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Abstract: We propose some improvements of the Multiple Birth and Cut algorithm (MBC) in order to extract nuclei in

2D and 3D images. This algorithm based on marked point processes was proposed recently in (Gamal Eldin

et al., 2012). We introduce a new contrast invariant energy that is robust to degradations encountered in

fluorescence microscopy (e.g. local radiometry attenuations). Another contribution of this paper is a fast

algorithm to determine whether two ellipses (2D) or ellipsoids (3D) intersect. Finally, we propose a new

heuristic that strongly improves the convergence rates. The algorithm alternates between two birth steps. The

first one consists in generating objects uniformly at random and the second one consists in perturbing the

current configuration locally. Performance of this modified birth step is evaluated and examples on various

image types show the wide applicability of the method in the field of bio-imaging.

1 INTRODUCTION

Cell or nuclei segmentation in 2D and 3D is a ma-

jor challenge in bio-medical imaging. New micro-

scopes provide images at higher resolutions, deeper

into biological tissues, leading to an increasing need

for automatic cell delineation. This task may be easy

in certain imaging modalities where images are well

resolved and contrasted, but it remains mostly unre-

solved in emerging fluorescent microscopes dedicated

to live imaging such as confocal, bi-photon, or selec-

tive plane illumination microscopes. These modali-

ties suffer from multiple degradations such as light

attenuation in the sample, heavy noise and spatially

varying blur that make the segmentation task hard

even for human experts

Our aim in this work is to propose a segmenta-

tion algorithm robust to such situations. Since images

are heavily deteriorated, standard methods aiming at

finding contours based on a sole regularity assump-

tion such as active contours or Mumford-Shah deriva-

tives fail for the segmentation. This observation led

us to introduce strong shape priors: cells are modelled

as ellipses or ellipsoids that should fit the image con-

tents. Unfortunately, adding geometrical constraints

makes the optimization problems highly non convex

and appeal for the development of new global opti-

Figure 1: Example of a SPIM image (Multicellular tumor
spheroid).

mization methods.

Following recent works (Descombes et al., 2009;

Descombes, 2011; Gamal Eldin et al., 2012), we use

randomized algorithms that allow to escape from lo-

cal minima. These algorithms are based on marked

point processes. The Marked Point Process (MPP)

approach (Baddeley and Van Lieshout, 1993; Dong

and Acton, 2007) consists in estimating a configura-

tion of geometric objects (in our case ellipses or el-

lipsoids) whose number, location and shape are un-



known. It has proved to be very efficient in numer-

ous image analysis applications as it allows the com-

bination of radiometric information with strong geo-

metrics constraints on the objects but also at a global

scale. Defined by a density against the Poisson pro-

cess measure, its main advantage is to consider a ran-

dom number of objects and can be considered as an

extension of the Markov Random Field approach. A

review of this approach and its applications can be

found in (Descombes, 2011).

The objects are defined on a state space χ = I×M

by their location and their marks (i.e. geometric at-

tributes). The associated marked point process X is a

random variable whose realisations are random con-

figurations of objects. Considering a Gibbs process,

the modeling consists of an energy construction. Sim-

ilarly to the Bayesian framework, this energy can be

written as the sum of a data term and a prior. In

this paper we consider a pairwise interactions prior

that forbids intersections between objects. Once the

model defined, the solution is obtained by minimiz-

ing the energy. This energy being highly non-convex

requires stochastic dynamics, such as MCMC meth-

ods, to be minimized. The Reversible Jump MCMC

embeded in a simulated annealing framework is a

natural candidate for this task (Green, 1995). How-

ever, in case of simple constraints such as non over-

lap, the recently proposed multiple birth and death al-

gorithm is preferable (Descombes et al., 2009). To

avoid the fastidious calibration of annealing parame-

ters, we propose to revisit the combination of the mul-

tipe births principle with the graph cut paradigm pro-

posed by (Gamal Eldin et al., 2012).

The paper is organized as follows. We formalize

the segmentation problem as a minimization problem

in section 2. Section 3 begins by a global algorithm

description and is followed by a precise description of

each algorithm step. We finish by presenting numeri-

cal results in section 4.

