of a decomposable projective resolution. From now on we
will have to work simultaneously with coefficients O and F, but to distinguish the
two cases. We add superscripts or indices to indicate which coefficients we are
working with.

We fix an object PO
◦ in Perv(B◦)(X◦,O) such that PO := For(PO

◦ ) is a projective
generator of the category Perv(B)(X,O). For simplicity, we also assume that there

exists a surjection PO
◦ ։ ICO

e,◦. Set P
F
◦ := F(PO

◦ ) and P
F := For(PF

◦ )
∼= F(PO). One

can easily check that PF is a projective generator of the category Perv(B)(X,F).
Set

AO := EndO(P
O), AsO := EndO(πs[!]P

O),

AF := EndF(P
F), AsF := EndF(πs[!]P

F)

(for any simple reflection s). Note that by Lemma 5.2.1 and Proposition 2.4.1(4),
AO and As

O
are O-free (for any s) and the natural morphism

(5.3.1) F⊗O AO → AF

is an isomorphism. We denote by φ, resp. φs, the automorphism induced by the
Frobenius on AO, resp. on A

s
O
. In addition, we use the same notation as in §5.2.

To prove an analogue of isomorphism (5.3.1) for As, we need some prepara-
tion. We denote by Proj(X,O), Proj(Xs,O) the categories of projective objects in
Perv(B)(X,O), Perv(B)(X

s,O), and similarly for coefficients F. Note that the func-

tors πs[!] and F = F⊗L
O
(−) send projective perverse sheaves to projective perverse

sheaves (see §4.1 and Proposition 2.4.1).

Lemma 5.3.2. There exists an isomorphism of functors

πs[!] ◦ F ∼= F ◦ πs[!] : Proj(X,O)→ Proj(Xs,F).

Proof. First, let M be in Db
(B)(X,O) with pHi(M) = 0 for i > 0. Consider the

canonical truncation triangle

N →M→ pH0(M)
[1]
→

and its modular reduction

FN → FM→ F
(
pH0(M)

) [1]
→ .

As the functor F is right exact, the second and third terms in the latter triangle have
canonically isomorphic 0-th perverse cohomology. Hence there exists a functorial
morphism

F
(
pH0(M)

)
→ pH0

(
F
(
pH0(M)

))
∼= pH0

(
FM

)
,

which is an isomorphism if the left-hand side is a perverse sheaf.
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Now, if Q is in Proj(X,O) we obtain isomorphisms

F(πs[!]Q) := F
(
pH0(πs!Q[1])

) ∼
−→ pH0

(
F(πs!Q)[1]

)
∼= pH0

(
πs!(FQ)[1]

)
= πs[!](FQ),

which finishes the proof. �

Proposition 5.3.3. There exists an isomorphism of F-algebras F⊗OA
s
O
∼= As

F
such

that the following diagram commutes:

F⊗O AO
//

≀(5.3.1)

��

F⊗O A
s
O

≀

��
AF

// As
F

where horizontal morphisms are induced by the functor πs[!].

Proof. Our isomorphism can be defined as the composition

F⊗O A
s
O = F⊗O EndO(πs[!]P

O)
∼
−→ EndF(F(πs[!]P

O))
∼
−→ EndF(πs[!]P

F)

where the first isomorphism follows from Proposition 2.4.1(4), and the second one
follows from Lemma 5.3.2. Commutativity of the diagram follows from functoriality.

�

We consider the following conditions:

(5.3.4) AO is q-decomposable, and AsO is q-decomposable for any s ∈ S.

Recall that, by Propositions 4.4.2 and 4.5.4, if the order of q in F is strictly big-
ger than 2ℓ(w0) then one can choose PO

◦ such that condition (5.3.4) is satisfied.
However, most of our results below hold under this condition, independently of the
proofs in Section 4.

Lemma 5.3.5. Assume that condition (5.3.4) is satisfied. Then the (AO, φ)-module

HomO(P
O, ICO

e )

is O-free and q-decomposable. Moreover, the natural morphism

F⊗O HomO(P
O, ICO

e )→ HomF(P
F, ICF

e)

is an isomorphism.

Proof. The fact that HomO(PO, ICO

e ) is O-free and the final claim follow from

Proposition 2.4.1(2) because ICO

e = ∆e. By our choice of PO
◦ we have a surjec-

tion of (AO, φ)-modules

AO ։ HomO(P
O, ICO

e ).

Hence the fact that HomO(PO, ICO

e ) is q-decomposable follows from Lemma 3.1.3.
�

Recall the objects BSO◦ , BS
F
◦ defined in §5.1. By definition we have an isomor-

phism F(BSO◦ ) ∼= BS
F
◦ . Recall also the category Modfdec−(AO, φ) defined in §3.1.

We denote by

Modf
proj
dec −(AO, φ) ⊂ Modfdec−(AO, φ)

the full additive subcategory with objects those (P, φP ) such that P is a projective

AO-module. Note that if (P, φP ) is in Modf
proj
dec −(AO, φ), then P is O-free and

F⊗O P is a projective AF-module, endowed with a natural automorphism induced
by φP . We denote by F(P, φP ) the corresponding object of Modf−(AF, φ).
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The following result is the technical key to our proof of formality.

Proposition 5.3.6. Assume that condition (5.3.4) is satisfied. Then there exists

a bounded complex M•
◦ of objects of Modf

proj
dec −(AO, φ) which satisfies the following

conditions:

(1) the image of M•
◦ in Db

(
Modf−(AO, φ)

)
coincides (up to isomorphism) with

the image of BSO◦ under the equivalence

ΠO

◦ ◦ (real
O

◦ )
−1 : Db

(B◦)
(X◦,O)

∼
−→ Db

(
Modf−(AO, φ)

)
;

(2) the image of F(M•
◦ ) in Db

(
Modf−(AF, φ)

)
coincides (up to isomorphism)

with the image of BSF◦ under the equivalence

ΠF

◦ ◦ (real
F

◦)
−1 : Db

(B◦)
(X◦,F)

∼
−→ Db

(
Modf−(AF, φ)

)
.

Proof. Let f ∈ F , and write f = (s, t, · · · , r). By Proposition 5.2.6, the image of

the object BSOf,◦ of Db
(B◦)

(X◦,O) under ΠO
◦ ◦ (real

O

◦ )
−1 is isomorphic to the object

(5.3.7) ΠO

◦ (IC
O

e,◦)
L

⊗AO
ArO

L

⊗AO
· · ·

L

⊗AO
AtO

L

⊗AO
AsO

of Db
(
Modf−(A, φ)

)
, where for any u, Au

O
is considered as an AO-bimodule with

compatible automorphism. By Lemma 5.3.5, ΠO
◦ (IC

O

e,◦) = HomO(PO, ICO

e ) is a
q-decomposable, O-free right (AO, φ)-module.

For any u that appears in f one can construct a resolution

Q•
u

qis
−−→ AuO

of Au
O

by objects of Modf
proj
dec −(AO ⊗O A

op
O
, φ ⊗ φ) which is concentrated in non-

positive degrees (but possibly infinite). Indeed, by Lemma 3.1.8 there exists an

object Q0 in Modf
proj
dec −(AO ⊗O A

op
O
, φ⊗ φ) and a surjection Q0

։ Au
O
. By Lemma

3.1.3 the kernel of this surjection is q-decomposable, and it is O-free, hence we can
repeat the argument.

Then one can define the complex

′M•
f,◦ := ΠO

◦ (IC
O

e,◦)⊗AO
Q•
r ⊗AO

· · · ⊗AO
Q•
t ⊗AO

Q•
s.

