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Dimensions, matroids, and dense pairs of first-order
structures

Antongiulio Fornasiero
Institut für Mathematische Logik

Einsteinstr. 62, 48149 Münster, Germany

Abstract

A structure M is pregeometric if the algebraic closure is a pregeometry in all
structures elementarily equivalent to M. We define a generalisation: struc-
tures with an existential matroid. The main examples are superstable groups
of Lascar U-rank a power of ω and d-minimal expansion of fields. Ultra-
products of pregeometric structures expanding an integral domain, while not
pregeometric in general, do have a unique existential matroid.

Generalising previous results by L. van den Dries, we define dense elemen-
tary pairs of structures expanding an integral domain and with an existential
matroid, and we show that the corresponding theories have natural comple-
tions, whose models also have a unique existential matroid. We also extend
the above result to dense tuples of structures.
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pair
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1. Introduction

A theory T is called pregeometric [HP94, Gag05] if, in every model K
of T , acl satisfies the Exchange Principle, denoted by EP (and, therefore,
acl is a pregeometry on K); if T is complete, it suffices to check that acl
satisfies EP in one ω-saturated model of T . The theory T is geometric if
it is pregeometric and eliminates the quantifier ∃∞. We call a structure K
(pre)geometric if its theory is (pre)geometric (thus, K is pregeometric iff there
exists an ω-saturated elementary extension K′ of K such that acl satisfies EP
in K′). Note that a pregeometric expansion of a field is geometric ([DMS10,
1.18], see also Lemma 3.47).

In the remainder of this introduction, all theories and all structures ex-
pand a field; in the body of the article we will sometimes state definitions
and results without this assumption.

Geometric structures are ubiquitous in model theory: if K is either o-
minimal, or strongly minimal, or a p-adic field, or a pseudo-finite field (or
more generally a perfect PAC field, see [CvdDM92] and [HP94, 2.12]), then
K is geometric.

However, ultraproducts of geometric structures (even strongly minimal
ones) are not geometric in general. We will show that there is a more gen-
eral notion, structures with existential matroids, which instead is preserved
under taking ultraproducts. More in details, we consider structures K with
a matroid cl that satisfies some natural conditions (cl is an “existential ma-
troid”). Our assumption that K expands a field implies that there is at most
one existential matroid on K. An (almost) equivalent notion has already
been studied by van den Dries [vdD89]: we will show that an existential
matroid on K induces a (unique) dimension function on K-definable sets,
satisfying the axioms in [vdD89], and conversely, any such dimension func-
tion, satisfying a slightly stronger version of the axioms, will be induced by
a (unique) existential matroid. Moreover, a superstable group K of U-rank
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a power of ω is naturally endowed by an existential matroid (van den Dries
[vdD89, 2.25] noticed this already in the case when K is a differential field of
characteristic 0).

Given a geometric structure K, there is an abstract notion of dense subsets
of K, which specialises to the usual topological notion in the case of o-minimal
structures or of p-adic fields. More precisely, a subset X of K is dense in K
if every infinite K-definable subset of K intersects X [Mac75, §1.2]. If T is
a complete geometric theory, then the theory of dense elementary pairs of
models of T is complete and consistent (the proof of this fact was already
in [vdD98], but the result was stated there only for o-minimal theories).

We consider here the more general case when T is a complete theory
with an existential matroid. We show that there is a corresponding abstract
notion of density in models of T . Given T as above, consider the theory of
pairs 〈K′,K〉, where K ≺ K′ |= T and K is a proper dense subset of K′; the
theory of such pairs will not be complete in general, but we will show that it
will become complete (and consistent) if we add the additional condition that
K is cl-closed in K′ (that is, cl(K) ∩K′ = K); we thus obtain the (complete)
theory T d. Moreover T d also has an existential matroid. This allows us to
repeat the above construction, and consider dense cl-closed pairs of models
of T d, which turn out to coincide with nested dense cl-closed triples of models
of T ; iterating many times, we can thus study nested dense cl-closed n-tuples
of models of T .

Of particular interest are two cases of structures with an existential ma-
troid: cl-minimal structures and d-minimal topological structures.

A structure K (with an existential matroid) is cl-minimal if there is only
one “generic” 1-type over every subset of K (see §10); the prototypes of such
structures are given by strongly minimal structures and connected super-
stable groups of U-rank a power of ω. If T is the theory of K, we show that
the condition that K is dense in K′ is superfluous in the definition of T d, and
that T d is also cl-minimal.

A first-order topological structure K (expanding a topological field) is
d-minimal if it is Hausdorff, it has an ω-saturated elementary extension K′
such that every definable unary subset of K′ is the union of an open set
and finitely many discrete sets, and it satisfies a version of Kuratowski-Ulam
theorem for definable subset of K2 (see §9; the “d” stands for “discrete”).
Examples of d-minimal structures are p-adic fields, o-minimal structures,
and d-minimal structures in the sense of Miller. We show that a d-minimal
structure has a (unique) existential matroid, and that the notion of density
given by the matroid coincides with the topological one. Moreover, if T is
the theory of a d-minimal structure, then T d is the theory of dense elemen-
tary pairs of models of T (the condition that K is a cl-closed subset of K′
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is superfluous); hence, in the case when T is o-minimal, we recover [vdD98,
Theorem 2.5]. However, if T is d-minimal, T d will not be d-minimal. More-
over, while ultraproducts of o-minimal structures and of p-adic fields are
d-minimal, ultraproducts of d-minimal structures are not d-minimal in gen-
eral. Under some mild assumptions, if 〈K′,K〉 is a dense pair of d-minimal
structures, then K′ is the open core of 〈K′,K〉 (Theorem 13.11).

We show that if K has an existential matroid, then K is a perfect field:
therefore, the theory exposed in this article does not apply to differential
fields of finite characteristic, or to separably closed nonperfect fields.

2. Notations and conventions

Let T be a complete theory in some language L, with only infinite models.
Let κ > |T | be a “big” cardinal. We work inside a κ-saturated and strongly
κ-homogeneous model M of T : we call M a monster model of T .

We denote by A, B, and C, subsets of M of cardinality less than κ, by ā,
b̄, and c̄, finite tuples of elements of M, and by a, b, and c, elements of M.
As usual, we will write, for instance, ā ⊂ A to say that ā is a finite tuple of
elements of A, and Ab̄ to denote the union of A with the set of elements in b̄.

Given a set X and m ≤ n ∈ N, denote by Πn
m : Xn → Xm the projection

onto the firstm coordinates. Given Y ⊆ Xn+m, x̄ ∈ Xn, and z̄ ∈ Xm, denote
the sections Yx̄ := {t̄ ∈ Xm : 〈x̄, t̄〉 ∈ Y } and Y z̄ := {t̄ ∈ Xn : 〈t̄, z̄〉 ∈ Y }.

Denote by Aut(M/B) the set of automorphisms of M which fix B point-
wise. Denote by Ξ(a/B) the set of conjugates of a over B: that is,

Ξ(a/C) := {aσ : σ ∈ Aut(M/B)}.

3. Matroids

Let cl be a (finitary) closure operator on M: that is, cl : P(M)→ P(M)
satisfies, for every X ⊆M:

Extension: X ⊆ cl(X);

Monotonicity: X ⊆ Y implies cl(X) ⊆ cl(Y );

Idempotency: cl(clX) = cl(X);

Finite Character: cl(X) =
⋃
{cl(A) : A ⊆ X & A finite}.

