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Abstract

A theoretically sound bootstrap procedure is proposed for building
accurate con�dence intervals of parameters describing the extremal
behavior of instantaneous functionals {f(Xn)}n∈N of a Harris Markov
chain X, namely the extremal and tail indexes. Regenerative properties
of the chain X (or of a Nummelin extension of the latter) are here ex-
ploited in order to construct consistent estimators of these parameters,
following the approach developed in [10]. Their asymptotic normality
is �rst established and the standardization problem is also tackled.
It is then proved that, based on these estimators, the (approximate)
regenerative block-bootstrap introduced in [7] yields asymptotically
valid con�dence intervals. In order to illustrate the performance of the
methodology studied in this paper, simulation results are additionally
displayed.
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Keywords: Regenerative Markov chain; Nummelin splitting technique;
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1 Introduction

As originally pointed out in [32], the extremal behavior of instantaneous
functionals f(X) = {f(Xn)}n∈N of a Harris recurrent Markov chain X may
be described through the regenerative properties of the underlying chain,
just like the asymptotic mean behavior. Following in the footsteps of this
seminal contribution (see also [2]), the authors have recently investigated
the performance of regeneration-based statistical procedures for estimating
key parameters related to the extremal behavior analysis in the Markovian
setup, see [10].

In particular, special attention has been paid to the problem of estimating
the extremal index of the weakly dependent sequence f(X), which measures
to which extent extreme values tend to come in "small clusters", refer to
[15], [11], [18] for an account of this notion. Various extremal index estima-
tors have been recently proposed in the statistical literature [see 1, 23, 21,
for instance], [29], [30] which generally rely on blocking techniques, where
data segments of �xed (deterministic) length are considered in order to ac-
count for the dependence structure within the observations. Alternatively,
an asymptotically valid methodology speci�cally tailored for (pseudo-) re-
generative sequences has been proposed, based on data blocks of random
length, corresponding to cycles in between successive regeneration times.

Proceeding in the same vein, it has been established in [10] that a re-
generative version of the Hill estimator, computed from the set of cycle sub-
maxima, namely maximum values observed in between consecutive renewal
times, yields consistent estimation of the tail index of f(X)'s 1-d marginal
distribution in the (supposedly existing) stationary regime, in the case when
the latter belongs to the Fréchet maximum domain of attraction.

It is the purpose of this paper to continue this approach by investigating
the problem of constructing con�dence intervals for the extremal and tail
indexes. We �rst prove the asymptotic normality of the regeneration-based
estimators considered and then show how to studentize the latter in order to
build asymptotic Gaussian con�dence intervals. Next, we propose to extend
the range of application of the (approximate) regenerative block-bootstrap
(A-RBB in abbreviated form) originally introduced in [8] for bootstrapping
Markovian sample means, to the present setting. Asymptotic validity of the
ARBB procedure, when applied to the regeneration-based index estimates,
is established and empirical simulations have been carried out, in order to
evaluate empirically its performance when compared to Gaussian asymptotic
intervals.

The article is structured as follows. Notations are �rst set out in Sec-
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tion 2 and crucial notions related to the renewal properties of Harris Markov
chains, that will be needed throughout the paper, are also brie�y recalled.
In Section 3, central limit theorems are stated for the regenerative versions
of the "runs" and "blocks" estimators of the extremal index. Asymptotic
normality of the regenerative Hill estimator is established and the studen-
tization of these estimators is also investigated. Section 4 is devoted to
the study of the (A)RBB methodology, when applied to the construction
of con�dence intervals based on the speci�c regeneration-based estimators
considered. Finally, Section 5 displays preliminary simulation results, com-
paring the performance of bootstrap and Gaussian intervals. Technicalities
are postponed to the Appendix.

2 Preliminaries

Throughout the article, we will denote by X = {Xn}n∈N a time-homogeneous
Harris recurrent Markov chain, valued in a measurable space (E, E) with
transition probability Π(x, dy) and initial distribution ν [see 28, for an
account of the Markov chain theory]. We also denote by Pν (respectively,
by Px with x ∈ E) the probability measure on the underlying space such
that X0 ∼ ν (resp., X0 = x) and by Eν[.] (resp., Ex[.]) the corresponding
expectation. We start o� with recalling basic renewal properties of Harris
Markov chains, while enhancing their connection with extremal behavior
analysis.

2.1 Regenerative chains

Recall �rst that the chain X is said regenerative when it possesses a Harris re-
current atom, i.e., a Harris set A such that: ∀(x, y) ∈ A2, Π(x, .) = Π(y, .).
Set τA = τA(1) = inf {n ≥ 1, Xn ∈ A} and τA(j) = inf {n > τA(j− 1), Xn ∈ A}
for j ≥ 2. In the atomic case, by virtue of the strong Markov property, the
sequence {τA(k)}k≥1 of successive return times to the atom forms a (possi-
bly delayed) renewal process and more generally, the data segments, called
regeneration cycles, determined by the times at which X forgets its past are
i.i.d random variables valued in the torus T = ∪∞n=1En:

B1 = (XτA(1)+1, ..., XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ...

We denote by PA the conditional probability measure given X0 ∈ A and by
EA[.] the PA-expectation.

In the regenerative setup, stochastic stability properties classically boil
down to checking conditions related to the speed of return times to the
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regenerative set. It is well-known for instance that X is positive recurrent if
and only if α = EA[τA] < ∞ [see Theorem 10.2.2 in 25], and its (unique)
invariant probability distribution µ is then the Pitman's occupation measure
given by µ(B) = α−1EA[

∑τA
i=1 I{Xi ∈ B}] for all B ∈ E .

The following assumptions are involved in the subsequent analysis. Let
κ ≥ 1 and ν be any probability distribution on (E, E).

H(κ) : EA[τκA] <∞ and H(ν, κ) : Eν[τκA] <∞.
Cycle submaxima. Let f : (E, E) → R be a measurable function. Consider
the submaximum of the instantaneous functional f(X) = {f(Xn)}n∈N over the
j-th cycle, j ≥ 1:

ζj(f) = max
τA(j)<k≤τA(j+1)

f(Xk).

It has been established in [32], see Theorem 3.1 therein, that, in the pos-
itive recurrent case, the distribution of the sampling maximum Mn(f) =
max1≤i≤n f(Xi) can be successfully approximated by the distribution of the
maximum of bn/αc (roughly the mean number of cycles within a trajectory
of length n) independent realizations of the cycle submaximum as n → ∞,
provided that the �rst (non regenerative) data segment plays no role in
the extremal behavior, i.e. Pν(max1≤i≤τA f(Xi) > max1≤j≤l ζj(f)) → 0 as
l→ ∞. More precisely, under these assumptions we have

sup
x∈R

|Pν(Mn(f) ≤ x) −Gf(x)bn/αc| → 0 as n→ ∞, (1)

where Gf(x) = PA(max1≤i≤τA f(Xi) ≤ x) for all x ∈ R. This shows that
the tail behavior of the cycle submaximum's distribution Gf(dx) rules the
extremal behavior of the sequence f(X).

