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ABSTRACT 

In this paper, it is proposed a new model of the behavior of elements of arbitrary aspect ratio. 

The model allows for the analysis of large and complex structures and it is based on concepts 

of classic fracture mechanics and continuum damage mechanics. The model considers 

independent variables that measure the degree of shear and flexural damage separately. 

This paper also presents an experimental analysis of the behavior of RC elements with the use 

of digital image correlation technique which allows for the classification and quantification of 

the different failure mechanisms in a much better way than the classic procedures. 
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1. INTRODUCTION 

Real RC structures present components of very diverse nature. Including all of them in the 

analyses is essential for realistic numerical simulations of severe nonlinear behavior such as in 

cases of earthquake loading, displacement of supports, impacts or explosions. One of the most 

difficult aspects is the modeling of structural elements with arbitrary aspect ratios; this is 

however a fundamental issue. Dual systems are often used as a good structural alternative for 

buildings and facilities in earthquake-prone areas; this kind of structures combines frames with 

short elements and walls. Even in framed structures, short or intermediate columns and beams 

may appear as a result of inadequate disposition of masonry walls or other non-structural 

components.  

The models for RC components subjected to bending using plastic hinges or distributed 

plasticity are the most abundant, models for walls and squat elements with bending and shear 

are less numerous but still there is a large choice of options (some of the most recent are [1-

4]). 

The goal of this work is to propose a new model of the behavior of elements of arbitrary 

aspect ratio within the framework of the classic analysis of structures. The model is based on 

concepts of classic fracture mechanics and continuum damage mechanics. Many other models 

are also included within the latter sub-field, but they are limited to slender elements only [5-

12], or walls exclusively [13-14]. 

This paper also presents an experimental analysis of the behavior of RC elements. 

Experimental analyses aim for the determination of the resistance and deformation capacity in 

order to predict the inelastic response of slender elements or walls (see for instance [15-17). 

These studies show that for beams and columns of large aspect ratios the most important 

effect is bending but with its reduction, shear stresses become progressively more important 

and may be the dominant failure mechanism. 



The experimental study presented in this paper differs from the aforementioned references in 

the use of digital image correlation (DIC), see for instance [18]. This method allows for the 

classification and quantification of the different failure mechanisms in a much better way than 

the classic procedures, which are either local or performed by visual inspection. 

  



2. EXPERIMENTAL ANALYSIS  

The experimental analysis [19] was carried out using DIC. In this method the specimens to be 

tested are marked randomly using dark paint dots. A first digital photo of reference is taken 

before the test. Next, further pictures are taken during the experiment while the chosen 

external forces are applied. A computer program [18] processes first the reference digital 

image; the program divides this photo into small portions that may be imagined as small 

“finger prints” and identifies each of them. Then, the program analyses the following picture, 

looks for the same “finger prints” and determines their new position in the picture. This 

procedure gives the average displacement vector of each specific portion. Next, the program 

feeds a finite element mesh with those displacements. In this way the displacement field of 

the specimen is measured. Notice that the nodal displacements are experimentally measured 

and not mathematically computed. The same procedure is followed sequentially with each 

digital photo of the test. With the displacement FE field, the program computes the strain field 

using the conventional techniques. Cracks in concrete appear as concentrations of strains. For 

instance, Fig. 2 shows diagonal tension cracks and/or flexure cracks in beams. Notice that the 

program also provides for an automatic and objective quantification (independent of the 

observer) of the intensity of cracking.  

The first series of tests was designed to show and quantify the modifications of the cracking 

patterns with the aspect ratio. Three specimens that represent RC beams in cantilever with 

different aspect ratios were tested (see Fig. 1). The properties of these specimens can be 

found in [19]. The variation of the aspect ratio was achieved using identical specimens but 

changing the position of the lateral force. Specimen B4 is a slender beam with an aspect ratio 

of 7.11; specimens B2 and B3 represent intermediate beams with, respectively, aspect ratios 

of 3.56 and 5.36 [19]. The loading history is shown in Fig. 1b. It is cyclic and displacement-

controlled in the loading phase with increasing maximum displacements after each cycle; the 



unloading phase is load-controlled and the final force at the end of each cycle is always zero. 

This kind of test is denoted in this paper “mono-sign” since both, displacements and forces are 

cyclic but never change sign. 

 

Fig. 1 

Fig. 1 a) Beams with different aspect ratios b) Loading history 

The cracking patterns obtained with DIC are shown in Fig. 2. As expected, concrete cracks in 

beam B4 are concentrated in the plastic hinge zone and appear to be flexure cracks. The 

intermediate beams exhibit mixed cracking patterns. The transition from flexure to shear 

cracking with the aspect ratio appears to be progressive. 