The closure operator cl is a (finitary) matroid (a.k.a. pregeometry) if
moreover it satisfies the Exchange Principle:

EP: a ∈ cl(Xc) \ cl(X) implies c ∈ cl(Xa).
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When M is not clear from the context, we will write clM instead of cl.
Notice that the closure of a set A such that |A| < κ might be a “proper

class”, that is it might have cardinality ≥ κ, and that this will indeed happen
in many important examples in this article (more precisely, it will happen
for all the existential matroids different from the algebraic closure).

Proviso. For the remainder of this section, cl is a finitary matroid on M.

As is well-known from matroid theory, cl defines notions of rank (which
we denote by rkcl), generators, independence, and basis (see e.g. [TZ10, Ap-
pendix C]).(1)

Definition 3.1. A subset A of C generates C over B if cl(AB) = cl(CB).
A subset A of M is independent over B if, for every a ∈ A, a /∈ cl

(
B ∪ (A \

{a})
)
.

Remark 3.2 (Additivity of rank).

rkcl(āb̄/C) = rkcl(ā/b̄C) + rkcl(b̄/C).

For the axioms of independence relations, we will use the nomenclature
in [Adl05].

Definition 3.3. Given an infinite set X, a preindependence relation(2)
on X is a the ternary relation |̂ on P(X) satisfying the following axioms:

Monotonicity: If A |̂
C
B, A′ ⊆ A, and B′ ⊆ B, then A′ |̂

C
B′.

Base Monotonicity: If D ⊆ C ⊆ B and A |̂
D
B, then A |̂

C
B.

Transitivity: If D ⊆ C ⊆ B, B |̂
C
A, and C |̂

D
A, then B |̂

D
A.

Normality: If A |̂
C
B, then AC |̂

C
B.

Finite Character: If A0 |̂ C B for every finite A0 ⊆ A, then A |̂
C
B.

|̂ is symmetric if moreover it satisfies the following axiom:

(1) Sometimes in geometric model theory the “rank” is called “dimension” and/or the
“dimension” (defined later) is called “rank”; however, since in many interesting cases (e.g.
algebraically closed fields and o-minimal structures, with the acl matroid) what we call
the dimension of a definable set induced by the matroid coincides with the usual notion
of dimension given geometrically, our choice of nomenclature is clearly better.
(2) Preindependence relations as defined here are slightly different than the ones defined
in [Adl05]. However, as we will see later, if cl is definable, then |̂cl is a preindependence
relation in Adler’s sense.
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Symmetry: A |̂
C
B iff B |̂

C
A.

Definition 3.4. The preindependence relation on M induced by cl is the
ternary relation |̂cl on P(M) defined by: X |̂cl

Y
Z if for every Z ′ ⊂ Z, if Z ′

is independent over Y , then Z ′ remains independent over Y X. If X |̂cl
Y
Z,

we say that X and Z are independent over Y (w.r.t. cl).

Remark 3.5. If X |̂cl
Y
Z, then cl(XY ) ∩ cl(ZY ) = cl(Y ).

Lemma 3.6. The relation |̂cl is a symmetric preindependence relation.

Proof. The same given in [Adl05, Lemma 1.29]. �

Remark 3.7. The relation |̂cl also satisfies the following version of antire-
flexivity:

• A |̂cl
C
B iff cl(A) |̂cl

cl(C)
cl(B);

• a |̂cl
X
a iff a ∈ cl(X).

Remark 3.8. For every X and Y , X |̂cl
Y
Y .

Remark 3.9. T.f.a.e.:

1. X |̂cl
Y
Z;

2. for every Z ′ such that Y ⊆ Z ′ ⊆ cl(Y Z), we have cl(XZ ′) ∩ cl(Y Z) =
cl(Z ′);

3. there exists Z ′ ⊆ Z which is a basis of ZY/Y , such that Z ′ remains
independent over XY ;

4. for every Z ′ ⊆ Z which is a basis of ZY/Y , Z ′ remains independent
over XY ;

5. if X ′ ⊆ X is a basis of Y X/Y and Z ′ ⊆ Z is a basis of Y Z/Y , then X ′
and Z ′ are disjoint, and X ′Z ′ is a basis of XZ over Y ;

6. for every X ′ finite subset of X, rkcl(X ′/Y Z) = rkcl(X ′/Y ).

Lemma 3.10. The preindependence relation |̂cl also satisfies the following
stronger form of the Local Character axiom:

For every A and B there exists a subset C of B such that |C| ≤ |A| and
A |̂cl

C
B.
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Proof. Let A and B be given. Let B′ ⊆ B be a basis of AB over A, A′ ⊆ A
be a basis of AB over B, and C ⊆ B be a basis of B over B′. Notice that
CA′ is a basis of AB/B′ and A is a set of generators of AB/B′; hence, by EP,
|C| ≤ |A|. Moreover, by Remark 3.9(3), A |̂cl

C
B. �

Lemma 3.11. Assume that ā |̂cl
C
d̄ and ād̄ |̂cl

C
b̄. Then, ā |̂cl

C
b̄d̄ and

d̄ |̂cl
C
b̄ā.

Proof. Cf. [Adl05, 1.9]. Since ād̄ |̂cl
C
b̄, we have ā |̂cl

Cd̄
b̄, which implies

ā |̂cl
Cd̄
b̄d̄, which, together with ā |̂cl

C
d̄, implies ā |̂cl

C
b̄d̄. �

Lemma 3.12. Let 〈I,≤〉 be a linearly ordered set,
(
āi : i ∈ I

)
be a sequence

of tuples in Mn, and C ⊂M. Then, t.f.a.e.:

1. For every i ∈ I, we have āi |̂clC(āj : j < i);

2. For every i ∈ I, we have āi |̂clC(āj : j 6= i).

Proof. Assume, for contradiction, that (1) holds, but ai 6 |̂ C (āj : j 6= i),
for some i ∈ I. Since |̂cl satisfies Finite Character, w.l.o.g. I = {1, . . . ,m}
is finite. Let m′ be such that i < m′ ≤ m is minimal with āi 6 |̂clC (āj :

j ≤ m′ & j 6= i); w.l.o.g., m = m′. Let d̄ := (aj : j 6= i & j < m).
By assumption, āi |̂clC d̄ and d̄āi |̂clC ām. Then, by Lemma 3.11, we have
āi |̂clC d̄ām, absurd. �

Definition 3.13. We say that a sequence (āi : i ∈ I) satisfying one of the
above equivalent conditions is an independent sequence over C.

Remark 3.14. Let (ai : i ∈ I) be a sequence of elements of M. There is
a clash of terminology with the previous definition of independence; more
precisely, let J := {i ∈ I : ai /∈ cl(C)}; then, (ai : i ∈ I) is an independent
sequence over C according to |̂cl iff all the aj are pairwise distinct for j ∈ J ,
and the set {aj : j ∈ J} is independent over C according to cl. Hopefully,
this will not cause confusion.

3.1. Definable matroids
Definition 3.15. Let φ(x, ȳ) be an L-formula. We say that φ is x-narrow
if, for every b̄ and every a, if M |= φ(a, b̄), then a ∈ cl(b̄) (cf. Remark 3.42).
We say that cl is definable if, for every A,

cl(A) =
⋃
{φ(M, ā) : φ(x, ȳ) is x-narrow, ā ∈ An, n ∈ N}.