2 PROBLEM STATEMENT

Figure [1] contains typical examples of images en-

countered in biology. It is readily seen from these

images that most nuclei contours can be well approx-

imated by ellipses or ellipsoids, at least at a coarse

scale. Moreover these nuclei cannot overlap due to

obvious physical considerations. We thus formulate

our segmentation problem as that of finding a set of

non overlapping ellipsoids that fit the image contents.

We formalize this statement in the latter.

Let Cn, n∈N denote the set of configurations con-

taining n objects that do not overlap. An element

x ∈ Cn is a set of n non overlapping objects. Since

the number of nuclei in the configuration is unknown,

we aim both at finding this number n∗ and the best

configuration x ∈ Cn∗ with respect to a certain data fi-

delity term f (x). Our optimization problem can thus

be formulated as follows. Let

g(n) = min
x∈Cn

f (x)

denote the minimum value of f in the set Cn. We wish

to find both

n∗ = argmin
n∈N

g(n)

and

x∗ = argmin
x∈Cn∗

f (x).

By convention, we assume that C0 = /0 and that

min
x∈C0

f (x) = 0. The data term f should thus be neg-

ative for configurations that are likely to represent the

nuclei parameters and positive otherwise. We detail

how the ellipses are parametrized and the construc-

tion of such a function in the following paragraphs.

Object modelling In 2 dimensions, ellipses are pa-

rameterized using 5 parameters (see Figure 2):

• (x,y) ∈ Ω: center coordinates which should be-

long to the image domain Ω.

• θ ∈ [0,2π[: angle with the horizontal direction.

• 0 < λ− < b < a < λ+: describe the ellipses minor

and major axes size. λ− and λ+ are user defined

parameters that describe the nuclei maximal size

and ellipticy.

Figure 2: Parameters of the ellipse.

In 3 dimensions, nuclei are parameterized using 9

parameters:

• (x,y,z) ∈Ω: center coordinates.

• φ,θ,ψ ∈ [0,2π[3: Euler angles to define the ellip-

soids orientations.

• 0 < λ− < c < b < a < λ+: axes lengths.



Overall, it can be seen that objects belong to a

state space χ defined as a parallelepiped:

χ = Ω× [0,2π[×[λ−,λ+]
2 (1)

in 2D and

χ = Ω× [0,2π[3×[λ−,λ+]
3 (2)

in 3D.

In this paper, the objects are denoted ω and their

boundary is denoted ∂ω.

Data term Let u : Ω→R denote a grayscale image.

In order to define the data term f (x), we associate an

elementary energy Ud(ω,u) to each element ω∈ x and

set:

f (x) = ∑
ω∈x

Ud(ω,u). (3)

The function Ud(ω,u) ∈ [−1,1] should be negative if

the object ω is well positioned on the image and pos-

itive otherwise.

In fluorescence microscopy, nuclei are usually

characterized by bright region surrounded by a dark

background since they are stained or genetically mod-

ified in order to express a fluorescent protein. Unfor-

tunately, their radiometry is not constant due to local

bleaching or light attenuation in the deepest layers.

We thus need to construct an energy that is contrast

invariant, meaning that local modifications of the ra-

diometry shall not affect the energy. Such an energy

can be constructed easily by considering the normal to

the image level lines ∇u
|∇u| where ∇u denotes the usual

gradient in R
d and |∇u| denotes the gradient magni-

tude in the standard Euclidean norm. This tool is well

known to be contrast invariant. Let us define an en-

ergy U for a given object ω as:

U(ω) =
1

|∂ω|

∫
∂ω
〈 ∇u(x)
√

|∇u(x)|2 + ε2
,n(x)〉dx (4)

where 〈·, ·〉 denotes the standard scalar product, |∂ω|
denotes the length of the object boundary, n(x) de-

notes the outward normal to ω at location x ∈ ∂ω and

ε is a regularization parameter that discard faint tran-

sitions. The behavior of this energy is illustrated on

Fig. 3. Overall, it does what is expected, but as can

be seen on the illustration b) and d) in Fig. 3, badly

located ellipses might have a negative energy and be

kept in the final configuration. It is thus necessary

to modify U in order to promote well located objects

only. A simple way to do so consists in setting:

Ud(ω,u) = ψ(U(ω),s)

where s ∈]− 1,0] is an acceptance threshold for the

objects. and

ψ(α,s) = min(
1

s+1
α− s

s+1
,1).