 

Fig. 2 

Fig. 2 Cracking patterns revealed by DIC in beams with different aspect ratios 

 

Several RC walls with different aspect ratios [19] were also tested with mono-sign loadings; in 

this paper, the results of only one of them (see Fig. 3) are shown in Fig. 4. In that case, 

dominant shear cracks appear in the specimen. The longitudinal reinforcement of this wall was 

over-dimensioned in order to minimize as much as possible flexure damage. 

 

Fig. 3 

Fig. 3 RC wall 



Fig. 4 

Fig. 4 Cracking pattern in a wall revealed by DIC 

 

It was observed [19] that the presence of an axial force on the specimens does not modify 

significantly the cracking pattern; it just alters slightly the orientation of the shear cracks. 

  



3. SIMPLIFIED MODELING OF FRACTURE USING INTERNAL VARIABLES 

Consider a RC structure composed of n nodes and m elements of any aspect ratio. A node i of 

the structure has three degrees of freedom: the displacements ui and wi in the directions of 

the global axis X and Z and the rotation i. The generalized deformations of an element b 

between nodes i and j are represented by the matrix   ),,( b
b
j

b
i

t

b Φ .The terms b
i  and b

j  

are the relative rotations of the element end-sections with respect to the cord and b  is the 

elongation (see Fig. 5a). The generalized stress matrix is denoted ),,(}{ b
b
j

b
i

t
b nmmM  and 

includes the bending moments at the end sections and the axial force (see Fig. 5b). If the 

forces distributed on the element are small with respect to the nodal forces, then the shear 

force is approximately constant and can be computed as: 
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Fig. 5 

Fig. 5 a) Generalized deformations b) Generalized stresses 

 

The experimental analysis showed that RC elements with arbitrary aspect ratio may have 

flexural cracks in the plastic hinge zone and/or shear cracks along the element. A simplified 

representation of the fracture process is obtained using the damage variables indicated in Fig. 

6. Those parameters take values between zero and one as in continuum damage mechanics 

[20] but, in the present case, they represent densities of macro-cracks instead of micro-

defects. Flexural damage may be lumped at the plastic hinges [5]; the flexural damage matrix 



),()( jib ddD  includes those damage variables. It is proposed the introduction of a new 

damage variable 
sd  that accounts for shear damage. It is important to underline that, at least 

in the case of flexural damage; these values can be related to the possibility of repair of the 

element. 

 

Fig. 6 

Fig. 6 Flexure and shear damage variables 

 

Finally, there are two main sources of possible plastic deformations in the elements. The first 

one is related to the yielding of longitudinal reinforcement. Conventionally, these plastic 

deformations are represented as rotations of the plastic hinges that may be grouped into the 

generalized plastic deformation matrix: )0,,(}{ p
j

p
i

t
b

p Φ , see Fig. 7a; permanent 

elongations of the cord are neglected. 

The second mechanism is related to the yielding of the transverse reinforcement that 

produces plastic distortions. They may be represented by the plastic distortion matrix 

)0,,(}{ ppt
b

p γ , see Fig. 7b [13].  

 

Fig. 7 

Fig. 7 Plastic deformations in a RC element a) Plastic rotation b) Plastic distortion 

  



4. CONSTITUTIVE EQUATIONS: STATE LAW  

Constitutive laws in classic continuum damage mechanics are based on two simple but very 

powerful concepts: the effective stress   and the hypothesis of equivalence in deformations 

[20]: 









1
;   )(E)1(      )(E pp     (2) 

 

where  is the dimensionless continuum damage variable taking values between zero and one. 

Instead of writing the state law in terms of stiffness as in Eq. (2c), it is better for the purpose of 

this paper to express it in terms of flexibility: 
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Notice that the term e  is an elastic strain, p  is the plastic strain and d  can be interpreted 

as an additional damage-related one. Correspondingly, there is an initial elastic flexibility E1

and a damage-related one: )1(  E . If damage is equal to zero, the damage strain is zero 

too; if damage tends to one, the damage-related flexibility and deformation tend to infinity. 

Notice the existence of three strain terms for the three phenomena under consideration: 

elasticity, damage and plasticity. 

Return to the case of RC elements. In the previous section, five main phenomena were 

identified; thus, according to the hypothesis of equivalence in deformations, total deformation 



is decomposed into five terms: an elastic deformation, a shear damage term, a flexural 

damage one, the plastic distortion matrix and the plastic hinge rotation matrix: 
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The elastic deformations may be written as a function of stresses using the conventional 

flexibility matrices: 
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The first part of b][ 0F  is the Bernoulli elastic flexibility matrix and the second term is the 

Timoshenko elastic flexibility matrix. The parameters bEI  and bGA  are the usual rigidities to, 

respectively, bending and shear of the element. 

