
HAL Id: hal-00733151
https://hal.science/hal-00733151

Submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stress analysis of the adhesive resin layer in a reinforced
pin-loaded joint used in glass structures

Quy-Dong To, Qi-Chang He, Michel Cossavella, Karine Morcant, Adrian
Panait

To cite this version:
Quy-Dong To, Qi-Chang He, Michel Cossavella, Karine Morcant, Adrian Panait. Stress analysis of
the adhesive resin layer in a reinforced pin-loaded joint used in glass structures. International Journal
of Adhesion and Adhesives, 2009, 29 (1), pp.91-97. �10.1016/j.ijadhadh.2008.01.008�. �hal-00733151�

https://hal.science/hal-00733151
https://hal.archives-ouvertes.fr


Stress analysis of the adhesive resin layer in a reinforced pin-loaded joint
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A reinforced pin-loaded joint used to assemble elements in a tempered glass structure consists of a steel bolt and a steel ring glued to a 
glass plate through an adhesive resin layer. The stiffness of a typical resin material is generally much lower than the stiffness of steel or 
glass. This fact leads us to make the assumption that the stress field in the adhesive resin layer is essentially due to the relative rigid 
displacements of the steel ring with respect to the glass plate. On the basis of this assumption, an analytical solution is obtained for the 
stresses in the adhesive resin layer. This solution is compared with and validated by the numerical results obtained by the finite element 
method.
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1. Introduction

In tempered glass structures, pin-loaded connections are

frequently employed to assemble different glass elements

and ensure the structure integrity. The reinforced pin-

loaded joint studied in the present work is composed of

a steel bolt (or pin), a steel ring and a thin resin layer

(see Fig. 1). The steel ring serves for strengthening the hole

in a tempered glass plate and is glued to the latter via the

resin layer. An external force is transmitted from the steel

bolt to the glass plate through the steel ring and the resin

layer. Thus, the steel ring is in direct contact with the

steel bolt and prevents the glass plate from high stress

concentration.

Pin-loaded connections have been widely and intensively

studied (see [1–3] and the references cited therein).

However, the stress analysis of the adhesive layers involved

in finite structures with pin-loaded connections seems not

to have been carried out analytically. This is probably

because the finiteness of these structures renders it

particulary difficult or even impossible to obtain analytical

solutions. By contrast, when plates with pin-loaded

connections are infinite, certain analytical solutions are

available (see, e.g., [4–7]).

The stiffness and strength of the resin constituting a

typical thin adhesive layer are much lower than those of the

materials (steel and glass) forming the ring and plate.

Experimental observations indicate that cracks in the

reinforced pin-loaded joint of a tempered glass plate are

mostly initiated inside the thin adhesive layer or at its

interfaces with the ring and plate (Fig. 2). Consequently,

the stress analysis of the thin adhesive resin layer prior to

the occurrence of cracks is essential for preventing the

reinforced pin-loaded joint from failure.

The main purpose of this work is to obtain a closed-form

solution for the stress field inside the thin adhesive layer.

This objective is achieved by exploiting the fact that the

resin of which the thin layer is made is much softer than

steel and glass. Typically, the Young modulus of the resin

is hardly superior to 3GPa while those of glass and steel

are about 70 and 200GPa, respectively. Due to this high

stiffness contrast, we infer that, to within terms of high

orders, the strain field in the adhesive layer is generated by
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the relative rigid displacements of the steel ring with respect

to the glass plate. In other words, in determining the stress

field in the adhesive layer, the ring and plate can be

practically taken to be rigid. This assumption considerably

simplifies the stress analysis of the adhesive layer in a finite

structure involving unilateral contact and friction which

are strongly nonlinear phenomena. Indeed, as the ring and

glass are considered as rigid, the structure under investiga-

tion behaves as an infinite one and the stress field in the

adhesive layer does not depend on the exact distribution of

the contact stresses on the surface between the bolt and

ring but only on the resulting forces of the contact stresses.

To check the validity of the assumption that the steel ring

and glass plate act practically as being rigid in analyzing the

stresses in the adhesive layer, the finite element method is

applied to a glass structure with a reinforced pin-loaded joint

where the ring and plate are taken to be linearly isotropic

elastic. The results given by our analytical solution for the

stresses in the adhesive layer are compared with the relevant

results provided by a full numerical simulation based on the

finite element method. This comparison shows a good

agreement between the results delivered by our analytical

solution and the ones issued from the numerical method.