Figure 3

Figure 4: Graph of the function ψ(α,s) with respect to α
for s = −0.5. Note that the function becomes positive for
values of α > s.

This function is illustrated on Figure 4

Other data terms based on the contrast between

the object interior and the background as presented

by (Gamal Eldin et al., 2012) (in dimension 2) could

also be used but present two drawbacks: first they re-

quire to compute an integral over the interior of the

domain while the proposed approach consist in com-

puting a boundary integral which is faster. Second,

such measures might be inaccurate in the case of very

dense media, where the background can be difficult

to extract. Finally our measure is contrast invariant,

which is central for the targeted applications.

3 MULTIPLE BIRTH AND CUT

ALGORITHM (MBC)

The Multiple Birth and Cut algorithm (MBC) has

been proposed by (Gamal Eldin et al., 2012) for

counting flamingos in a colony. In this section, we

describe the different steps of the MBC algorithm (Al-

gorithm 1).

The main idea consists in generating two random

configurations of non-overlapping objects x and x′

(birth step) and then keep the subset of objects in

x∪ x′ that minimizes f (cut step). This process is it-

erated and decreases f at each iteration. The cut step

can be performed efficiently using a Graph Cut algo-

rithm (Boykov et al., 2001; Kolmogorov and Zabih,

2004). We describe this algorithm more formally be-

low:

Interestingly, this algorithm contains only one pa-

rameter N (the number of objects generated in a con-



Algorithm 1 Multiple Birth & Cut algorithm

Require: N

1: Generate a configuration x[0] with Algorithm 2

2: n←− 0

3: while (Not converged) do

4: Generate of a new configuration x′

using Algorithm 2.

5: x[n+1]←−Cut(xn∪x′)
6: n←− n+1

7: end while

figuration). We observed experimentally that this pa-

rameter might affect slightly the speed of convergence

but not the segmentation accuracy. This algorithm is

thus much easier to tune than more standard RJM-

CMC based dynamics.

3.1 Birth step

A new configuration x′ of non-overlapping objects

is generated. Note that only objects which are

in the same configuration have to respect the non-

overlapping constraint, but two objects in different

configurations can intersect as can be seen on Figure

5.

Figure 5: Two configuration on an image (the black ellipses
are the object to detect)

The birth step is detailed in Algorithm 2. The

fourth step of this algorithm can be efficiently imple-

mented using a lookup table and the fast intersection

algorithm proposed in the latter.

3.2 Cut step

This step consists in selecting the best configuration

of non-overlapping objects in (x[n] ∪ x′). To perform

this optimization, a weighted graph is constructed.

The nodes of this graph are the objects ω of the two

configurations x[n] and x′. This graph also possesses

Algorithm 2 Birth step

Require: N, nmax.

1: Set k = 0, n = 0, x′ = /0.

2: while k < N and n < nmax do

3: Construct an object ω′ by generating a random

vector uniformly in χ.

4: If ω′ intersects an object in x′, set n= n+1 and

go back to 3.

5: Otherwise set x′ = x′ ∪{ω′}, k = k+ 1, n = 0

and go back to 3.

6: end while

two special nodes, the source ’s’ and the sink ’t’. The

weights should belong to [0,1]∪ {+∞} and are de-

fined using the data term Ud(ω,u) by:

W (ω) = (1−Ud(ω,u))/2.

Graph construction

Each object of the configuration (x[n] ∪ x′) is linked

to the source and the sink. The difference between

the objects ωi ∈ x[n] and the objects ω j ∈ x′ is that the

objects ωi ∈ x[n] are linked to the source with a weight

equal to the data energy W (ω) and to the sink with a

weight equal to 1−W (ω), while it is the reverse for

the objects ω j ∈ x′.
The weights associated to edges linking two ob-

jects are non zero only when two objects intersect.