The third deformation term in Eq. (4) can be written, according to the hypothesis of 

equivalence in deformation, as: 

 

bbssb

d }{)]d([}{ MCγ   where    


























000

0
11

0
11

1 bbbb

bbbb

s

s
ss

LGALGA

LGALGA

d

d
dC  (6) 



 

Notice that if the shear damage is zero then the damage deformations are also zero. If the 

shear damage tends to one, the Timoshenko flexibility tends to infinity. 

Similarly, the fourth term of Eq (4) is: 
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This time, the Bernoulli flexibility terms tend to infinity when the damages tend to one. The 

combination of (4-7) gives the state law of a RC element: 
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The local stiffness matrix is, of course, the inverse of   sd,DF  and its computation is 

immediate using any symbolic manipulation program but the resulting expression is too 

complex to be read easily.  



  



5. GENERALIZED GRIFFITH CRITERIA 

The theory of linear elastic fracture mechanics states that crack propagation is only possible if 

the energy stored in the structure is sufficient to overcome the fracture energy of the material. 

The same Griffith balance energy can be used in the present case. The complementary 

deformation energy Wb of the element can be computed from the state law (8): 
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Assuming that the damage mechanisms are uncoupled, the energy release rate for shear 

damage sG  is: 
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Notice that this variable depends indeed on the shear force bV . The use of a generalized form 

of the Griffith criterion allows for the computation of the shear-damage: 
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where Rs is the shear damage resistance function and sd  represents increments of damage. 

This generalized form of the Griffith criterion was also discussed in [13]. 



The shear damage resistance Rs can be identified experimentally using the test on the wall 

described in Section 2. Fig. 8a shows the plot of deflection vs. lateral force obtained in that 

test. This test was chosen for the identification because the DIC analysis indicated very small, 

negligible, flexure damage. In this particular case, with the corresponding boundary conditions, 

the state law (8) becomes: 
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where t is the lateral displacement and V the lateral force. Notice that Eq.(12) corresponds to 

the straight lines represented in Fig. 8a. 

 

Fig. 8  

Fig. 8 a) Deflection vs. lateral force in a RC wall b) Shear energy release rate vs. shear damage 

 

Therefore, the slopes Z may be measured in the test. Thus, an experimental value of shear 

damage can be determined for each unloading in the test using: 
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Notice that this is simply an extension of the elastic stiffness variation method well-known in 

fracture and continuum damage mechanics [20]. 

It is possible to plot shear damage against shear energy release rate (Fig. 8b) because 

experimental values of the latter variables can be obtained using Eq. (10). With this plot it is 

possible to propose the following expression for the crack resistance function: 
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Notice that there are an initial value of crack resistance sR0  and a logarithmic hardening term. 

The latter is due to the action of the reinforcement that obstructs shear cracks propagation. In 

practical applications, the parameters sR0  and sq  does not need to be measured 

experimentally; they may be determined from well-known concepts of the reinforced concrete 

theory as it is explained in the following paragraph. 

Consider again the Griffith equation: ss RG  . This expression defines a general relationship 

between shear force and shear damage: 
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This equation gives the plot of damage vs. shear force indicated in Fig. 9. 

 



Fig. 9 

Fig. 9 Damage vs. shear force according to Griffith criterion 

 

Notice that the values of the first cracking shear force Vcr and ultimate shear force Vu in Fig. 9 

can be indeed computed using RC theory [21-22] with a reasonable accuracy. Those values 

enable for the computation of the parameters sR0  and sq in the shear crack resistance 

function. 

Flexure-damage can also be computed using the same procedure. The damage driving 

moments are: 
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Notice that these new energy release rates depend now on the flexural moments and not on 

the shear force. Similar generalized forms of the Griffith criterion can also be proposed and the 

corresponding flexure crack resistance function identified [5]. The same method of the 

variation of the elastic stiffness can also be adapted to the experimental measurement of 

flexure-damage [5] but in this case DIC technique is used to check that shear cracks are 

negligible. It is interesting to note that the flexure damage resistance function of a plastic 

hinge i may have the same general expression as Eq.(14) but, of course, with different values 

for the parameters: 
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It appears that the function Eq. (17), or (14), can be considered as a general expression for 

damage resistance in RC elements. 

  



6. YIELD FUNCTIONS  

The last components of the model are the yield functions needed for the computation of the 

plastic distortion and the plastic rotations. The starting point is the conventional yield 

functions with linear kinematic hardening; next, the hypothesis of equivalence in deformation 

is used again with the following effective shear force and effective flexural moment: 
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where cs, ci, koi and kos are, too, model parameters. All of them can also be computed using 

reinforced concrete theory [19]. 

The last expressions for a full analysis of RC structures are the kinematic and equilibrium 

equations. Both of them are exactly the same as those for the analysis of nonlinear elastic 

frames.  

  



7. NUMERICAL VALIDATION OF THE MODEL  

The model was included into the library of a well-known commercial structural analysis 

program [23] as a new finite element [19]; then, all the tests presented in Section 2 were 

simulated. 