Since a projective right AO ⊗O A
op
O
-module is also projective as a left AO-module,

the image of ′M•
f,◦ in Db

(
Modf−(AO, φ)

)
is (5.3.7), hence is isomorphic to ΠO

◦ ◦

(realO◦ )
−1(BSOf,◦).

By Lemma 5.3.8 below the underlying AO-module of each Mk
f,◦ is projective,

and each Mk
f,◦ is q-decomposable by Lemma 3.1.3. Indeed, it is a finite direct sum

of torsion-free quotients of (O, φ)-modules of the form

ΠO

◦ (IC
O

e,◦)⊗O Q
kr
r ⊗O · · · ⊗O Q

kt
t ⊗O Q

ks
s ,

the latter being O-free and q-decomposable.
We claim that one can choose k ≪ 0 such that M•

f,◦ := τ≥k(′M•
f,◦) is still a

complex of objects of Modf
proj
dec −(AO, φ) whose image in the derived category is

(5.3.7). Indeed the complex ′M•
f,◦ has bounded cohomology, hence if k ≪ 0 the

natural morphism ′M•
f,◦ →M•

f,◦ is a quasi-isomorphism. As the categoryModf−AO

has finite projective dimension, if k ≪ 0 then the components of M•
f,◦ still have

an image in Modf−AO which is projective. And finally (again if k ≪ 0), the only
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component of M•
f,◦ which is neither 0 nor a component of ′M•

f,◦ is q-decomposable
by Lemma 3.1.3.

Set

M•
◦ :=

⊕

f∈F

M•
f,◦.

Then, by the remarks above, this complex satisfies condition (1). To prove that
it satisfies condition (2), one observes that the morphisms Q•

u → Au
O

considered
above are quasi-isomorphisms of complexes of free O-modules; hence the induced
morphisms (F ⊗O Q

•
u) → (F ⊗O A

u
O
) are also quasi-isomorphisms. By the same

argument, the morphisms F(′M•
f,◦)→ F(M•

f,◦) are quasi-isomorphisms. Finally, by

Lemma 5.3.5 we have F⊗OΠ
O
◦ (IC

O

e,◦)
∼= ΠF

◦(IC
F

e,◦) and by Proposition 5.3.3 we have
F ⊗O A

u
O
∼= Au

F
. Hence the same arguments as for O show that M•

◦ also satisfies
condition (2). �

Lemma 5.3.8. Let R be any O-algebra which is finitely generated and free over O.
Let Q be a projective (R,R)-bimodule andM be a right R-module which is O-free.

Then the right R-module M ⊗R Q is projective (hence also O-free).

Proof. It suffices to prove that M ⊗R (R ⊗O R) is projective over R. However we
have

M ⊗R (R⊗O R) ∼= M ⊗O R,

hence this fact is clear from our hypothesis on M . �

5.4. Dg-algebras of finite global dimension. Let R be a graded algebra, con-
sidered as a dg-algebra with differential d = 0. We assume that R is noetherian
as an algebra, and that the category of finitely generated graded R-modules has
finite projective dimension. There are a priori several ways to define the derived
category of finitely generated right R-dg-modules. The goal of this subsection is to
show that, under our assumptions, all of them coincide.

More precisely, we denote by D1 the category obtained from the homotopy cate-
gory of right R-dg-modules which are finitely generated as R-modules by inverting
quasi-isomorphisms. We denote by D2 the full subcategory of dgDer−R whose
objects are R-dg-modules which are isomorphic (in dgDer−R) to an R-dg-module
which is finitely generated over R. (Note that it is not clear a priori that D2 is
a triangulated subcategory of dgDer−R.) We denote by D3 the strictly full trian-
gulated subcategory of dgDer−R generated by finitely generated projective graded
R-modules (considered as dg-modules with trivial differential). Finally, we denote
by D4 the full subcategory of dgDer−R whose objects have their cohomology finitely
generated over R. We have inclusions

D3 ⊂ D4, D2 ⊂ D4

and a natural essentially surjective functor

(5.4.1) D1 → D2.

Proposition 5.4.2. We have D2 = D4 = D3, and (5.4.1) is an equivalence of
categories.

Below we will denote by dgDerf−R any of the equivalent triangulated categories
Di (i = 1, 2, 3, 4).

The main step in the proof of Proposition 5.4.2 is the following lemma.
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Lemma 5.4.3. We have D4 ⊂ D3.

Proof. We will prove that any objectM in D4 is in D3 by induction on the projective
dimension of H•(M).

First, assume that H•(M) has projective dimension 0, i.e. that it is projective.
We claim that in this case there exists a quasi-isomorphism of R-dg-modules

H•(M)
qis
−−→M

where H•(M) is considered as a dg-module with trivial differential. Indeed, as
H•(M) is projective, there exists a splitting s : H•(M) → ker(dM ) of the nat-
ural morphism of graded R-modules ker(dM ) ։ H•(M). Then the composition
H•(M)→ ker(dM ) →֒M is the desired quasi-isomorphism. As H•(M) is in D3, we
deduce that M is also in D3.

Now, assume that H•(M) has projective dimension d. Choose a minimal length
projective resolution

P d →֒ · · · → P 0 a
։ H•(M)

as a graded R-module. By the same argument as before, there exists a morphism
of R-dg-modules P 0 → M which induces a in cohomology. We denote by N the
cocone of this morphism, so that we have a distinguished triangle

N → P 0 →M
[1]
→ .

Then H•(N) ∼= ker(a) has projective dimension d − 1, hence N belongs to D3 by
induction. We deduce that M is in D3 also. �

Proof of Proposition 5.4.2. By Lemma 5.4.3 we have D3 = D4. Now, as morphisms
in R−dgDer between projective graded R-modules (considered as dg-modules with
d = 0) are simply morphisms of graded R-modules (because such objects are K-
projective in the sense of [BL94, Definition 10.12.2.1]), one easily checks that D3 ⊂
D2. We deduce that D2 = D3 = D4.

Now consider the functor D1 → D2 = D3. The same proof as in Lemma 5.4.3
shows that the category D1 is also generated, as a triangulated category, by finitely
generated projective gradedR-modules. Hence it is enough to check that morphisms
between such objects in D1 and D2 coincide; this is obvious. �

5.5. Proof of formality. The following result is well known, and is usually attrib-
uted to Deligne, see [DGMS75, Del80].

Lemma 5.5.1. Let R• be a dg-algebra which is endowed with an additional Z-
grading

Ri =
⊕

j∈Z

Ri,j

such that dR(R
i,j) ⊂ Ri+1,j. Assume that for any i ∈ Z the cohomology Hi(R•) is

concentrated in degree j = i (for this additional grading). Then R• is formal. More
precisely, there exists a dg-subalgebra R•

⊲ ⊂ R
• and quasi-isomorphisms

R• R•
⊲

? _
qisoo qis // H•(R•),

where H•(R•) is considered as a dg-algebra with trivial differential.
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Proof. Denote by dij : R
i,j → Ri+1,j the component of the differential in bidegree

(i, j). For any i ∈ Z, set

Ri⊲ :=
(⊕

j>i

Ri,j
)
⊕ ker(dii).