If ω1 ∈ x[n] (current configuration) intersects with

ω2 ∈ x′ (new configuration), the link from ω1 to ω2

is set to ∞ and the link from ω2 to ω1 is set to zero 1.

This ensures that the cut step generates an admissible

configuration (with no overlapping objects). Figure 6

summarises the graph construction of the configura-

tions on Figure 5. The nuclei to detect are represented

by black ellipses.

Cut

Once the graph is constructed, we perform a cut that

consists in partitioning the vertices into two disjoint

subsets. One contains the source and the other the

sink. The cut realized is the one with minimal cost

(the one minimizing the sum of the weights of the re-

moved edges).

After the cut step, if ωi ∈ x[n] is in the sub-graph

containing the source, we keep it, otherwise we re-

move it. On the contrary the objects ω j ∈ x′ are

1When two objects intersect the link affected by a
weight of ∞ is always the link from the object of the cur-
rent configuration to the object of the new configuration.



Figure 6: Graph corresponding to the figure 5

kept only if they belong to the sub-graph that con-

tains the sink. This difference of interpretation be-

tween the two configurations combined with the dif-

ferent weights to the source and the sink, ensure that

in case where an object of x[n] and an object of x′ in-

tersect, only one can be kept.

The cut step is implemented using the graph-cut

code developed by Yuri Boykov and Vladimir Kol-

mogorov in (Boykov et al., 2001; Boykov and Kol-

mogorov, 2004; Kolmogorov and Zabih, 2004).

3.3 A FAST DETERMINATION OF

ELLIPSES INTERSECTION

One of the proposed algorithm bottleneck is the fast

determination of whether two ellipsoids intersect or

not. In this section, we present a fast algorithm to

answer that question and prove theoretically that only

a few arithmetic operations suffice to provide the

answer with a low error rate.

Let ω be an ellipse or an ellipsoid. It can be

defined using a quadratic function Qω as ω = {x ∈
R

d ,Qω(x) = 1}. The quadratic function Q can be de-

fined by:

Qω(x) = 〈A(x− c),(x− c)〉 (5)

where c denotes the object center and A is positive

definite matrix defined by:

A = P−1DP = PT DP.

where P is a rotation matrix and D is a positive diag-

onal matrix. In 2D, P is defined by:

P =

(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)

and

D =

( 1
a2 0

0 1
b2

)

.

In 3D, the notation become cumbersome and we leave

them to the reader.

Let ω1 and ω2 be two ellipses or ellipsoids. In

order to know whether they intersect or not, we can

find the minimal level set of Qω2
which intersects the

boundary of ω1. If this level set is associated to a

value greater than 1, the ellipses are separated, other-

wise they overlap. This idea can be formulated as the

following minimization problem:

min
x∈Rd ,Qω1

(x)≤1
Qω2

(x) (6)

This problem consists of minimizing a quadratic func-

tion over convex set. Projected descent methods can

thus be used. Unfortunately, there exists no closed

form solution to the problem of projection of a point

on an ellipse. We thus need to simplify the constraint

set:

min
Qω1

(x)≤1
Qω2

(x)

= min
〈A1(x−c1),(x−c1)〉≤1

〈A2(x− c2),(x− c2)〉

= min
〈√A1(x−c1),

√
A1(x−c1)〉≤1

〈A2(x− c2),(x− c2)〉

min
‖y−√A1c1‖22≤1

〈A2(A
− 1

2
1 y− c2),(A

− 1
2

1 y− c2)〉.

where y =
√

A1x. In this reformulation, the constraint

set Y = {y∈Rd ,‖y−
√

A1c1‖2
2≤ 1} is a simple l2-ball

and the function F(y) = 〈A2(A
− 1

2
1 y− c2),(A

− 1
2

1 y−
c2)〉 is a strongly convex differentiable function. We

can thus use a projected gradient descent that writes:

Algorithm 3 Detection of overlapping ellipsoids

Require: Qω1
, Qω2

, ε > 0.