The paper is organized as follows. Section 2 specifies the

problem under investigation and determines the stress field

inside the adhesive layer by using the aforementioned

relative rigid displacement hypothesis. The analytical

results derived in Section 2 are compared against and

validated by the numerical results obtained by the finite

element method in Section 3. A few concluding remarks are

drawn in Section 4.

2. Analytical solution for the stress field in the adhesive resin

layer

Consider a reinforced pin-loaded joint whose composi-

tion is shown in Fig. 1. The components of the joint and

their dimensions relative to a system of polar coordinates

are specified as follows:

� the steel bolt: 0prpR0;

� the steel ring: R1prpR2;

� the adhesive resin layer: R2prpR3;

� the glass plate: rXR3.

Before the occurrence of cracks or plastic strains, the

materials constituting the pin, ring, resin and glass are

all taken to be linearly elastic and isotropic, so that it is

characterized by the Young modulus Ei and Poisson ratio ni
with i ¼ 0; 1; 2; 3 for the pin, ring, resin and glass,

respectively. In what follows, we make the assumption of

plane elasticity. Thus, it is convenient to introduce Kolosov’s

constants ki and mi related to Ei and ni by the expressions

mi ¼
Ei

2ð1þ niÞ
; ki ¼

3� ni

1þ ni
ðplane stressÞ,

ki ¼ 3� 4ni ðplane strainÞ.

According as ki ¼ ð3� niÞ=ð1þ niÞ or ki ¼ 3� 4ni is

adopted, the results presented below are valid for the case

of plane stress or plane strain. The glass structure under

investigation complies with the hypothesis of plane stress.

As argued in the Introduction, owing to the fact that

the adhesive resin layer is very soft in comparison with the

glass plate and steel reinforcement ring, the determination

of the stress field inside the resin layer can be carried out by

considering the glass plate and steel ring as rigid bodies. In

Fig. 1. Composition of a typical reinforced pin-loaded joint in a glass

structure.

Fig. 2. Failure of the resin of a reinforced pin-loaded joint with the pin

put aside.
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other words, their interfaces with the resin layer can be

admitted as undeformable and the stress field inside the

resin layer depends only on their relative displacements (i.e.

relative translation and rotation) caused by external

loadings. So, let us examine the case where the resultant

forces transmitted from the bolt to the ring correspond to a

horizontal force P and a moment M applied at the origin

O, which cause a relative horizontal translation d and a

relative rotation o between the two interfaces (see Fig. 3).

The boundary conditions for the resin layer can be written

in the polar coordinate system as follows:

urðR3; yÞ ¼ uyðR3; yÞ ¼ 0; 8y 2 ½�p;p�,
urðR2; yÞ ¼ d cos y,

uyðR2; yÞ ¼ oR2 � d sin y; 8y 2 ½�p; p�. (1)

Under these boundary conditions, a stress function of

Michell’s type [8] is proposed for the resin layer

(R2prpR3) as follows:

f ¼ C0yþ C1r
3 cos yþ C2ry sin y

þ C3r ln r cos yþ C4r
�1 cos y. (2)

From this stress function we derive the stress field

srrðr; yÞ ¼
1

r

qf

qr
þ 1

r2
q
2f

qy2

¼ ð2C1rþ 2C2=rþ C3=r� 2C4=r
3Þ cos y,

sryðr; yÞ ¼
1

r2
qf

qy
� 1

r

q
2f

qr qy

¼ C0=r
2 þ ð2C1rþ C3=r� 2C4=r

3Þ sin y,

syyðr; yÞ ¼
q
2f

qr2
¼ ð6C1rþ C3=rþ 2C4=r

3Þ cos y. (3)

The associated displacement field reads

urðr; yÞ ¼
cos y

2m2
C1ðk2 � 2Þr2 þ 1

2
ððk2 þ 1Þ ln r� 1ÞC2

�

þ 1

2
ððk2 � 1Þ ln r� 1ÞC3 þ C4r

�2

�

þ y sin y

2m2
½C2ðk2 � 1Þ þ C3ðk2 þ 1Þ� þ C5

2m2
cos y,

uyðr; yÞ ¼ � C0

2m2
r�1 þ sin y

2m2
C1ðk2 þ 2Þr2

�

� 1

2
ððk2 þ 1Þ ln rþ 1ÞC2

� 1

2
ððk2 � 1Þ ln rþ 1ÞC3 þ C4r

�2

�

þ y cos y

2m2
½C2ðk2 � 1Þ þ C3ðk2 þ 1Þ�

� C5

2m2
sin yþ C6

2m2R3

. (4)

The chapters 8 and 9 in the book of Barber [8] give

a detailed presentation of the way in which we have

deduced the stress field (3) and displacement field (4) from

the stress function (1). For the paper to be self-contained,

the Michell stress function method is briefly recalled in

Appendix A.

