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Jérôme I. Mars

GIPSA-Lab / DIS

Grenoble INP, France

Abstract—In this paper, an Exponential Fitting Test (EFT)
is presented in the context of ocean acoustic tomography for
detecting the number of the raypaths. It is based on the fact
that the profile of the ordered eigenvalues fits an exponential
law for white Gaussian noise and small samples. The number of
raypaths could be detected when a mismatch occurs between the
observed profile and the exponential model. Its performance is
studied with simulated experiment datas. EFT works for the case
of small number of samples when information theoretic criterias
fail.

I. INTRODUCTION

In the ocean, acoustic tomography is used to image the

sound speed variations. A common way to proceed is to take

advantage of the multi-path properties of the wavefield [1].

Each path provides information on the variation of sound

speed distribution. However, multi-path propagation produces

interferences between raypaths. In order to separate the dif-

ferent paths and extract more observations, high resolution

methods are applied for ocean acoustic tomography [2]. The

same as general situation for array processing, if the model

order is poorly selected, the separation may be hampered. Two

commonly suggested approaches for this task are the Akaike

information criterion (AIC) and the minimum description

length (MDL) [3]. With ideal assumptions, the MDL criterion

is shown to be asymptotically consistent, whereas the AIC

tends to overestimate the order of model. However, these

ideal assumptions may not be fullfilled in practice and several

factors could result in the smallest eigenvalues being dispersed

(for example: reduction number of samples or low SNR). Both

the AIC and the MDL tend to overestimate or underestimate

the order of model. For analysing the performance and evalu-

ating the probability of over or under estimation of AIC and

MDL, several theoretical results are presented [4] [5].

Recently, a criteria based on eigenvalue ratios is used to

look for an eigenvalue gap between the noise and the signal

eigenvalues [5]. As a followed method, a method exploiting

the exponetial profile of the orderd noise eigenvalue, which is

first introduced in [6], is applied to obtain an estimation of the

number of significant targets in time reversal imaging [7].

Since a long duration of the received signal in the context

of ocean acoustic tomography is unavailable, an EFT using

short samples is proposed to determine model order of high

resolution method in the following part, which would be

considered robust and applicable. In this paper, short samples

means that the number of samples equals the number of

sensors.

II. EXPONENTIAL FITTING TEST

A. Signal model

The model is built on an acoustic field composed of p

raypaths on a vertical antenna of M sensors (p < M ). The

temporal signal received on sensors is modelized as:

x(t) = Ae(t) + n(t) (1)

With:

• x(t): a M × 1 observation vector.

• A: the matrix of the p steering vectors.

• e(t): the raypaths vector of size p× 1.

• n(t): additive white Gaussian noise of size M × 1 with

distribution N(0, σ2
I), which is assumed to be uncorre-

lated with the signals.

The observation covariance matrix Rx can be written as:

Rx = E[x(t)x∗(t)] = Ry +Rn = ARsA
∗ + σ2

I (2)

B. Eigenvalues Profile Under Noise Only Assumption

In order to establish the mean profile of the decreasing

noise eigenvalues, we need to calculate the expectation of

each eigenvalue. For the zero-mean white Gaussian noise

with power σ2, the sample covariance matrix has a Wishart

distribution with N degrees of freedom. It is a multivariate

generalization of χ2 distribution and depends on M,N, σ2.

In this case, the joint probability of an ordered eigenvalues

and the distribution of each eigenvalue can be obtained [8]

[9], but this requires zonal polynomials and give untractable

results. Thus, we use an alternative approach to approximate

the mean profile of ordered noise eigenvalue with the help of

first and second order moments of the eigenvalues.

The simulation result ( Fig.1.) turns out that an exponential

law could be a good approximation to the mean profile of

eigenvalues:

λi = λ1r
i−1

M,N (3)

The error of the covariance matrix ϕ,

ϕ = R̂x −Rx = R̂x − σ2
I (4)

The noise eigenvalue profile can be found by considering

the first and second moments of tr[ϕ].
Because of E(tr[ϕ]) = 0, it could be obtained:

Mσ2 =
M
∑

i=1

λi (5)
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and E(tr[R̂x − Rx]
2) = E(tr[ϕij ]

2) = M2 σ4

N
, it follows

that:

M2σ
4

N
=

M
∑

i=1

(λi − σ2)2 (6)

From combination of Eqs. (3), (5) and (6), we obtain :

λ1 = MJMσ2 (7)

where:

JM =
1− r

1− rM
(8)

and the decay rate is obtained from the following equation:

M +N

MN
=

(1− r)(1 + rM )

(1− rM )(1 + r)
(9)

By substituing r = e−2a, Eq. (9) becomes:

Mtanh(a)− tanh(a)

Mtanh(a)
=

1

N
(10)

where tanh is the hyperbolic tangent function.