ThenR•
⊲ is a dg-subalgebra ofR•. Moreover, the projectionRi⊲ ։ ker(dii)/im(di−1

i )

induces a quasi-isomorphism of dg-algebras R•
⊲

qis
−−→ H•(R•). �

From now on we assume that condition (5.3.4) is satisfied. Let M•
◦ be as in

Proposition 5.3.6, and let M• be the underlying complex of projective right AO-
modules. Consider the dg-algebras

E•
O := Hom•

−AO
(M•,M•), E•

F := Hom•
−AF

(F ⊗O M
•,F⊗O M

•).

Note that both of these dg-algebras are bounded, that E•
O

is a finite rank free
O-module, and that we have a natural isomorphism of dg-algebras

F⊗O E
•
O
∼= E•

F .

By the same considerations as in Remark 3.4.2, E•
O
is endowed with a natural

automorphism, so that it can be considered as an (O, φ)-dg-algebra. Similarly, by
the constructions of §3.3 the graded O-algebra EO can be naturally considered as
an (O, φ)-algebra.

Lemma 5.5.2. There exist natural isomorphisms of graded algebras

H•(E•
O)
∼= EO, H•(E•

F)
∼= EF.

Moreover, the first isomorphism is an isomorphism of (O, φ)-algebras.

Proof. By definition of E•
O
we have an isomorphism of graded algebras

H•(E•
O)
∼= Ext•Db(Modf−AO)

(M•,M•).

Using condition (1) in Proposition 5.3.6, we have an isomorphism

realO ◦ (ΠO)−1(M•) ∼= BSO.

We deduce the first isomorphism. The compatibility with automorphisms follows
from Remark 3.4.2. The second isomorphism can be proved similarly. �

Lemma 5.5.3. The algebras EO and EF have finite global dimension.

Proof. We will prove in Corollary 6.4.2 below (using [Soe00]) that EF has finite
global dimension. Let us deduce the same property for EO. We claim that for
M,N in Db(Modf−EO) there exists a natural isomorphism in the derived category
of F-vector spaces

(5.5.4) F
L

⊗ORHom−EO
(M,N) ∼= RHom−EF

(F
L

⊗OM,F
L

⊗ON)

where RHom−EO
(M,N) is considered as an object in D(Modf−O). Indeed one

can assume that M is a bounded above complex of finitely generated projective
EO-modules, and then reduce the claim to the case M = EO, which is obvious.

As O has global dimension 1, any object of D(Modf−O) is isomorphic to its

cohomology. Moreover, if M is in Modf−O then M 6= 0 implies F
L

⊗OM 6= 0. Using
these remarks, isomorphism (5.5.4) and the fact that EF has finite global dimension,
one easily checks that the same property holds for EO. �
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Using Lemma 5.5.3, one can define the categories dgDerf−EO and dgDerf−EF

as in §5.4.

Proposition 5.5.5. The dg-algebras E•
O
and E•

F
are formal. More precisely, there

exists a dg-subalgebra E•
⊲ ⊂ E

•
O
and quasi-isomorphisms

(5.5.6) E•
O

E•
⊲

? _
qisoo qis // EO

such that the diagram

E•
F

F⊗O E
•
⊲

qisoo qis // F⊗O EO

obtained by modular reduction also consists of quasi-isomorphisms.

Proof. We claim that the (O, φ)-module E•
O
is q-decomposable. Indeed, asM•

◦ is q-

decomposable (see Proposition 5.3.6), the same holds for the O-free (O, φ)-module
F • := Hom•

O(M
•,M•). By definition E•

O
is a sub-(O, φ)-module of F •, and the

quotient F •/E•
O
has no π-torsion. We deduce from Lemma 3.1.3 that indeed E•

O
is

q-decomposable.
For any i, j ∈ Z we set

Eij,O := {e ∈ Ei | (φ − q−
j
2 )m · e = 0 for m≫ 0}.

By q-decomposability this defines a grading on E• (which is concentrated in even
degrees). Hence, using Lemma 5.5.2 and Theorem 5.1.5, we are in the situation of
Lemma 5.5.1. We denote by E•

⊲ the subalgebra constructed in the proof of this
lemma, so that we have a diagram (5.5.6). All the dg-algebras in this diagram are
O-free: indeed E•

⊲ has no π-torsion since it is a submodule of the free O-module
E•

O
, and EO is free by Theorem 5.1.5. Hence the diagram obtained by modular

reduction also consists of quasi-isomorphisms. �

Remark 5.5.7. In particular, it follows from Proposition 5.5.5 and Lemma 5.5.2
that the natural morphism F ⊗O EO → EF is an isomorphism. This can also be
proved directly using [JMW09, equation (2.13)] and the fact that BSO is parity.

Finally we can prove the main result of Part 2.

Theorem 5.5.8. Assume that condition (5.3.4) is satisfied.
There exist equivalences of triangulated categories

Db
(B)(X,O) ∼= dgDerf−EO, Db

(B)(X,F) ∼= dgDerf−EF

where EO and EF are considered as dg-algebras with their natural grading and trivial
differential.

Proof. We treat only the case of O; the case of F is similar. As explained in §5.2,
there exists an equivalence of categories

Db
(B)(X,O) ∼= Db

(
Modf−AO

)

Moreover, by Lemma 5.1.4 the category Db
(B)(X,O) is generated (as a triangulated

category) by the objects {BSOf , f ∈ F}. By construction (see Proposition 5.3.6),
BSf corresponds, under this equivalence, to the complex M•

f of projective right
AO-modules. Hence, with the notation of §1.3 we obtain

Db
(B)(X,O) ∼= 〈M•

f , f ∈ F 〉∆ ⊂ D
(
Mod−AO

)
.
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By the result recalled in §1.3, the right-hand side is equivalent to

〈1fE
•
O, f ∈ F 〉∆ ⊂ dgDer−E•

O

where 1f is the idempotent of E•
O
given by the projection to M•

f .
Now it follows from Proposition 5.5.5 that there is an equivalence of triangulated

categories
dgDer−E•

O
∼= dgDer−EO.

It sends 1fE
•
O
to efEO, where ef ∈ EO is defined in §5.1. We deduce an equivalence

Db
(B)(X,O) ∼= 〈efEO, f ∈ F 〉∆ ⊂ dgDer−EO.

Finally, it is not difficult to check (using the category D3 of §5.4) that the right-hand
side is equivalent to dgDerf−EO. �

5.6. Parabolic case. It is not difficult to generalize the results of §5.5 to parabolic
flag varieties. Here, for future reference, we explain the case of the variety Xs for
s ∈ S. First, we remark that by an obvious analogue of Lemma 5.5.3 the rings
Es

O
and Es

F
have finite global dimension, so that we can consider the categories

dgDerf−Es
O
and dgDerf−Es

F
.

Theorem 5.6.1. Let s ∈ S, and assume that condition (5.3.4) is satisfied.
There exist equivalences of triangulated categories

Db
(B)(X

s,O) ∼= dgDerf−EsO, Db
(B)(X

s,F) ∼= dgDerf−EsF

where Es
O
and Es

F
are considered as dg-algebras with their natural grading and trivial

differential.

Proof. First we treat the case of O. Recall the resolution M•
◦ constructed in the

proof of Proposition 5.3.6. Set

M•
s,◦ :=M•

◦ ⊗AO
AsO

and denote by M•
s the complex obtained by forgetting the automorphism φ. Then

by construction M•
s,◦ is a complex of objects of Modf

proj
dec −(A

s
O
, φs), and by Propo-

sition 5.2.6 its image in Db
(
Modf−(As

O
, φ)

)
is Πs,O◦ ◦ (reals,O◦ )−1

(
πs!BSO◦ [1]

)
. Then

we consider the dg-algebra

Es,•
O

:= Hom•
−As

O

(M•
s ,M

•
s ).