2.2 Regenerative extensions of general Harris chains

Although the class of regenerative Markov chains includes all chains with
countable state space as well as many Markov models used in Operations
Research for modeling queuing/storage systems, the existence of Harris re-
generative set is a very restrictive assumption in practice, that is not ful�lled
by most Harris chains. Here we brie�y recall a theoretical construction,
termed the splitting technique and originally introduced in [26], extending
in some sense the probabilistic structure of a general Harris chain, so as to
arti�cially build a regeneration set, together with a practical method for ap-
proximating the regenerative extension. It is based on the notion of Harris
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small set. Recall that a Harris set S ∈ E is small for the chain X if there
exist m ∈ N∗, a probability measure Φ supported by S, and δ > 0 such that

∀x ∈ S,∀A ∈ E , Πm(x,A) ≥ δΦ(A), (2)

where Πm denotes the m-th iterate of Π. Roughly speaking, the small sets
are the ones on which an iterate of the transition probability is uniformly
bounded below. When (2) holds, one says that X ful�lls the minorization
condition M(m,S, δ,Φ). We point out that small sets do exist for Harris
chains, see [22]. Suppose now that condition (2) is satis�ed. Rather than
replacing the original chain by the chain {(Xnm, ..., Xn(m+1)−1)}n∈N, we take
m = 1. The regenerative Markov chain onto which X is embedded is con-
structed by expanding the sample space in order to de�ne a speci�c sequence
(Yn)n∈N of independent Bernoulli r.v.'s with parameter δ. The joint distri-
bution is obtained by randomizing the transition Π each time the chain X
hits S, which occurs with probability one (recall that the chain X is Harris).
In order to obtain an insight into this construction, observe �rst that, when
Xn ∈ S, the conditional distribution of Xn+1 given Xn may be viewed as the
following mixture

Π(Xn, dy) = (1− δ)
Π(Xn, .) − δΦ(dy)

1− δ
+ δΦ(dy),

of which second component is independent from Xn. More precisely, the
so-termed split chain {(Xn, Yn)}n∈N is built the following way: suppose that
Xn ∈ S, if Yn = 1 (which occurs with probability δ ∈ ]0, 1[), Xn+1 is drawn
from Φ, otherwise (i.e. if Yn = 0, which happens with probability 1 − δ),
Xn+1 is drawn from (1 − δ)−1(Π(Xn, .) − δΦ(.)). Clearly, S × {1} is an atom
for the split chain, the latter inheriting all the communication and stochastic
stability properties from X. In particular the data segments in between
consecutive visits to S× {1} are independent.

On approximating the regenerative extension. Unfortunately, the
split chain is a theoretical construction and the Yn's cannot be observed in
practice. A "plug-in" approach has been nevertheless proposed in [8], in
order to generate, conditionally to X(n+1) = (X1, . . . , Xn+1), a random vector
(Ŷ1, . . . , Ŷn) from (supposedly known) parameters (S, δ,Φ) in a way that its
conditional distribution approximates the distribution of (Y1, . . . , Yn) condi-
tioned upon X(n+1) in a certain sense that will be speci�ed below. Here we as-
sume that the conditional distributions Π(x, dy) with x ∈ E are dominated by
a σ-�nite measure λ(dy) of reference, in a way that Π(x, dy) = π(x, y)·λ(dy)
for all x ∈ E. This clearly implies that Φ(dy) is also absolutely continuous
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with respect to λ(dy), and that

∀x ∈ S, π(x, y) ≥ δφ(y), λ(dy) almost surely, (3)

where Φ(dy) = φ(y) · λ(dy). Given the sample path X(n+1), the Yi's are
independent random variables. Precisely, the conditional distribution of Yi
is the Bernoulli distribution with parameter

δφ(Xi+1)

π(Xi, Xi+1)
· I{Xi ∈ S}+ δ · I{Xi /∈ S}. (4)

A natural way of mimicking the Nummelin splitting construction con-
sists of computing �rst an estimate π̂n(x, y) of the transition density over
S2 based on the available sample path and such that π̂n(x, y) ≥ δφ(y) a.s.
for all (x, y) ∈ S2, and then generating independent Bernoulli random vari-
ables Ŷ1, . . . , Ŷn given X

(n+1), the parameter of Ŷi being obtained by plugging
π̂n(Xi, Xi+1) into (4) in place of π(Xi, Xi+1). We point out that, from a prac-
tical viewpoint, it actually su�ces to draw the Ŷi's only at times i when the
chain hits the small set S, Ŷi indicating whether the trajectory should be cut
at time point i or not. Let l̂n =

∑
1≤k≤n I{Xk ∈ S, Yk = 1}. Proceeding this

way, one gets the sequence of approximate regeneration times, namely the
successive time points τ̂S(1), . . . , τ̂S(̂ln) at which (X, Ŷ) visits the set S× {1}.
One may then form the approximate regeneration blocks B̂1, ..., B̂l̂n−1, as well
as the approximate cycle submaxima:

ζ̂j(f) = max
1+τ̂S(j)≤i≤τ̂S(j+1)

f(Xi) with j = 1, . . . , l̂n − 1. (5)

Knowledge of the parameters (S, δ, φ) of condition (3) is required for
implementing this approximation method. A practical method for selecting
those parameters in a fully data-driven manner is described at length in [9].
The question of accuracy of this approximation has been addressed in [8].
Under the following assumptions, a sharp bound for the deviation between
the distribution of ((Xi, Yi))1≤i≤n and the one of the ((Xi, Ŷi))1≤i≤n in the
sense of the Mallows or Wasserstein distance has been established, which
essentially depends on the rate ρn of the uniform convergence of π̂n(x, y) to
π(x, y) over S× S.

A1. The MSE of π̂ is of order ρn when error is measured by the sup norm
over S2:

Eν

[
sup

(x,y)∈S2
|π̂(x, y) − π(x, y)|2

]
= O(ρn) as n→ +∞,
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where (ρn) denotes a sequence of nonnegative numbers decaying to
zero at in�nity.

A2. The parameters S and φ are chosen so that infx∈Sφ(x) > 0.

A3. We have sup(x,y)∈S2 π(x, y) < ∞ and supn∈N sup(x,y)∈S2 π̂n(x, y) < ∞
Pν-a.s. .

3 Regeneration-based Extreme Value Statistics

In this section, we recall how to construct estimators of the extremal and
tail indexes based on the (approximate) cycle submaxima following in the
footsteps of [10]. For each estimator considered, asymptotic normality is
established and the standardization problem is tackled.

3.1 Asymptotically normal estimators of the extremal index

A key parameter in the extremal behavior analysis of an instantaneous func-
tion {f(Xn)}n∈N of the chain X is the extremal index θ ∈ (0, 1), measuring to
which extent extreme values tend to come in "small clusters"; refer to [15],
[11] and [18] for an account of this notion. Precisely, for a positive recurrent
Markov chain X with limiting probability distribution µ and any measurable
function f : (E, E) → R, there always exists θ = θ(f) ∈ [0, 1] such that

Pµ(max
1≤i≤n

f(Xi)) ≤ un) ∼ F(un)nθ as n→ ∞, (6)

for any sequence of real numbers {un} such that n(1− F(un)) → η for some
η <∞, denoting by F(x) = (EA[τA])−1EA[

∑τA
i=1 I{f(Xi) ≤ x}] the cdf of f(X1)

in steady-state, i.e. under Pµ. As already observed in [10], a positive recur-
rent chain is a fortiori strong mixing (cf Theorem A in [4]) and consequently
satis�es Leadbetter's mixing condition D(un), see [24].