Proviso. For the rest of the section, cl is a definable matroid.
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Remark 3.16. For every A and every σ ∈ Aut(M), σ(cl(A)) = cl(σ(A)).

Lemma 3.17. 1. |̂cl satisfies the Invariance axiom: if A |̂cl
B
C and

〈A′, B′, C ′〉 ≡ 〈A,B,C〉, then A′ |̂cl
B′
C ′.

2. |̂cl satisfies the following stronger form of the Strong Finite Char-
acter axiom: if A 6 |̂cl

C
B, then there exist finite tuples ā ⊆ A, b̄ ⊆ B,

and c̄ ⊆ C, and a formula φ(x̄, ȳ, z̄) without parameters, such that

• M |= φ(ā, b̄, c̄);

• if c̄′ ⊆ C and M |= φ(ā′, b̄, c̄′), then ā′ 6 |̂cl
C
B

3. For every ā, B, and C, if tp(ā/BC) is finitely satisfied in C, then
ā |̂cl

C
B.

Proof. (1) By Remark 3.16.

(2) Assume that A 6 |̂cl
C
B. Hence, there exists b̄ ∈ Bn independent over C,

such that b̄ is not independent over AC. Hence, there exist ā ⊂ A
and c̄ ⊂ C finite tuples, such that, w.l.o.g., b1 ∈ cl(c̄āb̃), where b̃ :=
〈b2, . . . , bn〉. Let α(x, x̃, ȳ, z̄) be an x-narrow formula, such that M |=
α(b1, b̃, c̄, ā). If ā′ ⊂M and c̄′ ⊆ C satisfy α(b̄, c̄′, ā′), then ā′ 6 |̂cl

C
B.

(3) Follows as in [Adl05, Remark 2.3]. �

Definition 3.18 ([Adl05, Definition 1.1]). Let |̂ be a preindependence
relation on M. We say that |̂ is an independence relation on M if it
moreover satisfies Invariance, Local Character, and

Extension: If A |̂
C
B and D ⊇ B, then there exists A′ ≡BC A such that

A′ |̂
C
D.

Adler also defines the following axiom:

Existence: For any A, B, and C, there exists A′ ≡C A such that A′ |̂
C
B.

Corollary 3.19. If |̂cl satisfies either the Extension or the Existence axiom,
then it is an independence relation (and satisfies the Existence axiom).

Proof. See [Adl05, Thm. 2.5]. �

Definition 3.20. The matroid cl satisfies Existence if:
For every a, B, and C, if a /∈ cl(B), then there exists a′ ≡B a such that
a′ /∈ cl(BC).
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The following lemma will be quite useful in the following.

Lemma 3.21. T.f.a.e.:

1. cl satisfies Existence.

2. For every a, B, and C, if Ξ(a/B) ⊆ cl(BC), then a ∈ cl(B).

3. For every a, b̄, and c̄, if a /∈ cl(b̄), then there exists a′ ≡b̄ a such that
a′ /∈ cl(b̄c̄).

4. For every a, b̄, and c̄, and every x-narrow formula ψ(x, ȳ, z̄), if M |=
ψ(a′, b̄, c̄) for every a′ ≡b̄ a, then a ∈ cl(b̄).

5. For every formula (without parameters) φ(x, ȳ) and every x-narrow
formula ψ(x, ȳ, z̄), if M |= ∀ȳ ∃z̄ ∀x

(
φ(x, ȳ) → ψ(x, ȳ, z̄)

)
, then φ is

x-narrow.

6. For every a and B, if rkcl
(
Ξ(a/B)

)
is finite, then a ∈ cl(B).

7. For every a and B, if rkcl
(
Ξ(a/B)

)
< κ, then a ∈ cl(B).

8. |̂cl is an independence relation.

Proof. The only nontrivial fact is (5⇒ 4), which is proved by a compactness
argument. �

Remark 3.22. If cl satisfies Existence, then aclA ⊆ clA.

Lemma 3.23. Assume that cl(A) is an elementary substructure of M, for
every A ⊂ M. Then, cl satisfies Existence, and therefore |̂cl is an indepen-
dence relation. Hence, if T has definable Skolem functions and cl extends acl,
then cl is satisfies Existence.

Proof. Let Ξ(a/B) ⊆ cl(BC). We want to prove that a ∈ cl(B). Let B′ and
C ′ be elementary substructures of M, such that B ⊆ B′ ⊆ cl(B), B′C ⊆ C ′ ⊆
cl(BC), |B′| < κ, and |C ′| < κ (B′ and C ′ exist by hypothesis on cl). By
substituting B with B′ and C with C ′, w.l.o.g. we can assume that B � C ≺
M. By saturation, there exist an x-narrow formula φ(x, ȳ, z̄), b̄ ⊂ B, and
c̄ ⊂ C, such that Ξ(a/B) ⊆ φ(M, b̄, c̄). Let p := tp(a/B), let q ∈ S1(C) be a
heir of p, and a′ be a realisation of q. Since φ(x, b̄, c̄) ∈ q, there exists b̄′ ∈ B
such that φ(x, b̄, b̄′) ∈ p. Hence, a′ ∈ cl(B); since a′ ≡B a, a ∈ cl(B). �

Definition 3.24. The trivial matroid cl0 is given by cl0(X) = M for every
X ⊆M. The trivial matroid cl0 is a definable matroid and satisfies Existence.
It induces the trivial preindependence relation |̂0 , such that A |̂0

B
C for

every A, B, and C. Notice that |̂0 is an independence relation.
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Definition 3.25. We say that cl is an existential matroid if cl is a definable
matroid, satisfies Existence, and is nontrivial (i.e., different from cl0).

Notice that every existential matroid cl defines an independence relation
|̂cl, and is uniquely determined by |̂cl (Remark 3.7); however, not every
independence relation is induced by some matroid.

Examples 3.26. 1. Given n ∈ N, the uniform matroid of rank n is
defined as: cln(X) := X, if |X| < n, or M if |X| ≥ n. The uniform
matroid cln is a definable matroid, but does not satisfy Existence in
general (unless n = 0).

2. Define id(X) := X. Then, id is a definable matroid, but does not
satisfy Existence in general. The preindependence relation induced by
id is given by A |̂id

B
C iff A ∩ C ⊆ B.

Remark 3.27. Let M′ be another monster model of T . We can define an
operator clM

′
on M′ in the following way:

clM
′
(X ′) :=

⋃
{φ(M′, ā′) : φ(x, ȳ) x-narrow & ā′ ⊂ X ′}.

Then, clM
′
is a definable matroid. If cl satisfies existence, then clM

′
also

satisfies existence. We will call clM
′
the extension of cl to M′.

Remark 3.28. Notice that the definitions of “definable” (3.15) and “existen-
tial” (3.25 and 3.20) make sense also for finitary closure operators (and not
only for matroids).

However, we will not need such more general definitions.

Proviso. For the remainder of this section, cl is an existential matroid.

Summarising, we have: |̂cl is an independence relation, satisfying the
Strong Finite Character axiom. In particular, if M is a pregeometric struc-
ture, then |̂acl is an independence relation.

3.2. Dimension
Definition 3.29. Given a set V ⊆ Mn, definable with parameters A, the
dimension of V (w.r.t. to the matroid cl) is given by

dimcl(V ) := max{rkcl(b̄/A) : b̄ ∈ V },

with dimcl(V ) := −∞ iff V = ∅. More generally, the dimension of a partial
type p with parameters A is given by

dimcl(p) := max{rkcl(b̄/A) : b̄ |= p}.