By construction it is endowed with an automorphism φs.
The same argument as for Lemma 5.5.2 shows that we have an isomorphism of

(O, φ)-algebras H•(Es,•
O

) ∼= Es
O
. Then the same argument as for Proposition 5.5.5

shows that there exists a sub-dg-algebra Es,•⊲ ⊂ Es,•
O

and quasi-isomorphisms

(5.6.2) Es,•
O

Es,•⊲
? _

qisoo qis // Es
O

The rest of the proof is similar to that of Theorem 5.5.8, replacing E•
O
by Es,•

O
.

The case of F is similar, using the dg-algebra

Es,•
F

:= Hom•
−As

F

(F⊗O M
•
s ,F⊗O M

•
s )

and the quasi-isomorphisms

Es,•
F

F⊗O E
s,•
⊲

? _
qisoo qis // F⊗O E

s
O

obtained from (5.6.2) by modular reduction. �
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Let us study the compatibility of the equivalences in Theorem 5.5.8 and Theorem
5.6.1. We set E = O or F. For any s ∈ S, the functor πs! induces an algebra
morphism EE → Es

E
; hence we have a restriction functor

res : dgDerf−EsE → dgDerf−EE.

Proposition 5.6.3. Assume that condition (5.3.4) is satisfied.
The equivalences in Theorem 5.5.8 and Theorem 5.6.1 (for all s ∈ S) can be

chosen so that for any s ∈ S the following diagram commutes up to natural trans-
formation:

Db
(B)(X

s,E)
Th. 5.6.1

∼
//

π!
s[−1]

��

dgDerf−Es
E

res

��
Db

(B)(X,E)
Th. 5.5.8

∼
// dgDerf−EE.

Proof. We consider the equivalences constructed in the proofs of Theorem 5.5.8 and
Theorem 5.6.1 (using the same notation), and we will show that with this choice,
the diagram commutes up to natural transformation. For simplicity we only treat
the case E = O.

First, as the functor dgDerf−EO → dgDer−EO is fully faithful, it is enough to
show that the following diagram commutes, where the horizontal arrows are the
composition of our equivalences with the obvious embeddings:

Db
(B)(X

s,O) �
� //

π!
s[−1]

��

dgDer−Es
O

res

��
Db

(B)(X,O) �
� // dgDer−EO.

Now by construction the horizontal arrows factor through fully faithful functors
Db

(B)(X
s,E) → dgDer−Es,•

O
, resp. Db

(B)(X,E) → dgDer−E•
O
. Moreover, the func-

tor − ⊗AO
As

O
induces a morphism of (O, φ)-dg-algebras E•

O
→ Es,•

O
which, by

Proposition 5.2.4, induces our morphism EO → Es
O
in cohomology. Hence we ob-

tain morphisms which make the following diagram commutative:

(5.6.4)

E•
O

��

E•
⊲

��

qisoo qis // EO

��
Es,•

O
Es,•⊲

qisoo qis // Es
O
.

Then the following diagram commutes up to natural transformations, where all
functors are restriction functors for the morphisms in (5.6.4):

dgDer−Es,•
O

res

��

dgDer−Es,•⊲

∼oo ∼ //

res

��

dgDer−Es
O

res

��
dgDer−E•

O
dgDer−E•

⊲

∼oo ∼ // dgDer−EO.
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Hence it is enough to prove the commutativity of the following diagram:

Db
(B)(X

s,O)
� � //

π!
s[−1]

��

dgDer−Es,•
O

res

��
Db

(B)(X,O)
� � // dgDer−E•

O
.

Using Proposition 5.2.4, it is even enough to show the commutativity of the follow-
ing diagram, where horizontal arrows are the functors considered in the proofs of
Theorem 5.5.8 and Theorem 5.6.1:

(5.6.5)

Db
(
Modf−As

O

)
� � //

res

��

dgDer−Es,•
O

res

��
Db

(
Modf−AO

)
� � // dgDer−E•

O
.

Now, consider the following diagram:

DbModf−As
O

res

��

KbProjf−As
O

∼oo a

∼
//

res

��

〈1fE
s,•

O
〉dgHo∆

∼ //

res

��

〈1fE
s,•

O
〉dgDer

∆

� � //

res

��

dgDer−E
s,•

O

res

xxqqq
qq
qq
qq
qq

DbModf−AO KbModf−AO
oo b // dgHo−E•O

d // dgDer−E•O

KbProjf−AO ∼

c //

∼

ffNNNNNNNNNNN

OO

〈1fE
•

O〉
dgHo

∆

∼ //
?�

OO

〈1fE
s,•

O
〉dgDer

∆ .
?�

OO

Here all unnamed functors are the obvious ones, as well as d, the functor a is given
by Hom•

−As
O

(M•
s ,−), and the functors b and c are given by Hom•

−AO
(M•,−), so that

the upper path from DbModf−As
O
to dgDer−Es,•

O
is the upper horizontal arrow in

(5.6.5), and the lower path from DbModf−AO to dgDer−E•
O
is the lower horizontal

arrow in (5.6.5). The categories 〈1fE
s,•
O
〉dgHo
∆ ⊂ dgHo−Es,•

O
and 〈1fE

s,•
O
〉dgDer
∆ ⊂

dgDer−Es,•
O

are the triangulated subcategories generated by the objects 1fE
s,•
O

for
f ∈ F , and similarly for E•

O
.

All the squares and triangles in our large diagram are obviously commutative,
except for the square involving a and b. The commutativity of this diagram follows
from the fact that the functor −⊗AO

As
O
is left adjoint to res : Mod−As

O
→ Mod−AO.

We observe that the functor d ◦ b factors through a functor e : DbModf−AO →
dgDer−E•

O
, which must coincide with the lower path in our large diagram. The

commutativity of (5.6.5) easily follows from this observation. �

5.7. Application to Koszulity. In this subsection we deduce from our results
that, under certain assumptions, the ring AF can be endowed with a Koszul grading.
This statement is a modular analogue of [BGS96, Theorem 4.4.4] (in the case of
the flag variety). It will not be used in the rest of the paper, except in §7.3.

The proof will use the notion of a dgg-algebra: such an object is a Z2-graded
algebra endowed with a differential d of bidegree (1, 0) which satisfies the Leibniz
rule with respect to the first grading, and such that d2 = 0. One has an obvious
notion of dgg-module over a dgg-algebra, and we denote the derived category of
right dgg-modules over the dgg-algebra R by dgDer

Z−R.



50 SIMON RICHE, WOLFGANG SOERGEL, AND GEORDIE WILLIAMSON

We also recall some well-known facts on graded algebras. Let R be a finite
dimensional graded F-algebra. If M is in Modf−R, an object MZ of ModfZ − R
is called a graded lift of M if there exists an isomorphism v(MZ) ∼= M , where v
is the obvious forgetful functor. Then every simple or indecomposable projective
right R-module admits a graded lift, which is unique up to isomorphism and shift
in the grading. Moreover we have the following easy lemma, whose proof is left to
the reader. (See e.g. [Soe00, Proposition 2.7.2] for a similar statement.)

Lemma 5.7.1. Let MZ and MZ
i (i = 1, · · · , r) be objects of ModfZ −R, such that

v(MZ
i ) is indecomposable for any i. Assume that there exists an isomorphism

v(MZ) ∼=
⊕

i

v(MZ

i )

in Modf−R. Then there exist integers ki (i = 1, · · · , r) and an isomorphism

MZ ∼=
⊕

i

MZ

i 〈ki〉

in ModfZ −R.