In the remainder of this subsection, the function f(x) is �xed and the
index θ is assumed to be strictly positive. We point out that [31] have
proved, under an extra technical assumption, that the extremal index of any
geometrically ergodic Markov chain is strictly positive, refer to Theorem 4.1
therein.
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3.1.1 The regenerative "blocks" estimator

As originally shown in [32], it follows from (1) and (6) that, for any sequence
{un} such that n(1− F(un)) → η for some η <∞, θ = limn→∞ θ(un), where

θ(u) =
	Gf(u)

Σf(u)
, (7)

with Σf(u) = α	F(u) = EA[
∑τA
i=1 I{f(Xi) > u}], denoting by 	G(x) = 1 − G(x)

the survivor function of any cdf G(x), and the convention that 0/0 = 0.

In the regenerative case, from expression (7), which may be viewed as a
regenerative version of the popular "blocks" estimator (see �8.1.2 in [15]),
has been proposed in [10]:

θn(u) =
	Gf,n(u)

Σf,n(u)
, (8)

where, for all u ∈ R,

Gf,n(u) =
1

ln − 1

ln−1∑
j=1

I{ζj(f) ≤ u} and Σf,n(u) =
1

ln − 1

ln−1∑
j=1

Sj(u),

with Sj(u) =
∑τA(j+1)
i=τA(j)+1

I{f(Xi) > u}, ln =
∑n
i=1 I{Xi ∈ A}, and the usual

convention regarding empty summation and 0
0 = 0.

Expectedly, a counterpart of this quantity in the general Harris case is ob-
tained by replacing the regeneration cycle submaxima by their approximate
versions in (8):

θ̂n(u) =
1− Ĝf,n(u)

Σ̂f,n(u)
, (9)

where, for all u ∈ R, Ĝf,n(u) = 1

l̂n−1

∑l̂n−1
j=1 I{ζ̂j(f) ≤ u} and Σ̂f,n(u) =

1

l̂n−1

∑l̂n−1
j=1 Ŝj(u), with Ŝj(u) =

∑τ̂S(j+1)
i=τ̂S(j)+1

I{f(Xi) > u} for 1 ≤ j ≤ l̂n − 1.

These estimators have been proved consistent in [10] under mild moment
assumptions, see Proposition 4 therein. For clarity's sake, we precisely recall
the related result.

Proposition 1. ([10]) Suppose that θ > 0. Let (rn)n∈N increase to in�nity
in a way that rn = o(

√
n/ log logn) as n→ ∞. Consider (vn)n∈N such that

rn(1−Gf(vn))/α→ η <∞ as n→ ∞.
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(i) In the regenerative case, suppose that H(ν, 1) and H(2) are ful�lled.
Then,

θn(vn) → θ Pν-almost surely, as n→ ∞. (10)

(ii) In the general case, assume that moment assumptions H(ν, 1) and H(4)
are ful�lled by the split chain and in addition that conditions A1 −A3
are satis�ed. Then,

θ̂n(vn) → θ in Pν-probability, as n→ ∞. (11)

Remark 1. (On moment assumptions for the split chain) We point
out that, in the pseudo-regenerative setup described in �2.2, a su�cient con-
dition for condition H(κ) (respectively, for condition H(ν, κ)) to hold is
Ĥ(κ) : supx∈S Ex[τκS] < ∞ (resp., Ĥ(κ, ν) : Eν[τκS] < ∞). Practically,
drift conditions of Foster-Lyapounov type are used for checking such moment
conditions, refer to Chapter 11 in [25] for further details.

Remark 2. (On the empirical choice of the threshold sequence)
In practice, the threshold sequence {vn} must be picked by the statistician.
A natural choice, based on the available sample, consists of taking vn =
G−1
f,n(1 − η/rn) in the regenerative case (respectively, vn = Ĝ−1

f,n(1 − η/rn)
in the pseudo-regenerative case) and one may easily shows that assertion (i)
(resp., assertion (ii)) of Proposition 1 remains valid.

The next result reveals that, for a �xed threshold u ∈ R, the asymptotic
distribution of the quantity (8), respectively (9), is Gaussian. The technical
proof is given in the Appendix section.

Theorem 2. Let u > 0 be �xed.

(i) In the regenerative case, under assumptions H(2) and H(ν, 1), there
exists a constant σ2f(u) <∞ such that

√
n (θn(u) − θ(u)) ⇒ N (0, α · σ2f(u)) as n→ ∞, (12)

where ⇒ denotes the convergence in distribution.

(ii) In the pseudo-regenerative case, if the moment assumptions H(ν, 1)
and H(4) are ful�lled by the split chain and if conditions A1 −A3 are
in addition satis�ed, then

√
n
(
θ̂n(u) − θ(u)

)⇒ N (0, α · σ2f(u)) as n→ ∞. (13)
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As shown in Theorem 2's proof, the asymptotic variance is given by

σ2f(u) =

[
σ21(u)

Σf(u)2
− 2

σ12(u) 	Gf(u)

Σf(u)3
+

	Gf(u)
2σ22(u)

Σf(u)4

]
, (14)

where

σ21(u) =
	Gf(u)(1− 	Gf(u)), σ

2
2(u) = EA

( τA∑
i=1

I{f(Xi) > u}− Σf(u)

)2 ,
σ12(u) = EA

[(
I{ max
1≤i≤τA

f(Xi) > u}− 	Gf(u)

)( τA∑
i=1

I{f(Xi) > u}− Σf(u)

)]
.

These quantities may be straightforwardly estimated by computing their
empirical counterparts based on the (approximate) regeneration cycles. How-
ever, the following result shows that, for a properly chosen threshold sequence
{vn}, increasing to in�nity at a suitable rate, the second and third terms on
the right hand side of (14) vanish, while the �rst one converges to (αη)−1θ2

as n→ ∞.

Proposition 3. Let (rn)n∈N increase to in�nity in a way that rn = o(
√
n/ log logn)

as n → ∞. Consider (vn)n∈N such that rn(1 − Gf(vn))/α → η < ∞ as
n→ ∞.

(i) In the regenerative case, provided that assumptions H(2) and H(ν, 1)
are ful�lled, the following convergence in distribution holds:√

n/rn (θn(vn) − θ(vn)) ⇒ N (0, θ2/η), as n→ ∞. (15)

(ii) In the pseudo-regenerative case, if the split chain satis�es H(ν, 1) and
H(4) and conditions A1 −A3 hold, we have the following convergence:√

n/rn

(
θ̂n(vn) − θ(vn)

)⇒ N (0, θ2/η) as n→ ∞. (16)

We point out that, under maximum domain of attraction (MDA) assump-
tion combined with additional technical conditions, the asymptotic bias may
be proved to vanish. Indeed, recall that, under the assumption that θ > 0,
the probability distributions Gf(dx) and F(dx) necessarily belongs to the
same MDA. Suppose for instance that they belong to the Fréchet MDA.
There exists then a > 0 such that one may write 	Gf(x) = L1(x) · x−a and
	F(x) = L2(x) · x−a, where L1(x) and L2(x) are slowly varying functions. In
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this setup, the extremal index is thus proportional to the limiting ratio of
these two functions:

θ(u) =
L1(u)

αL2(u)
.