10



The following remark shows that the above notion is well-posed: in its
proof, it is important that cl satisfies existence.

Remark 3.30. Let V be a type-definable subset of Mn. Then, dimcl(V ) ≤ n,
and dimcl(V ) does not depend on the choice of the parameters.

Remark 3.31. For every d ≤ n ∈ N, the set of complete types in Sn(A) of
dimcl greater or equal to d is closed (in the Stone topology). That is, dimcl

is continuous in the sense of [Poi85, §17.b].

Remark 3.32. dimcl(Mn) = n. Moreover, dimcl is monotone: if U ⊆ V ⊆
Mn, then dimcl(U) ≤ dimcl(V ).

Lemma 3.33. Let p be a partial type over A. Then,

dimcl(p) := min{dimcl(V ) : V is A-definable & V ∈ p}.

Moreover, if p is a complete type, then, for every b̄ |= p, rkcl(b̄/A) = dimcl(p).

Proof. Let d := dimcl(p), e := min{dimcl(V ) : V is A-definable & V ∈ p},
and b̄ |= p be such that d = rkcl(b̄/A). Let V ∈ p be such that dimcl(V ) = e;
then, b̄ ∈ V , and therefore e ≥ rkcl(b̄/A) = d.

For the opposite inequality, first assume that p is a complete type.
W.l.o.g. b̃ := 〈b1, . . . , bd〉 are cl-independent over A, and therefore bi ∈
cl(Ab̃) for every i = d + 1, . . . , n. For every i ≤ n, let φi(x, ȳ, z̄) be
an x-narrow formula such that M |= φ(bi, b̃, ā) (where ā ⊂ A); define
ψ(x̄, z̄) :=

∧n
i=1 φi(xi, x1, . . . , xd, z̄), and V := ψ(Mn, ā). Then, for every

b̄′ ∈ V , rkcl(b̄′/A) ≤ d, and therefore dimcl(V ) ≤ d. Moreover, b̄ ∈ V , hence
V ∈ p, and therefore e ≤ d.

For the general case when p is a partial type, let P be the set of complete
types over A extending p. Then, by the previous result on complete types,
for every q ∈ P , there exists an A-definable set Wq such that Wq ∈ q and
dimcl(Wq) = dimcl(q) ≤ d. By compactness, there exists V ∈ p such that
V ⊆ W , where W := Wq1 ∪ · · · ∪Wql . Hence,

e ≤ dimcl(V ) ≤ dimcl(W ) ≤ max
i≤l

(
dimcl(Wi)

)
≤ d. �

Definition 3.34. Given p ∈ Sn(B) and q ∈ Sn(C), with B ⊆ C, we say that
q is a nonforking extension of p (w.r.t. cl) if q extends p and dimcl(q) =
dimcl(p). We write q |̂cl

B
C if q is a nonforking extension of q�B

Remark 3.35. Let B ⊆ C and q ∈ Sn(C). Then, q |̂cl
B
C iff, for some (for

all) ā realising q, ā |̂cl
B
C.
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Remark 3.36. Let p ∈ Sn(B) and B ⊆ C. Then, for every q ∈ Sn(C)
extending p, dimcl(q) ≤ dimcl(p). Moreover, there exists q ∈ Sn(C) which is
a nonforking extension of p.

Lemma 3.37. Let |̂f be Shelah’s forking relation on M. Then, for every A,
B, and C subsets of M, if A |̂f

B
C, then A |̂cl

B
C. In particular, if K ≺M,

K ⊆ C, and q ∈ Sn(C), and q is either a heir or a coheir of q �K, then
q |̂clKC.

Proof. The fact that |̂f implies |̂cl is a particular case of [Adl05, Re-
mark 1.20]. For the case when q is a coheir of q�K, see also Lemma 3.17(3).

�

Corollary 3.38. Assume that T is supersimple and p ∈ Sn(A) for some
A ⊆ M. Then, SU(p) ≥ dimcl(p), where SU is the SU-rank (see [Wag00,
§5.1]).

Remark 3.39. Given B ⊇ A, let Nn(B/A) be the set of all n-types over
B that do not fork over A. Since |̂cl satisfies Strong Finite Character (cf.
Lemma 3.17(2)), Nn(B/A) is closed in Sn(B).

Lemma 3.40. For every complete type p, dimcl(p) is the maximum of the
cardinalities n of chains of complete types p = q0 ⊂ q1 ⊂ . . . ⊂ qn, such that
each qi+1 is a forking extension of qi.

Proof. Let A be the set of parameters of p, and b̄ |= p. Let d := dimcl(p);
w.l.o.g., b̃ := 〈b1, . . . , bd〉 are independent over A. For every i ≤ d let Ai :=
Ab1 . . . bi, and qi := tp(b̄/Ai). Then, p = q0 ⊂ · · · ⊂ qd, and each qi+1 is a
forking extension of qi.

Conversely, assume that p = q0 ⊂ · · · ⊂ qn, and each qi+1 is a forking
extension of qi.
Claim 1. For every i ≤ n, dimcl(qn−i) ≥ i; in particular, dimcl(p) ≥ n.

By induction on i. The case i = 0 is clear. Assume that we have proved
the claim for i, we want to show that it holds for i+1. Since qn−i is a forking
extension of qn−(i+1), dimcl(qn−i) < dimcl(qn−(i+1)), and we are done. �

Remark 3.41. Let V ⊆Mn be nonempty and definable with parameters ā.
Then, either dimcl(V ) = 0 = rkcl(V/ā), or dimcl(V ) > 0 and rkcl(V ) ≥ κ.

Remark 3.42. A formula φ(x, ȳ) is x-narrow iff, for every b̄ ∈ Mn,
dimcl

(
φ(M, b̄)

)
≤ 0.
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Remark 3.43. Let φ(x, ȳ) be a formula without parameters, and ā ∈ Mn.
Then, dimcl(φ(M, ā)) = 0 iff there exists an x-narrow formula ψ(x, ȳ) such
that ∀x

(
φ(x, ā)→ ψ(x, ā)

)
. Therefore, define

Γφ(ȳ) := {¬θ(ȳ) : θ(ȳ) formula without parameters s.t.

∀ā
(
θ(ā)→ dimcl(φ(M, ā)) = 0

)
},

U1
φ := {ā ∈Mn : dimcl(φ(M, ā)) = 1}.

Then, U1
φ = {ā ∈ Mn : M |= Γφ(ā)}, and in particular U1

φ is type-definable
(over the empty set).

More generally, let k ≤ m, x̄ := 〈x1, . . . , xm〉, and φ(x̄, ȳ) be a formula
without parameters. Define

U≥kφ := {ā ∈Mn : dimcl(φ(Mm, ā)) ≥ k}.

Then, U≥kφ is type-definable.

Lemma 3.44 (Fibre-wise dimension inequalities). Let U ⊆Mm1, V ⊆Mm2,
and F : U → V be definable, with parameters C. Let X ⊆ U and Y ⊆ V be
type-definable, such that F (X) ⊆ Y . Define f := F � X : X → Y . For every
b̄ ∈ Y , let Xb̄ := f−1(b̄) ⊆ X, and m := dimcl(Y ).