1: Set k = 0, y0 =
c1+c2

2
.

2: Set µ =
b2

1

a2
2

, L =
a2

1

b2
2

.

3: Set τ = 2
µ+L

.

4: while ‖yk+1− yk‖ ≥ ε do

5: y
k+ 1

2
= yk− τ∇F(yk).

6: yk+1 = ΠY

(

y
k+ 1

2

)

.

7: k = k+1.

8: end while

9: If F(yk) >= 1 return 0 (the ellipsoids do not in-

tersect with high probability).

10: If F(yk)< 1 return 1 (the ellipsoids intersect).

Let y∗ denote the solution of the above prob-

lem. The previous algorithm comes with the follow-

ing guarantees:



Theorem 1. After k iterations, yk satisfies:

F(yk)−F(y∗)≤ µ

2
‖y0− y∗‖2

2

(

QF −1

QF +1

)2k

‖yk− y∗‖2
2 ≤ ‖y0− y∗‖2

2

(

QF −1

QF +1

)2k

where

QF =
a2

1

b2
2

a2
2

b2
1

≤ λ4
+

λ4
−
.

Proof The Hessian of F is HF(y) = 2A
− 1

2
1 A2A

− 1
2

1 .

Since A1 and A2 are products of orthogonal and diag-

onal matrices (A = PT DP), the eigenvalues of HF(y)
can be easily bounded:

λmin[HF(y)]≥
b2

1

a2
2

λmax[HF(y)]≤
a2

1

b2
2

The function F is thus µ-strongly convex with µ≥ b2
1

a2
2

and its gradient is L-Lipschitz with L ≤ a2
1

b2
2

. Us-

ing standard convergence theorems in convex analysis

(Bertsekas, 1999), we obtain the announced result. �

The conditioning number QF depends solely on

the ratio between the major axis and the minor axis

sizes and not on the dimension d. This algorithm will

thus be as efficient in 3D as in 2D. For two circles

the ratio QF is equal to a
b
= 1 and the algorithm pro-

vides the exact answer after one iteration. For elliptic

ratios of 2, Q f = 16 and in the worst case, after 18

iterations, the algorithm returns a point yk that is 100

times closer to the intersection than y0. We also tested

an accelerated algorithm by (Nesterov, 2004), where

the convergence rate is of order
(√

QF−1√
QF+1

)2k

but it did

not improve the computing times.

In our problems the ratio between a and b is al-

ways less than 2 and the algorithm usually converges

in just a few iterations (2 to 10 depending on the prob-

lem).

3.4 Acceleration by local perturbations

When the objects variability is important, the state

space size increases and affects the convergence speed

of the MBC algorithm. This problem is particulary

important in 3D since ellipsoids are defined by 9 pa-

rameters instead of 5 for the 2 dimensional case.

In order to improve the convergence speed,

(Gamal-Eldin et al., 2011) proposed to insert a selec-

tion phase in the birth step. This selection phase con-

sists in generating a dense configuration of objects at

similar locations and to keep the best ones using Be-

lief Propagation in order to form the new configura-

tion.

In this paper, we propose another heuristic in or-

der to increase the convergence speed. We propose to

alternate between two different kinds of birth steps.

The first one is that proposed in algorithm 2. The sec-

ond one consists in perturbating locally the current

configuration. This principle mimics the proposition

kernels used in RJMCMC algorithms (Perrin et al.,

2005). The idea behind this modification is that after

a while, most objects are close to their real location

and that local perturbations may allow much faster

convergence than fully randomized generation. This

algorithm is described in details in Algorithm 4.

Algorithm 4 MBC algorithm with local perturbations

Require: N

1: Generate a configuration x[0] using Algorithm 2.

2: n←− 0

3: while (Not converged) do

4: Generate a uniformly distributed random num-

ber r ∈ [0,1].
5: if r < p then

6: Generate a new configuration x′

using Algorithm 2.

7: else

8: Generate a new configuration x′

using Algorithm 5.