Assume in addition that some second-order Hall-type conditions are ful�lled

Li(x) = lim
y→∞Li(y) + Ci · x−βi + o(x−βi)

as x→ ∞ where Ci <∞ and βi > 0, i = 1, 2. Then, θ(vn) converges to θ at

the rate v−βn with β = β1∧β2 and vn ∼ r
1/β1
n . Hence, as soon as (rn) is picked

such that n/r
1+2β/β1
n → 0, we have that

√
n/rn (θn(vn) − θ) ⇒ N (0, θ2/η)

as n → ∞ in the regenerative case, and a similar result holds true in the
pseudo-regenerative case.

3.1.2 The regenerative "runs estimator"

Using the regenerative method, it has been proved in [32] that θ may be
expressed as a limiting conditional probability: if n(1−Gf(un))/α→ η <∞,
we have θ = limn→∞ θ′(un) where: ∀u ∈ R,

θ′(u) = PA( max
2≤i≤τA

f(Xi) ≤ u | X1 > u). (17)

Based on a path X1, . . . , Xn, the natural empirical counterpart of (17) in
the regenerative setting is

θ′n(u) =

∑ln−1
j=1 I{max2+τA(j)≤i≤τA(j+1) f(Xi) ≤ u < f(X1+τA(j))}∑ln−1

j=1 I{f(X1+τA(j)) > u}
. (18)

Insofar as (17) measures the clustering tendency of high threshold exceedances
within regeneration cycles only, it should be seen as a "regenerative version"
of the runs estimator

θ̂
(r)
n (u) =

∑n−r
j=1 I{maxj+1≤i≤j+r f(Xi) ≤ u < f(Xj)}∑n−r

j=1 I{f(Xj) > u}
, (19)

obtained by averaging over overlapping data segments of �xed length r.

In the pseudo-regenerative case, a practical estimate is built by means of
the approximate regeneration times:

θ̂′n(u) =

∑l̂n−1
j=1 I{max2+τ̂S(j)≤i≤τ̂S(j+1) f(Xi) ≤ u < f(X1+τ̂S(j))}∑l̂n−1

j=1 I{f(X1+τ̂S(j)) > u}
(20)
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Beyond its practical advantage (blocks are here entirely determined by
the data), the estimator (18) may be proved strongly consistent as stated
in the �rst part of the next theorem, while only weak consistency has been
established for (19) but for a wider class of weakly dependent sequences, see
[21].

Theorem 4. Let rn increase to in�nity in a way that rn = o(
√
n/ log logn)

as n→ ∞.

(i) Assume that H(ν, 1) is ful�lled. Considering (vn)n∈N such that rn(1−
F(vn)) → η <∞ as n→ ∞, we then have

θ′n(vn) → θ, Pν-almost surely, as n→ ∞.
(i′) Similarly, if the split chain ful�lls moment conditions H(ν, 1) and
H(4) and conditions A1 −A3 hold, then weak consistency holds in the
pseudo regenerative case:

θ̂′n(vn) → θ, in Pν-probability, as n→ ∞.
(ii) In the regenerative case, provided that assumption H(ν, 1) is ful�lled,

the following convergence in distribution also holds:√
n/rn

(
θ′n(vn) − θ(vn)

)⇒ N (0, θ2(1− θ)/η), as n→ ∞. (21)

(ii′) In the pseudo-regenerative case, if the split chain satis�es H(4) and
H(ν, 1) and conditions A1−A3 hold, we have the following convergence:√

n/rn

(
θ̂′n(vn) − θ(vn)

)⇒ N (0, θ2(1− θ)/η) as n→ ∞. (22)

The last statement of the preceding theorem and Proposition 3 (i) con-
stitute the regenerative versions of Theorems 3 and 4 in [33], who �rst proved
the CLT for the classical runs estimator (based on blocks of �xed length,
cf. (19)). The proof of the preceding theorem follows the lines of those of
Proposition 1, Theorem 2 and Proposition 3, as sketched in the appendix
section.
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3.2 Asymptotic normality of the regeneration-based Hill es-
timator

In the section, we assume that θ > 0 and hence, as recalled in the previous
section, the distributions Gf(dx) and F(dx) belong to the same MDA. We
assume here they belong to the Fréchet MDA. In the regenerative setting,
a natural way of estimating F's tail index, proposed in [10], thus consists in
computing a Hill estimate of Gf's tail index from the observed cycle sub-
maxima:

ξn,k =

(
k−1

k∑
i=1

log
ζ(i)(f)

ζ(k+1)(f)

)−1

, (23)

with 1 ≤ k ≤ ln − 1 when ln > 1, denoting by ζ(j)(f) the j-th largest
submaximum. As ln → ∞, Pν- almost surely as n→ ∞, asymptotic results
established in the case of i.i.d. observations extend straightforwardly to our
setting, see part (i) of Theorem 5 below. We point out that in the i.i.d.
setup one may take the whole state space as an atom, i.e. A = E, each cycle
comprises then a single observation and (23) reduces to the standard Hill
estimator.

In the general Harris case, one may naturally build an estimate by re-
placing the cycle submaxima by their approximate versions:

ξ̂n, k =

(
k−1

k∑
i=1

log
ζ̂(i)(f)

ζ̂(k+1)(f)

)−1

, (24)

with 1 ≤ k ≤ l̂n − 1 when l̂n > 1 and denoting by ζ̂(j)(f) the j-th largest
approximate submaximum. It is shown in Proposition 5 of [10] that the
approximation step does not compromise the consistency of the estimator,
provided that the estimator of π(x, y) over S2 is accurate enough. In order
to establish a rate of convergence, we will also consider the case where the
transition estimate used in the approximation stage is computed from a

trajectory of length N >> n and will denote by Ĥ
(N)
k,n, the corresponding

estimator.

The consistency and the asymptotic normality of these estimators have
been shown in [10] under the Von Mises condition recalled below, see Propo-
sition 5 therein.

VM assumption. (Von Mises condition, [19]) Let ρ ≤ 0. Suppose

13



	Gf(x) = L(x)x
−a,

lim
x→∞

	Gf(tx)/ 	Gf(x) − t
−a

b(x)
= t−a

tρ − 1

ρ
, t > 0

where b(x) is a measurable function of constant sign, and with, by conven-
tion, (t−ρ − 1)/ρ = log t when ρ = 0. Equivalently, if Uf(t) = G

−1
f (1− t−1),

lim
x→∞ Uf(tx)/Uf(x) − t

−1/a

B(x)
= t1/ξ

tρ/a − 1

ρ/a
,

where B(x) = a−2b(Uf(x)).

Here, we formulate a central limit theorem in a more general fashion,
revealing a bias-variance trade-o� similarly to [13] in the i.i.d. setup. The
proof is omitted as it follows by a straightforward modi�cation of the proof
of proposition 5 in [10] and the references therein.