1. If, for every b̄ ∈ Y , dimcl(Xb̄) ≤ n, then dimcl(X) ≤ m+ n.

2. If f is surjective and, for every b̄ ∈ Y , dimcl(Xb̄) ≥ n, then dimcl(X) ≥
m+ n.

3. If f is surjective, then dimcl(X) ≥ m.

4. If f is injective, then dimcl(X) ≤ m.

5. If f is bijective, then dimcl(X) = m.

Proof. 1) Assume, for contradiction, that dimcl(X) > m + n. Let ā ∈ X
be such that rkcl(ā/C) > m + n, and b̄ := F (ā). Since ā ∈ Xb̄, and Xb̄ is
type-definable with parameters Cb̄, rkcl(ā/b̄C) ≤ n. Hence, by Remark 3.2,
rkcl(ā/C) ≤ rkcl(āb̄/C) ≤ m+ n, absurd.

2) Let b̄ ∈ Y be such that dimcl(b̄/C) = m. Let ā ∈ Xb̄ be such that
dimcl(ā/b̄C) ≥ n. Then, by Remark 3.2, rkcl(āb̄/C) ≥ m+n. However, since
ā = F (b̄), ā ⊂ cl(b̄C), and therefore rkcl(b̄/C) = rkcl(āb̄/C) ≥ m+ n.

(3) follows from (2) applied to n = 0. The other assertions are clear. �

Remark 3.45. Let cl′ be another existential matroid on M. T.f.a.e.:
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1. cl ⊆ cl′;

2. rkcl ≥ rkcl′ ;

3. dimcl ≥ dimcl′ on definable sets;

4. dimcl ≥ dimcl′ on complete types;

5. for every definable set X ⊆M, if dimcl(X) = 0, then dimcl′(X) = 0.

T.f.a.e.:

1. cl = cl′;

2. rkcl = rkcl′ ;

3. dimcl = dimcl′ on definable sets;

4. dimcl = dimcl′ on complete types;

5. for every definable set X ⊆M, dimcl(X) = 0 iff dimcl′(X) = 0.

We will show that, for many interesting theories, there is at most one ex-
istential matroid. Define TR-0 to be the theory of rings without zero divisors,
in the language of rings LR := (0, 1,+, ·).

Definition 3.46 ([DMS10, 1.18]). If K expands a ring without zero divisors,
let F : K4 → K be the following function, definable without parameters in
the language LR:

〈x1, x2, y1, y2〉 7→

{
t if y1 6= y2 & t · (y1 − y2) = x1 − x2;

0 if there is no such t.

Notice that F is well-defined, because in a ring without zero divisors, if
y1 6= y2, then, for every x, there exists at most one t such that t·(y1−y2) = x.

Lemma 3.47 ([DMS10, 1.18]). Assume that T expands TR-0. Let A ⊆M be
definable. Then, dimcl(A) = 1 iff M = F (A4).

Proof. Assume for contradiction that dimcl(A) = 1, but there exists c ∈
M \ F (A4). Since c /∈ F (A4), the function 〈x1, x2〉 7→ c · x1 + x2 : A2 →M is
injective. Hence, by Lemma 3.44, dimcl(M) ≥ dimcl(A2) = 2, absurd.

Conversely, by Lemma 3.44 again, if F (A4) = M, then dim(A) = 1. �

Theorem 3.48. If T expands TR-0, then cl is the only existential matroid
on M. If S is a definable subfield of M of dimension 1, then S = M.
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Proof. Let A ⊆ M be definable. By the previous lemma, dim(A) = 1 iff
F (A4) = M. Since the same holds for any existential matroid cl′ on M, we
conclude that, for every definable set A ⊆M, dimcl(A) = 0 iff dimcl′(A) = 0,
and hence dimcl = dimcl′ .

Given S a subfield of M, F (S4) = S. Hence, if dimcl(S) = 1, then
S = M. �

Examples 3.49. 1. In the above theorem, we cannot drop the hypothesis
that T expands TR-0. Let M be a set with an equivalence relation E,
such that E has infinitely many equivalence classes, all infinite, and
M be a monster elementary extension of 〈M,E〉. For every a ∈ M,
let Ea be the equivalence class of a, and define cl(A) :=

⋃
a∈AEa.

Then, acl and cl are two different existential matroids on M. The
example can be improved, taking for instance a chain E1 ⊃ E2 . . . of
equivalence relations, such that each Ei-equivalence class is the union
of infinitely many Ei+1-equivalence classes: each equivalence relation
will then induce a different existential matroid on M.

2. In Theorem 3.48 we cannot even relax the hypothesis to “T expands the
theory of a vector space”. In fact, let F be an ordered field, considered
as a vector space over itself, in the language 〈0, 1,+, <, λc〉c∈F, and let
T be its theory. Let T d be the theory of dense pairs of models of T .
[DMS10, 5.8] show that T d has elimination of quantifiers, and acl is a
matroid on T d. However, as the reader can verify, the small closure
Scl is another existential matroid on T d (cf. §8.4), and it is different
from acl.

Corollary 3.50. If M expands a field, then M must be a perfect field. In
particular, the theory of separably closed (but nonalgebraically closed) fields,
and the theory of differentially closed fields of finite characteristic do not
admit an existential matroid.

Proof. Cf. [vdD89, 1.6]. If M is not perfect, then Mp is a proper definable
subfield of M, where p := char(M), and therefore dimcl(Mp) = 0. However,
the map x 7→ xp is a bijection from M to Mp; therefore, dimcl(M) = 0,
absurd. �

Corollary 3.51. Let cl′ be a nontrivial definable matroid on some monster
model M′. Assume that M′ expands a model of TR-0. Then, t.f.a.e.:

1. cl′ is an existential matroid;

2. for every formula (without quantifiers) φ(x, ȳ), φ is x-narrow (w.r.t. cl′)
iff, for every b̄, F

(
(φ(M′, b̄)4

)
6= M′.
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Proof. (1⇒ 2) is clear.
(2⇒ 1) follows from Lemma 3.21(5). �

Lemma 3.52. Let K be a ring without zero divisors definable in M, of di-
mension n ≥ 1. Let F ⊆ K be a definable subring such that F is a skew field.
If dimcl(F) = n, then K = F.

Proof. Assume, for contradiction, that there exists c ∈ K \ F. Define h :
F×F→ K, h(x, y) := x+ cy. Since c /∈ F and F is a skew field, h is injective.
Thus, 2n = dim(F2) ≤ dim(K) = n, a contradiction. �

Corollary 3.53. Let K ⊆ Mn be a definable field, such that dimcl(K) ≥ 1.
Then, K is perfect.

Proof. Let p := char K, and φ : K → K be the Frobenius automorphism
φ(x) = xp. Since φ is injective, dimcl(Kp) = dimcl(K), and therefore Kp =
K. �

The assumption that dimcl(K) ≥ 1 is necessary: nonperfect definable
fields of dimension 0 can exist. For instance, let F be a nonperfect field, P be
an infinite set, and let K be the disjoint union of F and P , with the following
dimension function (cf. §4):

dim(X) = 1 iff X ∩ P is infinite, where X varies among the definable
subsets of K.

Then, F is a nonperfect field definable in K and of dimension 0.

Definition 3.54. Let X ⊆ Kn and Y ⊆ Km be definable. Let g : X  Y be
a definable application (i.e., a multi-valued partial function), with graph G.
For every x ∈ X, let g(x) := {y ∈ Y : 〈x, y〉 ∈ G} ⊆ Y . Such an application
g is a Z-application if, for every x ∈ X, dimcl

(
g(x)

)
≤ 0.