Now we come to our Koszulity result. Here our conventions are slightly different
from those of [BGS96]: we define the Koszul dual of a Koszul ring K =

⊕
nKn as

the graded ring K† := Ext•−K(K0,K0). It is also Koszul.

Proposition 5.7.2. Assume that condition (5.3.4) is satisfied. Assume moreover
that for any x ∈W we have EFx = ICx,F.

There exists a Koszul F-algebra K and an equivalence of categories

Modf−K ∼= Perv(B)(X,F)

such that the Koszul dual ring satisfies

K† ∼= Ext•(ICX , ICX)

as graded rings, where ICX :=
⊕

x∈W ICx,F

Remark 5.7.3. By [Soe00, Corollary 1.0.3], the assumption that EFx = ICF

x for all
x is equivalent to a particular case of Lusztig’s conjecture on characters of simple
representations of reductive groups over F. See also [Wil09, Proposition 3.11] for
other conditions equivalent to this assumption.

Proof. To make the proof clearer, we denote the graded ring EF by ẼF when it is
considered as a dg-algebra, or as a dgg-algebra with bigrading concentrated on the
diagonal in Z2.

Recall the equivalence of categories ΠF : Perv(B)(X,F)
∼
−→ Modf−AF. The simple

right AF-modules are parametrized by W : we set Sx := ΠF(ICx,F). Let us denote
by

Ψ : Db(Modf−AF)
∼
−→ dgDerf−ẼF

the equivalence constructed in the proof of Theorem 5.5.8. By construction we have

Ψ(ΠF(BSFf )) = ef · ẼF for any f ∈ F . Now if f is a reduced expression for x−1,

by Proposition 5.1.2, EFx [ℓ(x)] is a direct summand in BSFf . We deduce that, under

our assumption, Ψ(Sx) is a direct summand in ẼF[−ℓ(x)].
Now we remark that the action of the Frobenius defines (as in the proof of

Proposition 5.5.5) a Z-grading on the O-algebra AO. Using the first isomorphism
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in (5.3.1) we deduce a Z-grading on AF. Each simple AF-module Sx can be lifted

to a graded right AF-module S̃x. It is clear that, using eigenvalues of the Frobenius
again, from the resolution M•

◦ of Proposition 5.3.6 one can deduce a complex of
projective graded right AF-modules M•

Z
and use it to construct an equivalence ΨZ

which makes the following diagram commutative, where vertical arrows are the
obvious forgetful functors:

Db(ModfZ −AF)
ΨZ

∼
//

��

dgDer
Z−ẼF

��
Db(Modf−AF)

Ψ
∼

// dgDer−ẼF.

Using the observation that Ψ(Sx) is a direct summand in ẼF[−ℓ(x)] and an ar-
gument similar to the one for Lemma 5.7.1, it is not difficult to check that there

exists n ∈ Z such that ΨZ(S̃x)〈n〉 is a direct summand in ẼF[−ℓ(x)] in the category

dgDerZ−ẼF.
One easily checks that the functor

Ω : dgDerZ−ẼF → D
b(ModZ−EF)

which sends a dgg-module M to the complex Ω(M) such that Ω(M)i,j =M i+j,j is
an equivalence of triangulated categories, which satisfies Ω(M〈n〉) = Ω(M)[n]〈n〉.

The object Ω
(
ΨZ(S̃x)

)
〈n〉[n] is a direct summand in EF[ℓ(x)]. Hence, replacing

S̃x by S̃x〈n − ℓ(x)〉, we can assume that Ω(ΨZ(S̃x)) is a projective graded right
EF-module. As the functor Ω ◦ΨZ is an equivalence of categories, we deduce that

ExtnModZ−AF
(S̃x, S̃y〈m〉) = 0 unless n+m = 0.

For any x ∈ W , let Q̃x be the projective cover of S̃x in ModfZ − AF, and set

Q̃ :=
⊕

x Q̃x. Define the graded ring

K :=
⊕

n∈Z

HomModfZ−AF
(Q̃, Q̃〈n〉

)
.

By construction the underlying ungraded ring of K is Morita equivalent to AF, and
the arguments in [Ric10, §9.2] show that K is a Koszul ring. The description of K†

is clear by construction, using the equivalence ΠF. �

Part 3. Modular category O and Koszul duality

6. Reminder on modular category O

From now on we will no longer consider coefficients in O. For simplicity, we
sometimes drop the subscripts “F” in the notation. We assume from now on that
G is semisimple of adjoint type.

In order to arrive at the results announced in the introduction, we have to recall
several results from [Soe00]. All references in square brackets in this section refer
to this source. We denote by F a field of characteristic ℓ, assumed to be bigger than
the Coxeter number of G, and by G∨

F
the connected reductive algebraic group over

F which is Langlands dual to G (which is simply connected). Our choice of B and
T determines a Borel subgroup B∨

F
⊂ G∨

F
and a maximal torus T∨

F
⊂ B∨

F
.
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6.1. Definitions. From now on we write O for the regular subquotient category
defined in [§2.3] for the group G∨

F
. (It was denoted by O0(F) in the introduction.)

We write (Mx)x∈W for the standard objects in O. The parametrisation is chosen
so thatMe is projective. We consider the coinvariant algebra C as in [§2.1] and the
functor

V : O → C−Modf

which is fully-faithful on morphisms between projective objects (see [Theorem
2.6.1]). For each simple reflection s ∈ S we consider the semi-regular subquo-
tient category Os from [§2.4] with standard objects M s

x = M s
xs. We denote by Cs

the s-invariants in C. We have an exact functor

Vs : Os → Cs−Modf

as in [proof of Theorem 2.6.2]. Finally, we consider the exact translation functors
T s : O → Os and Ts : Os → O from [§2.5] and diagrams (see [proof of Theorem
2.6.2]) which commute up to natural isomorphism:

(6.1.1)

O
V //

T s

��

C−Modf

res

��

Os

Ts

��

V
s

// Cs−Modf

C⊗Cs(−)

��
Os

V
s

// Cs−Modf O
V // C−Modf

Amongst other things this shows that Vs is also fully-faithful on morphisms
between projective objects in Os. Indeed, any projective object in O is a direct
summand of T sQ with Q projective in O. Then using the adjunctions (T s, Ts) and
(Ts, T

s) from [§2.5] and (6.1.1) we deduce isomorphisms

HomOs(M,T sQ) = HomO(TsM,Q)

= HomC(VTsM,VQ)

= HomC(C ⊗Cs VsM,VQ)

= HomCs(VsM, resVQ)

= HomCs(VsM,VsT sQ).

6.2. Projective objects and equivalences. We abbreviate Θs := TsT
s. Given

any sequence f = (s, t, . . . , r) of simple reflections, consider the projective object
Pf := ΘsΘt . . .ΘrMe. If we denote by Ps the projective cover of Ms and if our
sequence f is a reduced expression for x−1 then

(6.2.1) Pf = Px ⊕
⊕

y<x

P⊕m(f,y)
y

for some unknown multiplicitiesm(f, y) ≥ 0. Furthermore, O has finite homological
dimension. As in §5.1 let us fix a family F = {f1, . . . , fn} of reduced expressions
for the elements of W . It follows that every object of O has a finite projective
resolution in which every term is a finite direct sum of objects of the form Pf for
some f ∈ F .