Fig. 10a-b shows the experimental results and numerical simulation of the slender column 

(specimen B4 of Figs. 1-2) in a plot of deflection vs. lateral force; note that the numerical 

results are very good. Fig. 10c indicates the histories of damage. The DIC analysis validates the 

large value of flexure damage (0.58) and negligible shear damage (0.03) obtained in the 

simulation. 

 

Fig. 10 

Fig. 10 Behavior of a slender RC beam in cantilever a) Experimental deflection vs. lateral force 

b) Numerical deflection vs. lateral force c) Damage evolution 

 

Fig. 11b shows the numerical simulation of the longer intermediate beam (specimen B3 in Figs. 

1-2). The results of the numerical simulation are also very good. The histories of damage are 

different (Fig. 11c); the final value of flexure damage is also very large (0.74) but now shear 

damage is not negligible (0.33). Again, this is in agreement with DIC observations (see 

specimen B3 in Fig.2). 

 

Fig. 11 

Fig. 11 Behavior of an intermediate RC beam in cantilever a) Experimental deflection vs. lateral 

force b) Numerical deflection vs. lateral force c) Damage evolution 

 

The results for the shorter intermediate beam (specimen B2) are shown in Fig. 12. The 

numerical simulation is good and now the relationship between flexure damage and shear 



damage are reversed, with final values of 0.47 and 0.85 respectively. This is again in good 

agreement with DIC results (see specimen B2 in Fig.2). 

 

Fig. 12 

Fig. 12 Behavior of an intermediate RC beam in cantilever a) Experimental deflection vs. lateral 

force b) Numerical deflection vs. lateral force c) Damage evolution 

 

Fig. 13 shows the numerical simulations of the shear wall where shear-damage is the main 

mechanism of failure while flexure-damage is small or even negligible. 

 

Fig. 13 

Fig. 13 Behavior of a RC wall in cantilever a) Experimental deflection vs. lateral force b) 

Numerical deflection vs. lateral force c) Damage evolution 

  



8. EXPERIMENTAL ANALYSIS AND NUMERICAL SIMULATION OF A TWO-ELEMENTS 

STRUCTURE 

The last validation was carried out using the structure shown in Fig. 14a. This is a continuous 

beam of two elements, one short and one slender, separated by a chunk that represents a 

column; the beam is embedded at its ends in two heavy RC blocks that represent fixed 

supports. A mono-sign loading was applied at the column. The goal of this test is to reproduce 

the short element effect similar to the one shown in Fig. 14b, to test the ability of the model to 

simulate it and to recognize the different patterns of cracking in the structure. 

 

Fig. 14 

Fig. 14 a) Continuous two-element beam b) Failure of a short column in a RC structure [24] 

 

As expected, the experimental results show moderate flexure damage in the plastic hinge 

regions of both elements and severe shear damage in the short beam. In this test, the DIC 

analysis was not carried out, the software was not available at that time.  

The quality of the numerical simulation can be evaluated in the plots of deflection vs. force for 

the column shown in Fig. 15. 

 

Fig. 15 

Fig. 15 Deflection vs. force a) Experimental analysis b) Numerical simulation 

 

The histories of damage obtained numerically are presented in Fig. 16. They can be compared 

with the cracking patterns observed in the test. Notice that the simulation is in good 

agreement with experimental values. 

 

Fig. 16 



Fig. 16 Cracking pattern in the continuous beam a) Short element and corresponding damage 

history b) Slender element and corresponding damage history 

 

  



9. FINAL REMARKS AND CONCLUSIONS 

In general terms, in the structural mechanics field, fracture mechanics theory is the only 

accepted tool to analyze damage due to crack propagation. It is clear now that the 

fundamental concepts of fracture and continuum damage mechanics can be adapted to the 

simplified analysis of RC structures with an adequate engineering accuracy and in a large 

variety of applications. Notice that, with the present model, a very large structure may be 

discretized conveniently in a few hundreds of elements at most; and only three damage 

parameters per element are enough for a quite thorough description of the state of fracture 

and deterioration of them; this description is appropriated for most practical applications. The 

required computational load represents a very low demand for actual finite element programs 

and computers. 

The quantification in a separate way of shear and flexural damage is important for the 

structural vulnerability assessment since the corresponding failures exhibit different degrees 

of risk; it may be necessary to consider different tolerances in each case. This information can 

also be useful for retrofitting projects since the urgency and the reparation techniques are 

different in each case.  

It must be underlined the great potential that DIC offers for the development of new methods 

in the analysis and design of RC structures. The results presented in this paper are just a small 

example of a large spectrum of possibilities. This technique allows not only for an objective 

and automatic determination of fracture patterns but also for its quantification. This feature 

was very important for the validation of the computed values of damage. 
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