The terms C5=ð2m2Þ and C6=ð2m2R3Þ in (4) represent a

horizontal rigid translation and a rigid rotation due to the

use of a stress function. The requirement that ur and uy be

periodical with respect to y, i.e.,

urðr; yÞ ¼ urðr; yþ 2pÞ; uyðr; yÞ ¼ uyðr; yþ 2pÞ,

leads to the demand that the terms y cos y and y sin y in (4)

vanish:

C2ðk2 � 1Þ þ C3ðk2 þ 1Þ ¼ 0: (5)

Using the boundary conditions (1) in (4) while accounting

for (5), we obtain a system of linear equations for

determining the coefficients Ci ði ¼ 1; 2; . . . ; 5Þ:

C1ðk2 � 2ÞR2
2 þ

C2

2
½ðk2 þ 1Þ lnR2 � 1�

þC3

2
½ðk2 � 1Þ lnR2 � 1� þ C4R

�2
2 þ C5 ¼ 2dm2;

C1ðk2 þ 2ÞR2
2 �

C2

2
½ðk2 þ 1Þ lnR2 þ 1�

�C3

2
½ðk2 � 1Þ lnR2 þ 1� þ C4R

�2
2 � C5 ¼ �2dm2;

C1ðk2 � 2ÞR2
3 þ

C2

2
½ðk2 þ 1Þ lnR3 � 1�

þC3

2
½ðk2 � 1Þ lnR3 � 1� þ C4R

�2
3 þ C5 ¼ 0;

C1ðk2 þ 2ÞR2
3 �

C2

2
½ðk2 þ 1Þ lnR3 þ 1�

�C3

2
½ðk2 � 1Þ lnR3 þ 1� þ C4R

�2
3 � C5 ¼ 0;

C2ðk2 � 1Þ þ C3ðk2 þ 1Þ ¼ 0;

C0 � C6 ¼ 0;

C6=R3 � C0=R2 ¼ 2m2oR2:
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Fig. 3. Boundary conditions for the adhesive resin layer.
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With the notation r ¼ ðR3=R2Þ2, the solution for the

system (6) is given by

C1 ¼
2dm2

R2
2ð2r� k22r ln r� 2� k22 ln rÞ

,

C2 ¼
2ðk2 þ 1Þð1þ rÞk2dm2

2r� k22r ln r� 2� k22 ln r
,

C3 ¼ � 2ðk2 � 1Þð1þ rÞk2dm2
2r� k22r ln r� 2� k22 ln r

,

C4 ¼
2R2

2rk2dm2

2r� k22r ln r� 2� k22 ln r
,

C5 ¼
4dm2ðk2ðrþ 1Þ lnR3 � rÞ
2r� k22r ln r� 2� k22 ln r

,

C0 ¼ C6 ¼ � 2m2oR
2
2R3

R3 � R2

. (7)

However the stress field (3) must be in equilibrium with the

external forces, i.e the horizontal force P and the moment

M with respect to the origin O. Hence, we have

Z p

�p

ðsrr cos y� sry sin yÞrdyþ P ¼ 0,

Z p

�p

sryr
2 dyþM ¼ 0.

These two equations provide

C2 ¼ � P

2p
; C0 ¼ �M

2p
. (8)

By combining these two equations with the second and last

formulae in (7), we can determine the translation d and

rotation o in terms of P and M:

d ¼ ðk22r ln rþ 2þ k22 ln r� 2rÞ
4pðk2 þ 1Þð1þ rÞk2m2

P; o ¼ ðR3 � R2Þ
4pm2R

2
2R3

M,

(9)

or equivalently,

P

d
¼ 4pðk2 þ 1Þð1þ rÞk2m2

k22r ln rþ 2þ k22 ln r� 2r
;

M

oR2
3

¼ 4pm2
r� ffiffiffi

r
p . (10)

The terms on the right-hand sides of the foregoing

formulae represent the translational stiffness and normal-

ized rotational stiffness, which depend only on the material

constants and normalized geometrical parameter r.