Theorem 5. Assume that F belongs to the Fréchet MDA and the VM as-
sumption holds and consider an increasing sequence of integers {k(n)} such
that: k(n) < n, k(n) = o(n) and log logn = o(k(n)) as n → ∞. Assume
further that

lim
√
kB(n/k) = λ ∈ R, (25)

(i) then, in the regenerative case, the following convergence in distribution
holds√

k(ln)
(
ξn, k(ln) − ξ

)⇒ N ( ξ3λ

ρ− ξ
, ξ2

)
under Pν, as n→ ∞.

(26)

(ii) in the pseudo-regenerative case, if conditions A1 − A3 are in addition
ful�lled, let (mn)n∈N be a sequence of integers increasing to in�nity
such that mn

√
ρn/k(mn) → 0 as n→ ∞, then√

k(̂lmn)
(
ξ̂
mn, k(̂lmn )

− ξ
)⇒ N ( ξ3λ

ρ− ξ
, ξ2

)
under Pν, as n→ ∞.

(27)

4 Regenerative block-bootstrap con�dence intervals

In this section, we recall the principle underlying the (approximate) regener-
ative block-bootstrap, originally introduced in [8] for bootstrapping Marko-
vian sample means, and establish its asymptotic validity when applied to
the estimators described in the preceding section.

14



4.1 The (A)RBB principle

Practically, the (A)RBB algorithm applies to any statistic T̂n = T(B1, . . . ,Bln−1),
based the (approximate) cycles with standardization σ̂n = σ [T(B1, . . . ,Bln−1)].
For notational simplicity, regeneration cycles and their approximate ver-
sions are here denoted the same manner. The resampling scheme consists
of mimicking the underlying renewal structure by drawing data blocks with
replacement until a trajectory of length n roughly is built. This way, the
randomness in the number of renewals is reproduced during the procedure
and, conditionally to the original data, the bootstrap series thus generated
is regenerative.

Algorithm 1. (A)RBB algorithm

1. (Blocks.) Identify the (pseudo-) blocks B1, . . . ,Bln−1 from the ob-
served trajectory X0, . . . , Xn as explained in Section 2.1 (resp. in Sec-
tion 2.2 in the pseudo-regenerative case) and compute the statistic T̂n =
T(B1, . . . ,Bln−1), and its standard deviation σ̂n = σ(B1, . . . ,Bln−1).

2. (Sequential drawing.) Draw sequentially and independently boot-
strap data blocks B∗1 , . . . ,B∗k from the empirical distribution of the blocks
de�ned at step 1. until the length of the bootstrap series l∗(k) =∑k
j=1 l(B∗j ) is larger than n. Let l∗n = inf{k ≥ 1, l∗(k) > n}. If one

is just interested in asymptotic results, one may just draw ln − 1 i.i.d
blocks (conditionally to the trajectory so that ln is �xed in the bootstrap
procedure).

3. (Bootstrap statistics.) From the bootstrap data blocks generated
at step 2, reconstruct a pseudo-trajectory by binding the blocks together,
getting the reconstructed RBB sample path X∗(n) = (B∗1 , . . . ,B∗l∗n−1) of
length n∗ = l∗(l∗n − 1). Then compute the bootstrap version of the
regenerative blocks estimator: T∗n = T(B∗1 , . . . ,B∗l∗n−1) and its standard
deviation σ̂∗n = σ(B∗1 , . . . ,B∗l∗n−1).

4. (Bootstrap CIs.) Bootstrap con�dence intervals (CI) at level 1−α ∈
(1/2, 1) for the parameter of interest are obtained by computing the
bootstrap root's quantiles q∗α/2 and q

∗
1−α/2, of orders α/2 and 1 − α/2

respectively (in practice, the latter are approximated in a Monte-Carlo
fashion by iterating steps 2-3):the basic percentile bootstrap CI is simply

[q∗α/2, q
∗
1−α/2],

15



the Percentile bootstrap CI is de�ned as[
2T̂n − q

∗
1−α/2, 2T̂n − q

∗
α/2

]
and the t-Percentile bootstrap CI is given by[

T̂n − t
∗
1−α/2

σ̂n√
n
, T̂n − t

∗
α/2

σ̂n√
n

]
,

where t∗p is the pth quantile of the studentized bootstrap root T∗n−T̂n
σ̂∗n/
√
n
.

Remark 3. (Gaussian confidence intervals) These bootstrap CI's can
be compared to asymptotic CI's classically built from the statistic and its
standardization [

T̂n −Φ
−1
1−α/2.σ̂n/

√
n, T̂n −Φ

−1
α/2
σ̂n/
√
n
]
,

where Φ−1
p is the pth quantile of the standard normal distribution, or replac-

ing σ̂n/
√
n with a new standardization estimator de�ned as the empirical

standard deviation of T∗n given by σ̃∗2 =
∑
b(T
∗
n − T

∗
n)
2/n.

4.2 Asymptotic validity of (A)RBB distribution estimates

The results stated below show that the bootstrap procedure described in
the previous subsection is asymptotically valid. Let P∗(.) be the conditional
probability given the observed trajectory. The following assertions hold true.

Theorem 6. 1. ("Blocks" estimator) Suppose that the assumptions
of Theorem 2 are ful�lled. Let θ̃n(u) denote the estimator θn(u) in the
regenerative case, θ̂n(u) in the pseudo-regenerative case, and let θ̃∗n(u)
be its (A)RBB version. Then, we have, as n→ ∞:

sup
x∈R

∣∣∣P∗ (√n(θ̃∗n(u) − θ̃n(u)) ≤ x)− Pν
(√
n
(
θ̃n(u) − θ(u)

)
≤ x
)∣∣∣→ 0.

2. ("Runs" estimator) Suppose that the hypotheses of Theorem 4 are
satis�ed. Denote by θ̃′n(u) the estimator θ′n(u) in the regenerative case,
θ̂′n(u) in the pseudo-regenerative case, and let θ̃′∗n (u) be its (A)RBB
version. Then, we have, as n→ ∞:

sup
x∈R

∣∣∣P∗ (√n(θ̃′∗n (u) − θ̃′n(u)) ≤ x)− Pν
(√
n
(
θ̃′n(u) − θ(u)

)
≤ x
)∣∣∣→ 0.

Such results may also be used to estimate the mean-square error of√
n(θn(u) − θ(u)) and to calibrate the level u by minimizing the MSE,

in the same spirit as [20] or [12], and as illustrated in the simulation section.
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4.3 Markov subsampling and the Hill estimator

As claimed by the following proposition, the (A)RBB algorithm can also
be successfully applied to tail index estimation provided that the sequential
drawing (step 2 in the previous algorithm) is replaced with a subsampling
drawing without replacement (see [14]). Proving that the procedure is still
valid in absence of subsampling deserves a much thorougher analysis, far
beyond the scope of this paper. We thus introduce the following subsampling
variant of Algorithm 1.

Algorithm 2. RBB subsampling

1. (Blocks.) As described in step 1 of Algorithm 1.

2. (Subsampling drawing.) Choose a subsampling sizemn large enough
but small compare to n and compute lmn as the observed number of
blocks in a stretch of length mn : typically, lmn is of order [ mnEAτA ] and

is thus asymptotically equivalent to l̃mn =
[
ln
mn
n

]
, where [x] is the in-

teger part of x. Draw l̃mn bootstrap data blocks B∗1 , . . . ,B∗k by sampling
without replacement into the blocks B1, . . . ,Bln−1.