Remark 3.55. Let A ⊆ K, and b ∈ K. Then, b ∈ cl(A) iff there exists a ∅-
definable Z-application f : Kn  K and ā ∈ A, such that b ∈ f(ā). Moreover,
if c̄ ∈ Kn, then b ∈ cl(Ac̄) iff there exists an A-definable Z-application f :
Kn → K, such that b ∈ f(c̄).

Definition 3.56. We say that dimcl is definable if, for every d ∈ N and for
every X definable subset of Mm ×Mn, the set {ā ∈ Mm : dimcl(Xā) = d} is
definable.

Lemma 3.57. T.f.a.e.:

1. dimcl is definable;
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2. for every X definable subset of Mm ×M, the set X1,1 := {ā ∈ Mm :
dimcl(Xā) = 1} is also definable;

3. for every k ≤ n, every m, and every X definable subset of Mm ×Mn,
the set Xn,k := {ā ∈ Mm : dimcl(Xā) = k} is also definable, with the
same parameters as X.

Proof. (3⇒ 1⇒ 2) is obvious.
(2 ⇒ 1) We will prove by induction on n that, for every Y definable

subset of Kn ×Km, the set Y n,≥k := {ā ∈ Mm : dimcl(Xā) ≥ k} is definable.
The case k = 0 is clear. The case k = 1 follows from the assumption and
the observation that, for every Z definable subset of Kn, dimcl(Z) ≥ 1 iff
dimcl(θ(Z)) ≥ 1 for some θ projection from Kn onto a coordinate axis. The
inductive step follows from the fact that

Xn,≥k =
(
Πn+m
n+m−1(X)

)n−1,≥k ∪
(
Xn+m−1,≥1

)n−1,≥k−1
.

(1⇒ 3) LetX ⊆ Kn+m be definable with parameters A. Then, Xn,k is M-
definable, by assumption. Moreover, by Remark 3.43, Xn,k is type-definable
over A, and therefore invariant under automorphisms that fix A point-wise.
Hence, by Beth’s definability theorem, Xn,k is definable over A. �

Corollary 3.58. If T expands TR-0, then dimcl is definable.

Proof. By Lemmas 3.47 and 3.57(2). �

See Remark 14.5 for examples when dimcl is not definable.

Examples 3.59. 1. Let λ and η be ordinal numbers, such that λ is a
power of ω (e.g., λ = 1, λ = ω, . . . ). Let K be a monster model, and
assume that:

• either K is superstable of Lascar U-rank η;
• or K is supersimple of SU-rank η;
• or K is superrosy of þ-rank η (see [EO07] for definitions).

Denote by R be corresponding rank in the various cases (U, SU, Uþ).
Assume that η < m · λ for some m ∈ N. For every a ∈ K and B ⊂ K,
define a ∈ clλ(B) if R(a/B) < λ. It is easy to see that clλ is a closure
operator on K satisfying Existence. Assume now that η < 2λ; then, clλ
is a matroid. Moreover, clλ is nontrivial iff there exists a unary type
p such that R(p) ≥ λ (which, in general, is a stronger condition than
R(K) ≥ λ). Moreover, for every type q, R(q) = rkclλ(q) · λ + ρ, where
ρ is some (unique) ordinal such that ρ < λ. However, clλ might not be
definable.
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2. Let λ be as above, and G be a monster model of a superstable group,
such that U(G) = λ. Define clλ as in (1). Then, clλ is nontriv-
ial, because there exists at least one generic type (i.e., a type of U-
rank λ) [Poi87, Corollary 5.2]. If X is a definable subset of G, then
dimclλ(X) = 1 iff X is generic (that is, finitely many bilateral translates
of X cover G). By [Poi87, Lemma 5.4], and Lemma 3.57(2), clλ is a
definable (and thus existential) matroid, with definable dimension.

3. Let K be a monster differentially closed field, and p ≥ 0 be its charac-
teristic. If p = 0, then K is superstable, and U(K) = ω; hence, by the
previous example, there exists a (unique) existential matroid cl on K.
It is easy to see that, if A is a differential subfield of K and b ∈ K, then
b ∈ cl(A) iff b is differential-algebraic over A (that is, iff b, db, d2b, . . .
are algebraically dependent over A); see [Woo76] and [vdD89, 2.25].
On the other hand, if p > 0, then there is no existential matroid on K,
because K is not perfect (Corollary 3.50).

3.3. Morley sequences
Most of the results of this subsection remain true for an arbitrary inde-

pendence relation |̂ instead of |̂cl.
Definition 3.60. Let C ⊆ B, p(x̄) ∈ Sn(B), and 〈I,≤〉 be a linear order.
A Morley sequence over C indexed by I in p is a sequence (āi : i ∈ I)
of tuples in Mn, such that (āi : i ∈ I) are order-indiscernible over B and
independent over C, and every āi realises p(x̄).
A Morley sequence over C is a Morley sequence over C in some p ∈ Sn(C).
A Morley sequence in p is a Morley sequence over B in p.

Lemma 3.61. Let 〈I,≤〉 be a linear order, with |I| < κ. Let p(x̄) ∈ Sn(C).
Then, there exists a Morley sequence in p(x̄) indexed by I. If moreover
b̄ |̂cl

C
d̄, then there exists a Morley sequence (āi : i ∈ I) over C indexed by I

in p(x̄), such that (b̄āi : i ∈ I) are order-indiscernible over Cd̄ and, for every
i ∈ I, b̄āi |̂clC d̄(āj : i 6= j ∈ I).

Proof. Let (x̄i : i ∈ I) be a sequence of n-tuples of variables. Consider the
following set of C-formulae:

Γ1(x̄i : i ∈ I) :=
∧
i∈I

p(x̄i) &
∧
i∈I

x̄i |̂cl
C

(x̄j : j < i).

First, notice that, by Remark 3.39, Γ1 is a set of formulae. Consider the
following set of C-formulae:

Γ2(x̄i : i ∈ I) :=Γ1(x̄i : i ∈ I) &

(x̄i : i ∈ I) are order-indiscernible over C.
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By [Adl05, 1.12], Γ2 is consistent.
We give an alternative proof of the above fact, which does not use Erdös-

Rado.
Claim 1. Γ2 is consistent.

First, we prove that Γ1 is finitely satisfiable; hence, w.l.o.g. I = {0, . . . ,m}
is finite. Let ā0 be any realisation of p(x̄). Let ā1 ≡C ā0 be such that
ā1 |̂clC ā0, . . . , let ām ≡C ā0 be such that ām |̂clC ā0 . . . ām−1. Therefore, Γ1

is consistent, and thus, by Ramsey’s Theorem, Γ2 is also consistent.
Since |I| < κ, there exists a realisation (āi : i ∈ I) of Γ2. Then, by

Lemma 3.12, (āi : i ∈ I) is a Morley sequence in p(x̄) over C.
If moreover b̄ and d̄ satisfy b̄ |̂cl

C
d̄, let q(x̄, ȳ, z̄) be the extension of p(x̄)

to S(Cb̄d̄) satisfying ȳ = b̄ and z̄ = d̄. Let (āib̄d̄ : i ∈ I) be a Morley sequence
in q(x̄, ȳ, z̄). By Lemma 3.11, for every i ∈ I we have b̄āi |̂clC d̄(āj : i 6= j ∈
I). �

Definition 3.62. A type p ∈ Sn(A) is stationary if, for every B ⊇ A, there
exists a unique q ∈ Sn(B) such that q is a nonforking extension of p.