9: end if

10: x[n+1]←−Cut(xn∪x′)
11: n←− n+1

12: end while

Algorithm 5 Birth step with local perturbation

Require: x[n].

1: while k < size(x[n]) do

2: Construct an object ω′ by local perturbation of

ωk ∈ x[n].
3: If ω′ intersects an object in x′, set k = k+1 and

go back to 2.

4: Otherwise set x′ = x′∪{ω′}, k = k+1 and go

back to 2.

5: end while

Local perturbations

A given object ω in x[n] is described by a set of pa-

rameters λ ∈ χ (see equations 1 and 2). We generate

the new object ω′ by setting its parameters λ′ = λ+ z

where z is the realization of a random vector Z dis-



tributed uniformly in χε where :

χε = [−δxy,δxy]
2× [−δab,δab]

2× [0,2π[

in 2D and

χε = [−δxyz,δxyz]
3× [−δabc,δabc]

3× [0,2π[3

in 3D.

The value of the different δ describes the perturba-

tion extent. We observed that small values accelerates

the convergence speed.

Comparison of the convergence speed

We have tested this method in order to compare the

speed of convergence of the MBC algorithm and the

MBC algorithm with local perturbation. Figure 7

presents the energy evolution with respect to time for

both MBC and MBC with local perturbations (de-

noted MBC with LP) on the same image (the 3D nu-

clei of Drosophila embryo). The segmentation result

is presented on Figure 14 (image size 700× 350×
100). These results show that the MBC with LP algo-

rithm strongly improve the MBC algorithm.

Figure 7: Comparison of the MBC and MBC with LP al-
gorithms

4 RESULTS

In this section, we present some practical results in

2D and 3D. Figure 9 shows the segmentation result on

a Drosophila embryo obtained using SPIM imaging.

This is a rather easy case, since nuclei shapes vary

little. The images are impaired by various defects:

blur, stripes and attenuation. Despite this relatively

poor image quality, the segmentation results are al-

most perfect. The computing time is 5 minutes using

a c++ implementation. The image size is 700×350.

Figure 8: 2D nuclei of Drosophila embryo

Figure 9: 2D segmentation of a nuclei of Drosophila em-
bryo (Fig 8)

Figure 10 presents a more difficult case, where the

image is highly deteriorated. Nuclei cannot be iden-

tified in the image center. Moreover, nuclei variabil-

ity is important meaning that the state space size χ is

large. Some nuclei are in mitosis (see e.g. top-left).

In spite of these difficulties, the MBC algorithm pro-

vides acceptable results. They would allow to make

statistics on the cell location and orientation, which is

a major problem in biology. The computing times for

this example is 30 minutes.

Figure 10: 2D segmentation of a multicellular tumor
spheroid (Fig 1)

Nuclei segmentation is a major open problem with

a large number of other applications. In Figure 11,

we attempt to detect the spermatozoon heads. The

foreseen application is tracking in order to understand



their collective motion. Figure 12 presents a multi-

cellular spheroid surrounded by a circle of pillars. A

typical problem consists in determining whether the

pillars have moved afetr a while, due to the tumor dy-

namic. They thus need to detect the pillars and eval-

uate their motion. Figure 11 and Figure 12 show that

the segmentation results are extremely precise.

Figure 11: Segmentation of a spermatozoon colony (5 min-
utes). Image size: 2000 x 1024.

Figure 12: Nano pillars detection (less than 1 minute). Im-
age size: 840 x 800.

3D results are presented in Figure 14 and 16. For

the Drosophila embryo, the segmentation is very close

to what a human expert would do. The computing

times are 2 hours and the image size is 700× 350×
100. The curves in Figure 14 correspond to this im-

age.

The spheroid segmentation presented in Figure 16

is less precise than the previous ones due to an im-

portant cell variability and to the fact that the images

are extremly blurry in the Z direction. For that case,

image restoration algorithms and the design of new

energies robust to strong perturbations seem impor-

tant.

Figure 13: 3D Drosophila embryo nuclei

Figure 14: 3D segmentation of the Drosophila embryo nu-
clei (Fig 13)

Figure 15: 3D multicellular tumor spheroid
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