Let us write P sx for the projective cover ofM s
x in Os. Then if f a reduced expres-

sion for x−1 with x < xs and if P sf := T sPf , we have an analogous decomposition

P sf = P sx ⊕
⊕

y<ys
y<x

P⊕ms(f,y)
y
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where ms(f, y) ≥ 0 are again unknown multiplicities. As before, Os has finite
homological dimension, and every object has a finite projective resolution in which
every term is a finite direct sum of objects of the form P sf for f ∈ F .

Set P :=
⊕

f∈F Pf and EF := EndO(P ). We obtain an equivalence

HomO(P,−) : O
∼
−→ Modf−EF.

If we denote by ef ∈ EF the projection to Pf then we have Pf 7→ efEF under this
equivalence. Similarly, if we set P s :=

⊕
f∈F P

s
f and Es

F
:= EndO(P

s). Then we
obtain an equivalence

HomO(P
s,−) : Os

∼
−→ Modf−EsF.

and if we denote by ef ∈ E
s
F
the projection to P sf then we have P sf 7→ efE

s
F
.

Translation onto the wall yields a ring homomorphism EF → Es
F
with ef 7→ ef .

It is straightforward to see that this is an injection (which explains why we do not
decorate our idempotents with an upper index). Because Es

F
= Hom(T sP, T sP ) ∼=

Hom(P, TsT
sP ), Es

F
is a projective right EF-module. Similarly, the isomorphism

Es
F
∼= Hom(TsT

sP, P ) shows that Es
F
is a projective left EF-module. This bimodule

gives us a commutative diagram up to natural isomorphism

Os
∼ //

Ts

��

Modf−Es
F

res

��
O

∼ // Modf−EF

where the right-hand vertical map is the restriction under EF → Es
F
. The natural

transformation is simply the adjunction isomorphism

Hom(T sP,M)
∼
−→ Hom(P, TsM).

The right and left adjoints of Ts coincide, giving us two commutative diagrams
up to natural isomorphism

O
∼ //

T s

��

Modf−EF

(−)⊗EF
Es

F

��

O

T s

��

∼ // Modf−EF

Hom−EF
(Es

F
,−)

��
Os

∼ // Modf−Es
F

Os
∼ // Modf−Es

F

6.3. Standard objects. For later use, let us briefly explain how one can describe
morphisms between standard objects in O.

Lemma 6.3.1. For x, y ∈ W we have

HomO(Mx,My) ∼=

{
F if y ≤ x,
0 otherwise.

Moreover, all non-zero morphisms between standard objects are injective.

Proof. By [§2.5.8], all My’s have the same socle Mw0 , where w0 ∈W is the longest
element, and moreover this simple object appears with multiplicity 1 in these mod-
ules. The last claim of the lemma follows directly from this.

The fact that the existence of an embeddingMx ⊂My implies that y ≤ x follows
from [§2.3.4]. Finally, one can show the existence of such an embedding when y ≤ x
using similar arguments as for existence of non-zero morphisms between Verma
modules in usual category O. �
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6.4. Description of EF in terms of the coinvariant algebra. With the help
of (6.1.1) and the fully-faithfulness of V and Vs on morphisms between projective
objects we can describe the rings EF ⊂ Es

F
more explicitly. For any expression

f = (s, t, . . . , r) let us consider the C-module

Df := C ⊗Cs C ⊗Ct · · · ⊗Cr k.

If we set D :=
⊕

f∈F Df and denote by ef ∈ EndC(D) the projection to Df , then

(6.1.1) gives an isomorphism

VP
∼
−→ D

and hence an isomorphism EF

∼
−→ EndCD which matches the idempotents ef on

both sides. Similarly we obtain an isomorphism VsP s
∼
−→ D (where D is now

viewed as a module over Cs by restriction) and a commutative diagram:

(6.4.1)

EF� _

��

∼ // EndC(D)
� _

��
Es

F

∼ // EndCs(D)

In order to obtain a better compatibility with our geometric constructions we
equip C with the doubled Z-grading (so that Codd = 0 and C2 6= 0). We imme-
diately obtain Z-gradings on D, EF and Es

F
(using the isomorphisms in (6.4.1)).

It is easy to see that Db(ModfZ − EF) (resp. Db(ModfZ − Es
F
)) is generated as a

triangulated category by the shifts of efEF (resp. efE
s
F
) for all f ∈ F .

We have now introduced two rings which are both called EF, namely the ring
EF := Ext•(BSF,BSF) in §5.1 and the ring EF = EndO(P ) above. Similarly, we
have introduced two rings Es

F
, namely the ring Es

F
:= Ext•(πs!BS

F, πs!BS
F) of §5.1

and the ring Es
F
above. This was intentional however, as we obtain a commutative

diagram of rings with horizontal isomorphisms:

EndO(P )
∼ //

��

EndC(D)

��

Ext•(BSF,BSF)
∼oo

��
EndOs(T sP )

∼ // EndCs(D) Ext•(πs!BSF, πs!BSF)
∼oo

The left square is simply a copy of diagram (6.4.1), the right vertical morphism
is induced by πs! and the horizontal ring isomorphisms on the right-hand side
are induced by hypercohomology (see [Theorem 4.2.1]). In particular our functors
preserve the idempotents ef for f ∈ F in all six rings. Hence from now on we can
use the notation EF for all three rings in the upper row, and Es

F
for all three rings

in the lower row. In particular, because O and Os have finite global dimension (see
§6.2) we obtain the promised:

Proposition 6.4.2. The rings EF and Es
F
have finite global dimension.

Remark 6.4.3. Note that in [Soe00] the flag varieties are defined over the complex
numbers, while here we work over an algebraically closed field of positive character-
istic, and with the étale topology. One can check that the arguments in [Soe00] also
apply to our setting. Alternatively, one can deduce the statement in one setting
from the other, see Remark 7.1.4(2) below.
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7. Modular Koszul duality

7.1. Statement. We briefly recall our notation in order to give a complete formu-
lation of our main theorem. We let R ⊃ R+ denote a root system together with
a choice of positive roots, W the Weyl group and S ⊂ W the simple reflections.
Now, let us fix a finite field F of characteristic ℓ strictly bigger than the Coxeter
number. We consider the following categories:

(1) To the dual root system R∨ we associate the regular and semi-regular sub-
quotient categories O and Os for s ∈ S with coefficients in F. Recall that
these categories are obtained as subquotients of the category of rational
representations of G∨

F
, a semi-simple, simply-connected and split algebraic

group over F associated to R∨.
(2) To the root systemR we associate the flag varietyX = G/B and partial flag

varieties Xs = G/Ps for s ∈ S and consider Db
(B)(X,F) and Db

(B)(X
s,F)

the derived categories of Bruhat constructible étale sheaves on X and Xs

with coefficients in F. In order to define these varieties we first choose a split
connected reductive group G◦ and Borel subgroup B◦ ⊂ G◦ over a finite
field Fq of characteristic 6= ℓ. The varieties in question are then obtained
by base change from the corresponding versions over Fq.

The following result is a more precise and expanded version of the first part of
Theorem 1.2.1 from the introduction.