Remark 3.63. Let p ∈ Sn(A). If dimcl(p) = 0, then p is stationary iff p is
realised in dcl(A).

Hence, unlike the stable case, if cl 6= acl, then there are types over models
which are nonstationary.

Lemma 3.64. Let C ⊇ B and q ∈ Sn(C) be such that q |̂cl
B
C. Let (āi : i ∈

I) be a sequence of realisations of q independent over C. Then, (āi : i ∈ I)
is also independent over B. If moreover q is stationary, then

1. (āi : i ∈ I) is a totally indiscernible set over C, and in particular it is
a Morley sequence for q over B.

2. If (ā′ : i ∈ I) is another sequence of realisations of q independent
over C, then (āi : i ∈ I) ≡C (ā′i : i ∈ I).

Proof. Standard proof. More precisely, for every i ∈ I, let d̄i := (aj : i 6= j ∈
I). By assumption, āi |̂clC d̄i, and, since q |̂

cl

B
C, āi |̂clB C, and therefore

āi |̂clB d̄i, proving that (āi : i ∈ I) is independent over B.
Let us prove Statement (2). By compactness, w.l.o.g. I = {1, . . . ,m} is

finite. Assume, for contradiction, that (ā : i ≤ m) 6≡C (ā′ : i ≤ m); by
induction on m, we can assume that (āi : i ≤ m − 1) ≡C (ā′i : i ≤ m − 1),
and therefore, w.l.o.g., that āi = ā′i for i = 1, . . . ,m− 1. However, since q is
stationary, ām ≡C ā′m, ām |̂clC(āi : i ≤ m − 1), and ā′m |̂clC(āi : i ≤ m − 1),
we have that ām ≡C(āi:i≤m−1) ā

′
m, absurd.
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Finally, it remains to prove that the set (āi : i ∈ I) is totally indiscernible
over C. If σ is any permutation of I, then (āσ(i) : i ∈ I) is also a sequence
of realisations of q independent over C, and therefore, by Statement (2),
(āσ(i) : i ∈ I) ≡C (āi : i ∈ I). �

Corollary 3.65. Assume that there is a definable linear ordering on M.
Then, p ∈ Sn(A) is stationary iff p is realised in dcl(A). Hence, if dimcl(p) >
0, every nonforking extension of p is nonstationary.

Proof. Assume that p is stationary, but, for contradiction, that dimcl(p) > 0.
Then, there is a Morley sequence in p with at least two elements ā0 and ā1.
Since dimcl(p) > 0, ā0 6= ā1. By Lemma 3.64, tp(ā0ā1/A) = tp(ā1ā0/A),
absurd. �

Contrast the above corollary to the case of stable theories, where instead
every type has at least one stationary nonforking extension.

Corollary 3.66. Let B ⊆ C and q ∈ Sn(C). Then, t.f.a.e.:

1. q |̂cl
B
C;

2. there exists an infinite sequence of realisations of q that are independent
over B;

3. every sequence (āi : i ∈ I) of realisations of q that are independent
over C are independent also over B;

4. there exists an infinite Morley sequence in q over B.

Proof. Cf. [Adl05, 1.12–13].

(1⇒ 3) Let (āi : i ∈ I) be a sequence of realisations of q independent over C.
For every i ∈ I, let d̄i := (āj : i 6= j ∈ I). Since āi |̂ C d̄i and āi |̂ B C,
we have āi |̂ B d̄i.

(3⇒ 4) Let (āi : i ∈ I) be an infinite Morley sequence in q over C: such
sequence exists by Lemma 3.61 (or by [Adl05, 1.12]). Then, (āi : i ∈ I)
is independent also over B, and hence a Morley sequence for q over B.

(4⇒ 2) is obvious.

(2⇒ 1) Choose λ < κ a regular cardinal large enough. Let (ā′i : i < ω) be a
sequence of realisations of q independent over B. By saturation, there
exists a sequence (āi : i < λ) of realisations of q independent over B.
By Local Character, and since λ is regular, there exists α < λ such
that āα |̂clBd̄C, where d̄ := (āi : i < α). Since moreover āα |̂clB d̄, we
have āα |̂clB C, and therefore q |̂cl

B
C. �
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3.4. Local properties of dimension
In this subsection, we will show that the dimension of a set can be checked

locally: what this means precisely will be clear in §9, where the results given
here will be applied to a “concrete” situation.

Definition 3.67. A quasi-ordered set 〈I,≤〉 is a directed set if every pair
of elements of I has an upper bound.

Lemma 3.68. Let 〈I,≤〉 be a directed set, definable in M with parameters c̄.
Then, for every ā ∈ I and d̄ ⊂ M there exists b̄ ∈ I such that b̄ ≥ ā and
d̄ā |̂cl

c̄
b̄.

Proof. Fix ā ∈ I and d̄ ⊂M, and assume, for contradiction, that every b̄ ≥ ā
satisfies d̄ā 6 |̂cl

c̄
b̄.

W.l.o.g., c̄ = ∅. Let λ be a large enough cardinal; at the price of increasing
κ if necessary, we may assume that λ < κ. By Lemma 3.61, there exists a
Morley sequence (d̄′iā

′
i : i < λ) in tp(d̄ā/∅). Consider the following set of

formulae over {ā′i : i < λ}:

Λ(x̄) := {x̄ ∈ I, x̄ ≥ ā′i : i < λ}.

Since 〈I,≤〉 is a directed set, Λ is consistent: let b̄ ∈ I be a realisation of Λ.
By Erdös-Rado Theorem, there exists a Morley sequence (d̄iāi : i < ω) in
tp(d̄ā/∅), such that all the d̄iāi satisfy the same type q(x̄, ȳ) over b̄, and
āi ≤ b̄ for every i < ω. Therefore, by Corollary 3.66, q |̂cl b̄, and in particular
ā0d̄0 |̂cl b̄. Since ā0d̄0 ≡ ād̄, there exists b̄′ ≥ ā such that ā0d̄0b̄ ≡ ād̄b̄′, so
b̄′ |̂ d̄ā and b̄′ ≥ ā, a contradiction. �

Lemma 3.69. Let X ⊆ Mn be definable with parameters c̄ and
(
Ut̄
)
t̄∈I be

a family of subsets of Mn, such that each Ut̄ is definable with parameters t̄c̄.
Let d ≤ n, and assume that, for every ā ∈ X there exists b̄ ∈ I such that
ā ∈ Ub̄, ā |̂cl c̄ b̄, and dimcl(X ∩ Ub̄) ≤ d. Then, dimcl(X) ≤ d.

Proof. Assume, for contradiction, that dimcl(X) > d; let ā ∈ X be such that
rkcl(ā/c̄) > d. Choose b̄ as in the hypothesis of the lemma; then, rkcl(ā/b̄c̄) >
d, absurd. �

Lemma 3.70. Let I ⊆Mn be definable and < be a definable linear ordering
on I. Let

(
Xb̄

)
b̄∈I be a definable increasing family of subsets of Km and

X :=
⋃
b̄∈I Xb̄. Let d ≤ m, and assume that, for every b̄ ∈ I, dimcl(Xb̄) ≤ d.