By using an order 4 expansion of Eq. (10), the following

biquadratic equation is produced as:

σ4
−

15

M2 + 2
a2 +

45M2

N(M2 + 1)(M2 + 2)
= 0 (11)

The positive solution of Eq. (14) is given by:

a(M,N) =

√

√

√

√

15

2(M2 + 2)

[

1−

√

4M(M2 + 2)

5N(M2 − 1)

]

(12)

C. Principle of the Recursive Exponential Fitting Test

With the assumption of p decorrelated or partly corre-

lated raypaths, the recursive exponential fitting test is mainly

based on the comparation between the ordered profile of the

normalized eigenvalues of the sample covariance matrix of

observation and the theoretical profile of the ordered noise

eigenvalues. A break point occurs when signal eigenvalue

appears.

The recursive test is started from P = 1. Assuming the

P smallest eigenvalues are noise eigenvalues, the previous

eigenvalue λM−P is tested to see that it corresponds to noise

or a raypath. For each value of P , the test is done by two

steps:

Step 1: predict the value of λM−P according to exponential

model (Eq. 7):

λ̂M−P = (P + 1)JP+1σ̂
2 (13)

where:

JP+1 =
1− rP+1

1− rP+1

P+1

(14)

σ̂2 =
1

P + 1

P
∑

i=0

λi (15)

The prediction equation is obtained by the combination of

Eq. (14), Eq. (15) and Eq. (13):

λ̂M−P = JP+1

P
∑

i=0

λM−i (16)

rP+1 is calculated by first getting a using Eq. (12) and

r = e−2a, where (P + 1) should be instead of M .

Step 2: In this step, define the two hypotesis as follows:

• HP+1: λM−P is a noise eigenvalue.

• HP+1: λM−P is a raypath eigenvalue.

In order to decide between these hypotesis, the absolute

error of λM−P and λ̂M−P is calculated and then be compared

with a threshold ηP . That is:

HP+1 :
∣

∣

∣
λM−P − λ̂M−P

∣

∣

∣
≤ ηP (17)

HP+1 :
∣

∣

∣
λM−P − λ̂M−P

∣

∣

∣
> ηP (18)

The empirical distribution of the noise-only eigenvalue

profile can be used to find a suitable threshold. We generate

10000 realizations for an array of M = 15 sensors and

N = 15 samples. The mean profile of noise eigenvalue can

be computed. (It is represented by the middle cuve in Fig.

1. ) For each eigen index, there exists upper and lower noise

eigenvalues. Half of the distance between them for eigen index

P could be taken as the threshold ηP .
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Fig. 1. Profile of orderd noise eigenvalues for eight realizations

III. SIMULATIONS

We illustrate the performace of EFT method with simulation

datas. For various RSB and different number of samples, eight

experiments are realised. In these experiments, five coherent

rays arrive on 15 sensors. Because of the function of noise,

these rays could be taken as partly correlated rays. Fig. 2. , Fig.

3. and Fig. 4. . respectively show the received rays and ordered



eigenvalue profile for a certain group of RSB and samples.

As comparative methods, AIC and MDL are applied to these

experiments. Considering asymptotically consistent property

of AIC and MDL, we choose N = 1025, which is much

larger that the number of sensors. In this case, AIC and MDL

still overestimate or underestimate the number of rayspath.

The possibility of overestimation or underestimation mainly

depends on the distribution of dispered eigenvalue. It obeys

the qualitative resluts in [5]. For fixed number of samples,

overmodeling becomes more likely for increasing the noise

eigenvalue dispersion. For fixed dispersion, overmodeling be-

comes more likely for increasing the number of data samples.

Undermodeling may happen in the cases where the signal

eigenvalues are not well separated from the noise eigenvalues

and the noise eigenvalues are clustered sufficiently closely.

The results are shown by Table 1. The detection results for

the case of N = 15 by EFT turns out that EFT could detect

relatively correctly for decorrelated or partly correlated rays.

For the case of coherent rays ( the example of SNR= 10dB

), because of the rank deficiency of covariance matrix, EFT

tends to underestimate. This will be study in our futher work.

AIC and MDL don’t work for so short samples.

SNR (dB) AIC MDL EFT

N = 1025

10 14 14 —
5 14 12 —
-5 7 1 —

-10 1 0 —

N = 15

10 — — 3
5 — — 4
-5 — — 6

-10 — — 5

TABLE I
NUMBER OF RAYPATHS DETECTED BY AIC, MDL AND EFT (THE REAL

NUMBER OF RAYPATHS p = 5)

IV. CONCLUSION

We propose an Exponential Fitting Test to detect the number

of rayspaths in ocean acoustic tomography. It uses the property

of the ordered eigenvalue profile, which could be approximated

to an exponential law in the case of noise-only, to detect

a breakpoint between ordered noise eigenvalue profile and

ordered eigenvalue profile of observation. It enables to give

a relative correct detection for short samples while AIC and

MDL fail. Next, it will be applied to real data and combined

with high resolution processing [2] to extract raypaths for

ocean acoustic tomography.
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Fig. 2. Profile of orderd eigenvalues (SNR=10dB)
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