Theorem 7.1.1 (“Modular Koszul duality”). Assume that the order of q in F×

is strictly bigger than |R|. Then there exist a finite dimensional graded F-algebra
EF with a complete set of mutually orthogonal idempotents {ef , f ∈ F}, a finite
dimensional graded F-algebra Es

F
containing EF as a graded subalgebra for all simple

reflections s ∈ S, and equivalences of categories such that all squares in the following
diagram commute up to natural transformation:

Db(Os)
∼ //

Ts

��

Db(Modf−Es
F
)

res

��

Db(ModfZ − Es
F
)

voo

res

��

v // dgDerf−Es
F

∼ //

res

��

Db
(B)(X

s,F)

π!
s[−1]

��
Db(O)

∼ // Db(Modf−EF) Db(ModfZ − EF)
voo v // dgDerf−EF

∼ // Db
(B)(X,F)

(Here, the functors v and v are defined as in §1.1.) Moreover, the left equivalences

are derived from equivalences of abelian F-categories O
∼
−→ Modf−EF and Os

∼
−→

Modf−Es
F
and for all f ∈ F we have

(7.1.2) Pf ←[ ef · EF 7→ BSFf

on the lower line.
In particular, the indecomposable projective objects in O are mapped to the in-

decomposable parity sheaves on the flag variety. That is, for all x ∈ W there exists

a projective object P̃x ∈ ModfZ − E with

(7.1.3) Px ←[ P̃x 7→ EFx .

where Px ։Mx is the projective cover in O and EFx is the parity sheaf from §5.1.

Remark 7.1.4. (1) The graded modules P̃x are uniquely determined by prop-
erties (7.1.3), as follows e.g. from the reminder on graded rings in §5.7.
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(2) Theorem 7.1.1 differs from Theorem 1.2.1 by the fact that our variety X
is defined over Fq instead of C, and that we work with the étale topology
instead of the classical topology. Let us briefly explain how one can deduce
Theorem 1.2.1 from Theorem 7.1.1. First, one can replace the classical
topology in Theorem 1.2.1 by the étale topology (still over C) by the ar-
guments in [BBD82, §6.1.2]. If ℓ > |R|+ 1 then by Dirichlet’s theorem we
can choose some prime number p whose order in F× is strictly bigger than
|R|, so that Theorem 7.1.1 applies to Fp. Choose a strictly henselian local

ring R ⊂ C whose residue field is Fp. Then the flag varieties X
Fp

and XC

over Fp and C are obtained by base change from the flag variety XR over
R. Moreover we have inverse image functors

Db
(B)(XC,et,F)← D

b
(B)(XR,F)→ D

b
(B)(XFp

,F)

(where all categories are defined as in §2.1). Both of these functors are
equivalences, which finishes the proof. Indeed these categories are generated
by standard objects, as well as by costandard objects. Hence it is sufficient
to prove that morphisms from a standard object to a shift of a costandard
object coincide in all these categories. However, this easily follows from
[Mil80, Corollary VI.4.20].

Proof. Define the algebras EF and Es
F
as above. The commutativity of the left

square is established in §6.2. The commutativity of the middle two squares is
unproblematic. By Propositions 4.4.2 and 4.5.4 our assumptions on the order of q
in F guarantee that condition (5.3.4) is satisfied. The equivalences on the right and
the commutativity of the right-hand square are proved in Theorem 5.5.8, Theorem
5.6.1 and Proposition 5.6.3.

Property (7.1.2) is clear by construction. Let us deduce (7.1.3), by induction on
the Bruhat order. If x = e then the corresponding sequence of simple reflections is

f = ∅, and P∅ = Pe. Hence we can take P̃e = e∅ ·EF. Now let x ∈ W , and assume
the result is known for all y < x. Let P x be a projective object in ModfZ−E such
that v(P x) is sent to Px. Let f ∈ F be a reduced decomposition of x−1. From
(6.2.1) and Lemma 5.7.1 we deduce that there exist m ∈ Z, graded vector spaces
Vy for y < x, and an isomorphism in ModfZ − EF

ef · EF
∼= P x〈m〉 ⊕

(⊕

y<x

Vy ⊗F P̃y

)
.

Then, using induction and (7.1.2), the image of v(P x)[−m] in Db
(B)(X,F) is the

only direct summand F in BSFf such that i∗xF 6= 0; it follows that this image is

Ex[ℓ(x)]. Hence the object P̃x := P x〈m+ ℓ(x)〉 satisfies (7.1.3). �

The left adjoint of the three middle vertical arrows in the diagram in Theorem
7.1.1 is simply − ⊗E Es. (Recall that Es is a projective left E-module, see §6.2.)
If we add the left adjoints on the edges we obtain a diagram in which all squares
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commute up to natural isomorphism:

Db(O)
∼ //

T s

��

Db(Modf−E)

−⊗EE
s

��

Db(ModfZ − E)
voo v //

−⊗EE
s

��

dgDerf−E
∼ //

−⊗EE
s

��

Db
(B)(X,F)

πs![1]

��
Db(Os)

∼ // Db(Modf−Es) Db(ModfZ − Es)
voo v // dgDerf−Es

∼ // Db
(B)(X

s,F)

Similarly, the right adjoint of res can be described as Hom−E(E
s,−), and adding

all right adjoints we obtain a commutative diagram

Db(O)
∼ //

T s

��

Db(Modf−E)

Hom−E(Es,−)

��

Db(ModfZ − E)
voo v //

Hom−E(Es,−)

��

dgDerf−E
∼ //

Hom−E(Es,−)

��

Db
(B)(X,F)

πs∗[−1]

��
Db(Os)

∼ // Db(Modf−Es) Db(ModfZ − Es)
voo v // dgDerf−Es

∼ // Db
(B)(X

s,F)

Comparison of both right-hand squares in the above diagrams (using the fact that
πs∗ = πs!) allows us to deduce an isomorphism of Z-graded (E,Es)-bimodules

Hom−E(E
s, E) ∼= Es〈2〉.

Sometimes it is easier to think of the middle category above as a “graded version”.
In order to emphasise this way of thinking we define

Õ := ModfZ − E, Õs := ModfZ − Es.

We can then regard our restriction functor res as a “graded version of translation

onto the wall” and denote it by T̃s. This functor has a right adjoint T̃ s∗ and a left

adjoint T̃ s! which are related by T̃ s∗ = T̃ s! 〈2〉.

7.2. Standard objects. In this section we establish the last part of Theorem 1.2.1.
More precisely we prove:

Theorem 7.2.1 (“Koszul dual of standard objects”). For all x ∈ W there exist

graded right EF-modules M̃x in Õ with the following properties:

(1) M̃x 7→Mx in O;

(2) M̃x 7→ ∇x,F in Db
(B)(X,F);

(3) If xs > x there exists an embedding M̃xs ⊂ M̃x〈−1〉 of graded EF-modules.

Remark 7.2.2. (1) The modules M̃x are uniquely determined by properties
(1)−−(2), as follows e.g. from the reminder on graded rings in §5.7.

(2) More generally one can show, as in Lemma 6.3.1, that there exists an
embedding

M̃y〈ℓ(y)〉 ⊂ M̃x〈ℓ(x)〉

between graded standard modules if and only if y ≥ x in W and that these
are the only homomorphisms of any degree (up to shift).

(3) Using the fact that HomO(Px,Mx) ∼= F, Theorem 7.1.1 and Theorem 7.2.1,
one can easily check that that the surjection Px ։ Mx lifts to a morphism

of graded right EF-modules P̃x ։ M̃x.
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Proof. If we examine Pf ←[ ef ·EF 7→ BSFf in the case of the empty sequence f = ∅

we see thatMe ←[ e∅ ·EF 7→ ICe,F = ∇e,F = ie∗Fid. Hence we can take M̃e = e∅ ·EF.
If x < xs then by [Soe00, §2.5.4] there is a short exact sequence

Mx →֒ TsT
sMx ։Mxs

and by [Soe00, §2.5.2] we have HomO(Mx, TsT
sMx) ∼= F. Hence, if we have already

constructed a graded lift M̃x of Mx satisfying (1) and (2) then we obtain a graded

lift M̃xs of Mxs as the cokernel of the adjunction morphism after an appropriate

shift in the grading. That is, we can define M̃xs via the short exact sequence

M̃x →֒ T̃sT̃
s
! M̃x ։ M̃xs〈−1〉.