3. (Subsampling statistics.) Apply step 3. and 4. of Algorithm 1 to
the reconstructed RBB sample path X∗(n) = (B∗1 , . . . ,B∗l̃mn−1

).

Theorem 7. Suppose that assumptions of Theorem 5 are ful�lled. De-
note by ξ̃n,k the estimator ξn,k in the regenerative case, ξ̂n,k in the pseudo-
regenerative case, and let ξ̃∗n,k be its subsampling counterpart.

Let mn > 1 such that mn → +∞ and mn/n → 0 as n → +∞. If we
assume in addition that k(̃lmn)/k(ln) → 0, we then have, as n→ +∞,

sup
x∈R

∣∣∣H̃∗n(x) − H̃n(x)−∣∣∣→ 0,

where H̃∗n(x) = P∗
(√

k(̃lmn)
(
ξ̃∗mn, k(lmn )

− ξ̃n, k(ln)

)
≤ x
)

and H̃n(x) =

Pν
(√

k(ln)
(
ξ̃n, k(ln) − ξ

)
≤ x
)
.

In the subsampling context, higher order accuracy can not be established.
It is thus su�cient to consider a simple form of the standardization in order
to prove the asymptotic validity. The issue of choosing the subsampling size
mn and the tuning parameter k is discussed in next section.
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5 Simulation results

In this section, we present illustrative simulation results to provide empirical
evidence of the nice behavior of the estimators and con�dence intervals pro-
posed in this paper. Whenever possible, a comparison with other estimators
and con�dence intervals is conducted.

5.1 Regenerative examples

Considering waiting times of certain queuing processes, we compute and dis-
cuss the regeneration-based "blocks" and "runs" estimators of the extremal
index and the regeneration-based Hill estimator of the tail parameter.

Regeneration based extremal index estimators. We �rst consider the
waiting times of a M/M/1 process (cf [3]) with parameters λ = 0.2, µ = 0.8
and sample path length n. As underlined in [10], there exists a closed ana-
lytical form for the extremal index in this case, it is equal to θ = (1−λ/µ)2 =
0.5625 and all the required assumptions are satis�ed. The estimators θn(u)
and θ′n(u) of the extremal index proposed in this paper are both de�ned
based on a threshold u, supposed to be large.

RBB con�dence intervals. Figures 1(a) and 1(b) show the asymptotic
and bootstrap con�dence intervals of the regenerative "blocks" estimator and
the regenerative "runs" estimator, respectively. These CI's are quite similar
except for the largest values of u. In the sequel, when a bootstrap CI is
computed, it will be the basic percentile bootstrap con�dence interval. The
coverage probabilities of the basic bootstrap percentile CI for the M/M/1
waiting process is estimated over M = 300 trajectories, as shown in Figure
2.

Choosing the threshold. As mentioned after Theorem 6, the threshold
u can be chosen by minimizing an estimation of the mean-square error of√
n(θn(u)−θ(u)), so that the optimal threshold value u∗ can be determined

as
u∗ = argmin

u>0
M̂SE(u),

with M̂SE(u) = σ2f(un+(θn(u)− 	θ∗n(u))
2, where 	θ∗n(u) is the mean of the

bootstrap statistics. The same process can be applied to the regenerative
"runs" estimator. Applying this to the M/M/1 queue yields θ∗θn(u

∗) =
0.5263 with CI (0.4431 .6610) (which includes the targeted extremal index
0.5625).

Another possibility (which does not require any bootstrap) arises from
the fact that the ratio of the asymptotic variances of our 2 regenerative
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(a) Regenerative "Blocks" estimator
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(b) Regenerative "Runs" estimator

Figure 1: Extremal index estimation for waiting times of the M/M/1 queue
with λ = 0.2, µ = 0.8, θ = 0.56 (the x-axis gives the percentiles of the
simulated (Wn), n = 1000, B = 199 bootstrap samples, solid red for the
regenerative estimator, solid black for the mean bootstrap estimator, dashed
red for the basic percentile bootstrap CI, dotted red for the percentile boot-
strap CI, dashed green for the t-percentile bootstrap CI, dashed blue for the
asymptotic CI based on the regenerative standardization, dashed light blue
for the asymptotic CI based on the bootstrap standardization, horizontal
black line is θ, vertical dashed red line is the optimal u value as determined
by minimizing (28).
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Figure 2: Coverage probabilities of the basic percentile bootstrap CI for
the regenerative "blocks" estimator and the regenerative "runs" estimators.
M/M/1 queue with λ = 0.2, µ = 0.8, θ = 0.56 (the x-axis gives the percentiles
of the simulated (Xn), n = 1000, 1−α = 95%-CI, B = 199 bootstrap samples,
M = 300, the solid blue curve is that of the "blocks" estimator, the dashed
red curve is that of the "runs" estimator).

estimators is asymptotically constant (σ′f(un)
2/σ2f(un) → 1−θ for a properly

chosen sequence of thresholds un, see Theorem 3, assertion (i) and theorem
4, assertion (ii)1.) Hence, one may de�ne an optimal threshold value u∗,
and hence a unique estimator of the extremal index, by minimizing in u the
function (

σ′2f(u)/σ2f(u) − (1− θn(u))
)2
, (28)

and de�ning θ∗ = θn(u
∗). Applying this process to the MM1 queue yields

θ∗ = 0.5179 with CI (0.4947 .6370) (which covers the targeted extremal
index 0.5625).

Alternative estimators. In [10], the regenerative blocks estimator was
compared to the intervals estimator proposed by [16] and to various �xed
lengths block estimators and runs estimators (see Fig. 2 therein). Its mean
squared error was generally lower than those of the alternative estimators.
As far as CI's are concerned, the authors of [16] also proposed a bootstrap
procedure based on an automatic declustering of the process relying on the
estimation of the extremal index (see section 4 therein). Figure 3 illustrates

1The asymptotic variance of the regenerative "runs" estimator for a �xed threshold u
is σ′f(u)

2 = s2f(u)/α, with s
2
f(u) given in eq. (30) in the appendix section.
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(a) n = 10000

0.90 0.92 0.94 0.96 0.98 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) n = 1000

Figure 3: Comparison of our bootstrap basic Percentile CI to that proposed
in [16]. (B = 199, dashed blue for ours and dashed green for theirs, solid
black is the true θ).

that our bootstrap CI is much sharper than theirs on this example.