Then, the other coefficients Ci (i ¼ 1; 3; 4; 5; 6) in (3) can

be all determined in terms of M and P as follows:

C1 ¼ � P

2pR2
2ðk2 þ 1Þð1þ rÞk2

,

C3 ¼
ðk2 � 1ÞP
2pðk2 þ 1Þ ; C4 ¼ � rPR2

2

2pðk2 þ 1Þðrþ 1Þ ,

C5 ¼ �Pðk2ðrþ 1Þ lnR3 � rÞ
pðk2 þ 1Þð1þ rÞk2

; C6 ¼ �M

2p
. (11)

When the contact of the bolt and ring is frictionless, the

contact stress vector acting on the contact surface is normal

to the latter and passes through the origin, creating a zero

moment with respect to it (viz. the moment M ¼ 0). Then,

the coefficients C0, C6 and o become zero. Generally

speaking, the foregoing analytical solution remains valid

even for the case where the contact between the bolt and

ring is frictional but the bolt does not roll, i.e. the resultant

moment of the frictional stresses with respect to the bolt

center is null.

3. Numerical simulation and validation

To check the validity of the analytical solution derived

above, we apply this solution and use the finite element

method (FEM) to make the plane stress analysis of a glass

plate of dimension 200mm� 200mm� 19mm with a

reinforced pin-loaded joint. The external force is a

concentrated force applied at the center of the bolt. The

other parameters and conditions used in our analysis are

listed below:

� Geometric parameters: R0 ¼ 15mm, R1 ¼ 15mm, R2 ¼
30mm or 45mm, R3 ¼ 60mm, L ¼ 200mm (width and

length of the glass plate), e ¼ 19mm (thickness of the

glass plate);

� Bolt (rpR0): E0 ¼ 200GPa, n0 ¼ 0:3;
� Ring (R1prpR2): E1 ¼ 200GPa, n1 ¼ 0:3;
� Resin layer (R2prpR3): E2 ¼ 0:2; 0:5; 1 or 2GPa,

n2 ¼ 0:2;
� Glass plate (R3pr and jxjpL=2 and jyjpL=2):

E3 ¼ 70GPa, n3 ¼ 0:2;
� Total force: F ¼ Fx ¼ 19 kN applied at the center of the

bolt;

� Force per unit thickness: P ¼ F=e ¼ 1 kN=mm;

� Boundary conditions: uxðx ¼ �L=2; yÞ ¼ 0, uyðx; y ¼ 0Þ
¼ 0;

� Frictionless contact between the bolt and ring: M ¼ 0.

Among the above parameters, E2 varies from 0.2 to

2GPa and R2 is equal to 30 or 45mm.

Table 1

Non-zero coefficients used in the analytical stress solution (Eq. (3)) for the adhesive resin layer

R2 (mm) R3 (mm) k2 P (N/mm) C1 C2 C3 C4

45 60 2.333 1000 �3.638E�3 �159.155 63.662 �61879

30 60 2.333 1000 �4.547E�3 �159.155 63.662 �34377
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The analytical stress solution for the resin layer of the glass

structure under consideration is provided by Eq. (3) in

which the expressions of the coefficients Ci are specified by

Eq. (10). Since M ¼ 0, it is immediate that C0 ¼ 0. The

values of the remaining coefficients Ci (i ¼ 1; 2; 3; 4) for

the adhesive resin layer are calculated and presented in

Table 1. The problem under investigation is linearly elastic,

so that, in particular, the coefficients Ci (i ¼ 1; 2; 3; 4) are
proportional to the load P with the proportionality

constants depending only on the geometrical and material

parameters of the resin layer. In addition, according to

Eq. (3), for a given radius r, the normal stress components

srr and syy are cosinusoidal functions of y while the tangent

stress component sry is a sinusoidal function of y. The

normal stress srr and tangent stress sry acting on the

surface between the adhesive resin layer and the steel ring

are plotted in Figs. 5, 6, 8 and 9 for R2 ¼ 45 and 30mm

and for the four values of E2 ranging from 0.2 to 2GPa.

The variation of the corresponding radial stress srr along

the radial direction is depicted in Figs. 7 and 10.

Next, the glass structure with a pin-loaded joint is

analyzed by MSC MARC, a robust Finite Element

Program with advanced features for contact problems

(see [9]). The mesh of a quarter of the structure, shown in

Fig. 4, consists of 2295 in-plane four-node isoparametric

elements and comprises 2429 nodes each of which has two

degrees of freedom. All the components of the structure are

Fig. 4. Mesh of a reinforced pin-loaded joint in a glass structure.
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taken to be deformable. The numerical results for srr and

sry on the surface between the adhesive resin layer and the

steel ring are plotted also in Figs. 5–10 for R2 ¼ 45 and

30mm. The variation of srr along r is shown in Figs. 7 and

10. Furthermore, the distribution of the contact stress on

the surface between the steel bolt and ring is illustrated in

Figs. 11 and 12 for the aforementioned four values of E2.