Property (1) for M̃xs now follows. Lemma 7.2.4 below implies that this object also
satisfies (2).

We now turn to (3). We have HomO(Mx,Mx) = F, hence

(7.2.3) HomÕ(M̃x, M̃x〈i〉) = 0 unless i = 0.

Consider the composition of adjunction morphisms

M̃x →֒ T̃sT̃
s
! M̃x → M̃x〈−2〉

(where we use T̃ s! = T̃ s∗ 〈−2〉). This composition is zero by (7.2.3). On the other
hand the second morphism is non-zero so that we obtain a non-zero morphism

M̃xs〈−1〉 → M̃x〈−2〉. This morphism must be injective by Lemma 6.3.1. �

Lemma 7.2.4. Given s ∈ S and x ∈ W s we have a distinguished triangle

∇x,F → π!
sπs!∇x,F → ∇xs,F[1]

[1]
→

where the left-hand arrow is the adjunction morphism.

Proof. Using the isomorphisms of functors π!
s
∼= π∗

s [2], πs∗
∼= πs! and the fact that

πs restricted to Xx is an isomorphism we have

π!
sπs!ix∗FXx

∼= a∗FXx,xs
[2]

where Xx,xs := Xx ⊔Xxs and a : Xx,xs →֒ X denotes the inclusion. If we write i
(resp. j) for the closed (resp. open) inclusion of Xx (resp. Xxs) in Xx,xs then we
have a Gysin triangle

i!i
!FXx,xs

→ FXx,xs
→ j∗j

∗FXx,xs

[1]
→

which we can rewrite as

i∗FXx
[−2]→ FXx,xs

→ j∗FXxs

[1]
→ .

If we now apply a∗[ℓ(x) + 2] we obtain the desired triangle except for the fact
that it is not clear if the left-hand morphism so constructed coincides with the ad-
junction morphism. However both morphisms generate the one-dimensional space
Hom(∇x,F, π!

sπs!∇x,F) and the lemma follows. �
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7.3. Standard object are Koszul modules. Let us consider again the setting
of §5.7. In particular we assume that EFx = ICx,F for all x ∈ W , and we consider
the Koszul rings K and K†.

In the proof of Proposition 5.7.2 we have considered a grading on the algebra
AF. The functor

Ξ : ModfZ − AF → ModfZ −K

which sends M to the graded module whose n-th component is

HomModfZ−AF
(Q̃,M〈n〉)

is an equivalence of categories, which satisfies Ξ(M〈n〉) = Ξ(M)〈−n〉.

Recall the objects P̃x in Õ defined in Theorem 7.1.1, and set P̃ :=
⊕

x P̃x.

Lemma 7.3.1. The graded ring K† is isomorphic to the graded ring whose n-th
component is

HomÕ(P̃ , P̃ 〈−n〉).

Proof. By Proposition 5.7.2 the n-th component of K† is

Extn(ICX , ICX) ∼= Extn−AF
(
⊕

x

Sx,
⊕

x

Sx) ∼= ExtnModfZ−AF
(
⊕

x

S̃x,
⊕

x

S̃x〈−n〉).

Now using the equivalence Ω ◦ ΨZ considered in the proof of Proposition 5.7.2 we
obtain an isomorphism

ExtnModfZ−AF
(
⊕

x

S̃x,
⊕

x

S̃x〈−n〉) ∼=

HomÕ(
⊕

x

Ω ◦ΨZ(S̃x),
⊕

x

Ω ◦ΨZ(S̃x)〈−n〉)

Hence it is sufficient to prove that for every x ∈W we have an isomorphism

Ω ◦ΨZ(S̃x) ∼= P̃x.

However the object Ω ◦ ΨZ(S̃x) is an indecomposable graded projective right EF-

module, hence is isomorphic to P̃y〈j〉 for some y ∈ W and j ∈ Z. As its image
under Ψ−1 ◦ v : DbModfZ − EF → DbModf−AF is Sx we must have y = x and
j = 0. �

Using Lemma 7.3.1 we can construct an equivalence of categories

Υ : ModfZ − EF → ModfZ −K†

sending M to the graded module with n-th component

HomModfZ−EF
(P̃ ,M〈−n〉).

This equivalence satisfies Υ(M〈n〉) = Υ(M)〈n〉.
Finally, we let

κ : Db
(
ModfZ −K

) ∼
−→ Db

(
ModfZ −K†

)

be the composition

DbModfZ −K
Ξ−1

−−→ DbModfZ −AZ

Ω◦ΨZ

−−−→ DbModfZ − EF

Υ
−→ DbModfZ −K†.

This functor satisfies κ(M〈n〉) = κ(M)〈−n〉[−n]. We set

Px := Υ(P̃x), Mx := Υ(M̃x), Sx := Ξ(S̃x).
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We let Lx be the unique simple quotient of Px, and define

Nx := κ−1(Mx), Ix := κ−1(Lx).

The following theorem summarizes all the results related to our “Koszul duality”
κ. Here we denote by Ix the injective hull of ICx,F in Perv(B)(X,F).

Theorem 7.3.2. Assume that condition (5.3.4) is satisfied. Assume moreover that
for any x ∈W we have EFx = ICx,F.

There exist dual Koszul rings K and K† and an equivalence κ fitting in the
following diagram:

Db(Modf−K)

≀

��

Db(ModfZ −K)
voo κ

∼
// Db(ModfZ −K†)

v // Db(Modf−K†)

≀

��
Db

(B)(X,F) Db(O)

where vertical arrows are induced by equivalences of abelian categories

Modf−K ∼= Perv(B)(X,F), Modf−K† ∼= O

and v are forgetful functors. The objects Px, Mx, Lx, Ix, Nx, Sx are all graded
modules, which satisfy

ICx Sx
oo //�oo Px

� // Px;

∇x Nx
oo //�oo Mx

� // Mx;

Ix Ix oo //�oo Lx
� // Lx.

Moreover, Mx is a Koszul K†-module in the sense of [BGS96, Definition 2.14.1] .

Proof. We have already constructed all the functors in our diagram. By defini-
tion, Px, M, Lx and Sx are graded modules. We have also observed in the
proof of Lemma 7.3.1 that κ(Sx) ∼= Px. By Theorem 7.2.1, Nx is sent to ∇x
in Perv(B)(X,F), hence it is a graded right K-module. Now we observe that

ExtiModfZ−K(Sx, Iy〈j〉) ∼= Exti−j
ModfZ−K†(Px,Ly〈−j〉)

vanishes unless i = j = 0. This implies that Ix is the injective hull of Sx in
ModfZ −K, which in turn implies that it is sent to Ix in Perv(B)(X,F).

It remains to show that Mx is a Koszul module. However, for any i, j the
F-vector space

ExtiModf−K†(Mx,Ly〈j〉) ∼= Exti−j
ModfZ−K

(Nx, Iy〈−j〉)

vanishes unless i− j = 0 since Iy is injective. Then the claim follows from [BGS96,
Proposition 2.14.2]. �
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