Regeneration based Hill Estimator. We consider now the waiting times
of a M/G/1 process with Pareto service times, with parameters λ = 0.2 and
a = 3. The subsampling size was �xed to mn = bn/ log(n)c. For each of
the M trajectories, for each of the B bootstrap samples, the regenerative
Hill estimator is �rst computed for various values of k, from k = 10 to the
number of blocks k = lmn . The optimal k is then determined by computing
a bias corrected Hill estimator (as in [6, 17]) and choosing the value k∗ that
minimizes the estimated MSE

M̂SE(k) = Ĥ2k, n/k+ (Hk, n − Ĥk, n)
2,

where Ĥk, n is a bias corrected version of the Hill estimator. The regenerative
standardization is then computed as Hk∗,n/

√
k∗. Results of this simulation

are presented in Table 1. Note that the basic percentile CI and asymptotic
CI with bootstrap variance have the best coverage probabilities and are also
very easy to compute (it does better than the asymptotic CI which has
however the advantage of not requiring the bootstrap resampling). Regard-
ing the choice of the subsampling size mn, various values were tested and
larger values do keep a nice coverage probability with reduced mean length.
The application of Algorithm 1 yields particularly nice results questioning
the validity of such procedure for the regenrative Hill estimator and hence
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CI name Lower b. Upper b. Coverage Mean length MSE

Basic Percentile CI 0.248 0.655 100.0% 0.449 0.0093
Percentile CI -0.077 0.330 57.3% 0.449 0.0093
Asymptotic CI 0.196 0.382 64.7% 0.161 0.0093
Asymptotic CI a 0.075 0.503 99.3% 0.471 0.0222
t-Percentile CI 0.095 0.314 49.7% 0.207 0.0093
Standard bootstrap CI b 0.156 0.201 0.0% 0.048 0.0547

Table 1: Con�dence intervals around tail index estimators: M/G/1 queue
with Pareto service times λ = 0.5, 1/a = 1/3, sample path of length
n = 10, 000, mn = [n/ log(n)] = 1, 085, B = 199 bootstrap samples,
M = 300 Monte-Carlo replications to compute the coverage probabilities,
mean lengths of the CI's and mean squared error of the estimator (MSE) - a

Based on the bootstrap variance - b the last line refers to the Standard Hill
estimator while the rest of the table refers to the Regenerative Hill estimator.

the validity of the bootstrap of the Hill estimator in the i.i.d. case as well
(theoretical work in progress).

Alternative estimator. In [10], the regenerative Hill estimator is compared
to the standard Hill estimator computed directly from the largest waiting
times, as proposed by [27]. The same bias correction method was applied
to the standard Hill estimator in order to determine the optimal k value.
In their paper [27], the authors do not propose any con�dence interval for
their estimator but one could compute a bootstrap CI as proposed in [5]
in the iid case (the principle is to resample directly the log di�erences that
are iid exponential rather than the upper statistics). This approach results
in very small CI's that fail to compensate for the fact that the Standard
Hill estimator is quite bad on this example and hence have a null coverage
probability, see the last line of Table 1.

5.2 Pseudo-regenerative examples

We now turn to examples for which a regenerative extension must be approx-
imated and show that this additional step does not damage the accuracy of
the method.

Approximate regeneration based extremal index estimator. For the
pseudo regenerative case, we consider a �rst order autoregressive model with
Cauchy noise, with parameters ρ = 0.8 and σ = 1, yielding an extremal
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index θ equal to 1 − ρ, see [10] for details, namely section 5.2 therein for a
precise description of the construction of the pseudo-blocks. The bootstrap
CI's and their coverage probabilities are shown in Figure 4. Note that the
percentiles of X used for the "runs" estimator are a lot lower than those used
for the "blocks" estimator. The CI's for the "blocks" estimator is better
than that of the "runs" estimator in terms of coverage probability.

Approximate regeneration based Hill estimator. With the AR(1)-
Cauchy example again, we investigated the estimation of the tail index equal
to 1 here, see [10] for details. The regenerative Hill estimator was computed
for M = 100 trajectories of length n = 10, 000, using a subsampling size
mn = n/ log(n) = 1, 085 and B = 199 bootstrap replications in each case:
we obtained Ĥn, k∗ = 1.14 for k

∗ = 104 (sd = 0.111) with a basic percentile
bootstrap CI of (0.592− 1.945); a coverage probability of 94% and a mean
length of 1.457. Again, when the subsampling size is increased, the coverage
probability remains aroung the desired 95% while the mean length of the
CI is drastically reduced, which puts questions to the validity of the full
regenerative bootstrap for the regenerative Hill estimator as proposed in
Algorithm 1 and used for the regenerative extremal index estimators.

A Technical Proofs

A.1 Proof of Theorem 2

For assertion (i), observe that θn(u) is simply the ratio of the components
of the bivariate vector ( 	Gf,n(u), Σf,n(u))

′, which is asymptotically normal
under the speci�ed moment conditions (see the proof of the CLT stated in
Theorem 17.2.2 of [25]) for the atomic case:

√
n

[
	Gf,n(u)
Σf,n(u)

−
	Gf(u)
Σf(u)

]⇒ N (0, α · ( σ21(u) σ12(u)
σ12(u) σ22(u)

))
,

since n/(ln − 1) → α = EA[τA], Pν-a.s. as n→ ∞, and with

σ21(u) =
	Gf(u)(1− 	Gf(u)), σ

2
2(u) = EA

( τA∑
i=1

I{f(Xi) > u}− Σf(u)

)2 ,
σ12(u) = EA

[(
I{ max
1≤i≤τA

f(Xi) > u}− 	Gf(u)

)( τA∑
i=1

I{f(Xi) > u}− Σf(u)

)]
.
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(a) "Blocks" estimator
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(b) "Runs" estimator
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(c) Coverage "blocks" estimator
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(d) Coverage "runs" estimator

Figure 4: Extremal index estimation for waiting times of the AR1 Cauchy
process with ρ = 0.8 and σ = 1, θ = 0.2 (the x-axis gives the percentiles of
the simulated (Xt), n = 10000, B = 199 bootstrap samples, M = 100 Monte
Carlo replications
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Application of the Delta method �nally yields (12), with

σ2f(u) =

[
σ21(u)

Σf(u)2
− 2

σ12(u) 	Gf(u)

Σf(u)3
+

	Gf(u)
2σ22(u)

Σf(u)4

]
.

The demonstration of assertion (ii) relies on similar arguments regarding
the asymptotic normal behavior of the bivariate vector (1−Ĝf,n(u), Σ̂f,n(u))

′

obtained from the CLT stated in Theorem 17.3.6 of [25].

A.2 Proof of Proposition 3

Consider (vn)n∈N such that rn 	Gf(vn)/α → η < ∞ as n → ∞, with rn =
o(
√
(n/ log logn). A preliminary step consists of studying the behavior of

the various components of σ2f(vn) as n→ ∞, as stated in the next lemma.

Lemma 8. We have

rnΣf,n(vn)/α→ η/θ, rnGf,n(vn)/α→ η

rnσ
2
1(vn)/α→ η, σ22(vn) = O(r

−2
n ), σ12(vn) = O(r

−3/2
n ).

Proof. Consider the solution of the Poisson equation:

ĝ(x, u) = Ex

[
τA∑
i=1

I{f(Xi) > u}− Σf(u)

]

Observe that

σ22(vn) ≤ Eµ[ĝ(X1, vn)2] ≤ EA

( τA∑
i=1

I{f(Xi) > vn}

)2+ Σf(vn)
2

≤ EA[τ2A] + Σf(vn)2.