Comparing the analytical results and those obtained by

FEM, we can draw the following conclusions:

� The analytical solution gives a good approximation for

the stress field in the resin. The softer the resin becomes,

the analytical solution fits the better the numerical

solution (see Figs. 5–10). This conclusion can be

extended to the case where the compliance increase

has a geometrical origin, for instance, the resin layer

becomes thicker.

� The normal contact stress on the surface between the

steel bolt and ring is very little sensitive to the change of

the resin’s stiffness. Consequently, the contact stress

determined in the case of a soft adhesive layer can be

also be used with a high degree of precision for the case

of a stiff adhesive layer.

In this section, we have made the plane stress hypothesis

which is appropriate for the real tempered glass structure

studied. The conclusions issued from the comparison

between the analytical and finite element results hold also

for the case of plane strain, since it suffices to replace the
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Kolosov constant k2 ¼ ð3� n2Þ=ð1þ n2Þ for plane stress by
the one k2 ¼ 3� 4n2 for plane strain.

The analytical solution presented in Section 2 has been

compared with the finite element solution by considering a

real pin-loaded joint with a non-zero radial force but a zero

moment applied at the center of the bolt. If a non-zero

moment is involved, the results from the comparison

between the analytical solution and the finite element

solution are expected to be similar to those presented

before.

4. Conclusion

A good knowledge of the stress field inside the thin

adhesive resin layer in a pin-loaded joint employed to

assemble elements of a tempered glass structure is essential

for a safe design of the latter. In this work, an analytical

solution has been proposed to determine the stress and

displacement fields inside the resin layer on the basis of the

fact that the stiffness of a typical resin is much smaller than

the one of steel or glass and by using the Michell’s stress

function method. Our analytical solution has then been

compared against and validated by the finite element

method for a wide range of resin’s rigidity. In particular, it

is shown that the difference between the analytical solution

and the finite element one is negligible once the resin is

sufficiently soft. The analytical results obtained by the

present work can be used to predict the first cracking

loading of a reinforced pin-loaded joint [10]. They are also

useful for obtaining a closed-form solution for the contact

stress on the bolt-ring surface (see [10] for details).

Appendix A

In plane (strain or stress) elasticity, the general formula

for the stress function in a system of polar coordinates ðr; yÞ
reads

f ¼ A01r
2 þ A02r

2 lnðrÞ þ A03 lnðrÞ þ A04y

þ ðA11r
3 þ A12r lnðrÞ þ A14r

�1Þ cosðyÞ þ A13ry sinðyÞ
þ ðB11r

3 þ B12r lnðrÞ þ B14r
�1Þ sinðyÞ þ B13ry cosðyÞ

þ
X

1

n¼2

ðAn1r
nþ2 þ An2r

�nþ2 þ An3r
n þ An4r

�nÞ cosðnyÞ

þ
X

1

n¼2

ðBn1r
nþ2 þ Bn2r

�nþ2 þ Bn3r
n þ Bn4r

�nÞ sinðnyÞ.

(12)

This formula is named after Michell for his first develop-

ment in 1899. The previous formula of f has the

characteristic that each term is a function of separated

variables r and y and satisfies the biharmonic equation in

polar coordinate system, i.e

r4f ¼ q
2

qr2
þ 1

r

q

qr
þ 1

r2
q
2

qy2

� �

q
2f

qr2
þ 1

r

qf

qr
þ 1

r2
q
2f

qy2

� �

¼ 0.

(13)

Furthermore, the terms corresponding to cos ny or sin ny

generate the stress and displacement components also in

the form of cos ny or sin ny. For example, if f ¼ rn cos ny,

we shall have the following stress and displacement

components

srr ¼ �nðn� 1Þrn�2 cos ny,

sry ¼ nðn� 1Þrn�2 sin ny,

sry ¼ nðn� 1Þrn�2 cos ny,

ur ¼ �nrn�1 cos ny; uy ¼ nrn�1 sin ny. (14)

For a detailed presentation, the reader is advised to refer to

[8]. In our problem where the displacement boundary

conditions are functions of cosð0:yÞ, sinðyÞ and cosðyÞ (see
Eq. (1)), it is natural to propose the stress function in the

simple form

f ¼ C0yþ C1r
3 cos yþ C2ry sin y

þ C3r ln r cos yþ C4r
�1 cos y, (15)

which corresponds to Eq. (2).
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