By Cauchy Schwarz, we yield the last order of magnitude: σ12(vn) ≤ σ1(vn)σ2(vn)

Now, de�ne Xn =
∑ln−1
i=1 Xj,n =

∑ln−1
i=1

I{ζj(f)>vn}−	Gf(vn)√
ln−1σ1(vn)

, and observe that

√
n/rn(θn(vn) − θ(vn)) =

√
n√

ln − 1

√
rnσ1(vn)

rnΣf,n(vn)
Xn

−
rnσ2(vn)

rnΣf,n(vn)

θ(vn)√
rn

√
n
Σf,n(vn) − Σf(vn)

σ2(vn)
.
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Given the rates in the preliminary lemma, the second term on the RHS is of

order OP(r
−1/2
n ) so that the asymptotic behavior of

√
n/rn(θn(vn) − θ(vn))

is determined by that of the �rst term. A direct application of the Lindeberg
Feller theorem is not possible here since ln−1 is not a stopping time for (Xn).
However it can be shown through the application of a slight modi�cation of
the arguments given page 425 of [25] that if we denote by X̃n the vector Xn
in which ln is replaced with bn/αc, then n−1/2|Xn − X̃n| converges to zero
in probability. Then the asymptotic standard normality of X̃n, and hence
that of Xn, results from the Lindeberg Feller theorem under the assumed
moment conditions. We then conclude from the above lemma that gives the
limit as → ∞ of the term in front of Xn, namely θ/

√
η. Let us now check

the conditions of the Lindeberg Feller theorem on X̃n.

H1 The sequence
(
X̃j,n

)
is asymptotically negligible since

bn/αc−1∑
j=1

PA(|Xj,n| ≥ ε) ≤
(bn/αc− 1)EA[X4j,n]

ε4
≤ (bn/αc− 1)−1

ε4σ41(vn)

P→0
since σ41(vn) = O(r−2n ) = O(log logn/n) and EA[(I{ζj(f) > vn} −
Gf(vn))

4] ≤ 1.

H2 The second condition
∑bn/αc−1
j=1 EA[Xj,n] = 0 also holds since EA[I{ζj(f) >

vn}] = 	Gf(vn).

H3 Finally, the condition on the variance is also satis�ed since:

Γn =

bn/αc−1∑
k=1

VA(Xj,n) = (bn/αc− 1)VA(Xj,n) =
(bn/αc− 1)σ21(vn)
(bn/αc− 1)σ21(vn)

P→1,
denoting by VA(.) the variance under PA(.).
Note that the assumptions H(2) and H(ν, 1) are only needed to ensure

that σ2(u) is de�ned for all u, and the length of the �rst non regenera-
tive block has a �nite �rst order moment so that our regeneration based
extremal index estimator does not di�er much of that with denominator
(ln − 1)/n

∑n
i=1 I{f(Xi) > u}.

A.3 Proof of Theorem 4

Writing (17) as the ratio of G1f(u) = PA({max2≤i≤τA f(Xi) ≤ u}∩{f(X1) > u})
and 	F1(u) = PA(f(X1) > u), then the regenerative "runs" estimator given
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in (18) is simply the ratio of the empirical counterparts of the probabilities,
which are denoted G1f,n(u) and

	F1n(u) in the sequel. Hence, the proof of (i)
and (ii) exactly follows that of the strong consistency of the regenerative
blocks estimator, (8), provided in [10], and that of its asymptotic normal-
ity given above, provided that the next lemma holds true under the stated
assumptions.

Lemma 9. 	Gf(u) ∼ G1f(u),
	F(u) ∼ 	F1(u) so that we can state a LIL for

G1f(u), a LIL for 	F1(u) and get asymptotic equivalences similar to those stated
in the previous lemma. Let rn ↑ ∞ in a way that rn = o(

√
n/ log logn) as

n → ∞, considering (vn)n∈N such that rn(1 − F(vn)) → η < ∞ as n → ∞,
we have rn	F

1(vn) → η/θ.

More precisely, we can state the asymptotic normality of the bivariate
vector (G1f,n(u),

	F1n(u))
′, for all �xed u,

√
n

[
G1f,n(u)
	F1n(u)

−
G1f(u)
	F1(u)

]⇒ N (0, α · V((G1f(u), 	F1(u))′)) ,
with V

(
(G1f(u),

	F1(u))′
)
=

(
G1f(u)(1−G

1
f(u)) G1f(u)(1−

	F1(u))

G1f(u)(1−
	F1(u) 	F1(u)(1− 	F1(u))

)
.

Note that because of the speci�c "probability" form of the covariance
terms here (they are all lower or equal to one), we don't need extra moment
assumptions as we did in the case of the regenerative blocks estimator.

An application of the Delta method �nally yields the following asymptotic
variance for all �xed u

s2f(u) = α×

 G1f (u)(1−G
1
f (u))

	F1(u)2
− 2

G1f (u)
2(1−	F1(u))
	F1(u)3

+
G1f (u)

2	F1(u)(1−	F1(u))
	F1(u)4

 . (29)

= α×

[
θ′(u)

(1−G1f(u))
	F1(u)

− θ′(u)2
1− 	F1(u)
	F1(u)

]
(30)

Since rn	F
1(vn) → η/θ, we can identify s2 in (21) and (22) as αθ2(1− θ). A

formal application of the Lindeberg-Feller theorem similarly to the regener-
ative blocks estimator proof (the Xn's are bivariate) leads to the same result
and it is easily seen that, because only indicator functions are involved, no
moment assumption on τA is needed.

For the pseudo-regenerative version (i') and (ii'), it is su�cient to observe
that under the stated assumptions, we can prove similarly to theorem 2
in [10], that supx∈R |Ĝ1f,n(x) − G

1
f,n(x)| = OPν(Rn(π̂n, π)1/2), as n → ∞,
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and similarly to Lemma 6.2 in [8], that we have N(n) × supu∈R |F̂1N(n)(u) −

F1N(n)(u)| = OPν(RN(n)(π̂N(n), π)
1/2) as N→ ∞.

A.4 Proof of Proposition 4.2

The bootstrap version of the "Blocks" estimator of the extremal index is
given by the ratio of the bootstrap version bivariate vector ( 	Gf,n(u), Σf,n(u))

′.
Since by [8], the (A)RBB (both in its regenerative and pseudo-regenerative
versions) is asymptotically valid, it follows immediately that, for �xed u,√
n(θ∗n(u)−θn(u)) has the same limiting distribution as

√
n(θn(u)−θ(u)).

The same result remains valid even if ln is �xed in the bootstrap procedure.
The same arguments may be used for the "runs" estimator.

A.5 Proof of Proposition 7

When using l̃mn , the proposed procedure boils down to a subsampling pro-
cedure in an i.i.d framework. Using continuity and standard U-statistics
arguments (see [14]), by mimicking the proof of [14] (see p. 44 therein), we
obtain that

P∗
(√

k(̃lmn)
(
ξ̃∗mn, k(lmn )

− ξ̃n, k(ln)

)
≤ x
)

= P∗
(√

k(̃lmn)
(
ξ̃∗
mn, k(̃lmn )

− a
)
≤ x
)
+ o(1)

= P
(√

k(̃lmn)
(
ξ̃
mn, k(̃lmn )

− a
)
≤ x
)
+ o(1)

The �rst equality is a straightforward consequence of the continuity of
the limiting distribution of the Hill estimator and of the assumption stating
that k(ln

mn
n )/k(ln) → 0.

Now using the fact that mn → ∞ and the fact that the Hill estimator so
normalized has a nondegenerate distribution, we get the result.
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