Then, dimcl(X) ≤ d.
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Proof. Let c̄ be the parameters used to define I, <, and
(
Xb̄

)
b̄∈I . Let ā ∈ X

be such that rkcl(ā/c̄) = dimcl(X). Let b̄ ∈ I be such that ā ∈ Xb̄. Choose
ā′, b̄′ ⊂M such that ā′b̄′ ≡c̄ āb̄ and ā′b̄′ |̂cl c̄ āb̄. W.l.o.g., b̄′ ≥ b̄; hence, ā ∈ Xb̄′

and
d ≥ dimcl(Xb̄′) ≥ rkcl(ā/c̄b̄′) = rkcl(ā/c̄) = dimcl(X). �

We can extend the above lemma to directed families.

Lemma 3.71. Let 〈I,≤〉 be a definable directed set. Let
(
Xb̄

)
b̄∈I be a defin-

able increasing family of subsets of Mm and X :=
⋃
b̄∈I Xb̄. Let d ≤ m, and

assume that, for every b̄ ∈ I, dimcl(Xb̄) ≤ d. Then, dimcl(X) ≤ d.

Proof. W.l.o.g., 〈I,≤〉 and the family
(
Xb̄

)
b̄∈I are definable without param-

eters. Let ā ∈ X be such that rkcl(ā) = dimcl(X), and let b̄0 ∈ I be such
that a ∈ Xb̄0 . By the Lemma 3.68, there exists b̄ ∈ I such that b̄ ≥ b̄0 and
āb̄0 |̂cl b̄. Hence, ā ∈ Xb̄ and ā |̂cl b̄, and therefore

d ≥ dimcl(Xb̄) ≥ rk(ā/b̄) = rk(ā) = dimcl(X). �

Remark 3.72. The above lemma is not true if
(
Xb̄

)
b̄∈I be a definable de-

creasing family of subsets of Mm, instead of increasing. For instance, let K be
a real closed field, cl = acl, I := (K<0 ×K) ∪ {〈0, 0〉}; define 〈x, y〉 ≤ 〈x′, y′〉
if x ≤ x′ and y = y′, or x = 0. Let Ib1,b2 := {〈x, y〉 ∈ I : 〈x, y〉 ≥ 〈b1, b2〉}.
Then, 〈I,≤〉 is a directed set, dimacl(I) = 2, but dimacl(Ib̄) ≤ 1 for every
b̄ ∈ I.

4. Matroids from dimensions

Van den Dries in [vdD89] gave a definition of dimension for definable sets;
we will show that his approach is almost equivalent to ours. Let K be a first
order structure.

Definition 4.1. A dimension function on K is a function d from K-defin-
able sets to {−∞} ∪ N, such that, for all m ∈ N and S, S1 and S2 definable
subsets of Km, we have:

(Dim 1) d(S) = −∞ iff S = ∅, d({a}) = 0 for every a ∈ K, d(K) = 1.

(Dim 2) d(S1 ∪ S2) = max
(
d(S1), d(S2)

)
.

(Dim 3) d(Sσ) = d(S) for every permutation σ of the coordinates of Km.
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(Dim 4) Let U be a definable subset of Km+1, and, for i = 0, 1, let U(i) :
= {x ∈ Km : d(Ux) = i}. Then, U(i) is definable with the same
parameters as U , and d(U ∩ π−1(U(i))) = d(U(i)) + i, i = 0, 1, where
π := Πm+1

m .

Notice that the axiom (Dim 4) is slightly stronger that the original axiom
in [vdD89]; however, after expanding K by at most |T | many constants, the
situation in [vdD89] can be reduced to ours. (3)

Definition 4.2. Given a dimension function d on K, for every A ⊂ K and
b ∈ K we define b ∈ cld(A) iff there exists X ⊆ K definable with parameters
in A, such that d(X) = 0 and b ∈ X.

Theorem 4.3. The operator cld (more precisely, the extension of cld to a
monster model) is an existential matroid with definable dimension. The di-
mension induced by cld is precisely d.

Conversely, if cl is an existential matroid with definable dimension, then
dimcl is a dimension function, and cldimcl

= cl.

Proof. The only nontrivial facts are that, if d is a dimension function, then
cld is definable and satisfies EP and the Existence axiom.

Definability) Let a ∈ cl(B). Let X ⊆ K be B-definable such that d(X) =
0 and a ∈ X. Let φ(x, b̄) be the B-formula defining X. By (Dim 4), w.l.o.g.
d(φ(K, ȳ) ≤ 0 for every ȳ.(4) Hence, φ(x, ȳ) is an x-narrow formula.

EP) Let a ∈ cl(Bc) \ cl(B). Assume, for contradiction, that c /∈ cl(Ba).
Let X ⊆ K2 be B-definable, such that a ∈ Xc and d(Xc) = 0. Let X ′ :=
X ∩π−1(X(0)), where π := Π2

1. By assumption, 〈c, a〉 ∈ X ′ and, by (Dim 4),
dim(X ′) ≤ 1; w.l.o.g., X = X ′.

Let Z := {u ∈ K : d(Xu) = 1}. Since c ∈ Xa and c /∈ cl(Ba), a ∈ Z.
Since a /∈ cl(B), d(Z) = 1. Hence, by (Dim 4) and (Dim 3), d(X) = 2,
absurd.

Existence) Immediate from Lemma 3.21(5). �

5. Expansions

Remember that M is a monster model of a complete L-theory T . We are
interested in the behaviour of definable matroids under expansions of M. In

(3) [Mat95, §9] also considered a similar notion of dimension function, where (Dim 4) is
substituted with a different axiom that does not imply the definability of U(i).
(4) Here it is important that in (Dim 4) we asked that the parameters of U(i) are the
same as the parameters of U .
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this section we assume that cl = clM is a closure operator on the monster
model M.

Definition 5.1. Given X ⊆ M, let the restriction clX : P(X) → P(X)
and the relativisation clX : P(M)→ P(M) of clM be defined as clX(Y ) :=
clM(Y ) ∩X and clX(Y ) := clM(XY ).

Notice that when M′ � M we have already introduced in Remark 3.27
the notation clM

′
for the “extension” of clM to M′: this is not problematic,

because the two notions coincide for existential matroids.

Remark 5.2. Given X ⊆ M, clX is a closure operator on X and clX is a
closure operator on M. If moreover cl is a matroid, then both clX and clX
are matroids, A |̂clX

B
C iff A |̂cl

XB
C, and |̂clX is the restriction of |̂cl to the

subsets of X.

In particular, for every X ⊆M, the rank and the notion of independence
coincide for clM and clX (but they are quite different from the corresponding
notions for clX !) and therefore we do not need to specify e.g. if the rank is
taken w.r.t. clM or w.r.t. clX .

Remark 5.3. Given B ⊂ M (with |B| < κ), let MB be the expansion of M
with all constants from B, and consider clB as a matroid on MB.

1. if clM is definable, then clB is also definable (see Remark 3.28).

2. if clM is a matroid, then clB is also a matroid;

3. if clM is definable and satisfies Existence, then clB satisfies Existence
too;

4. if clM is an existential matroid, then clB is also an existential matroid,
and dimclM and dimclB coincide (the definable sets of M and of MB are
the same).

Example 5.4. In the above remark, it is not true that, if clM is a defin-
able matroid, and clB satisfies Existence, then clM satisfies Existence. For
instance, let B be any nonempty subset of M (of cardinality less than κ),
and clM = cl1 (see Example 3.26); then, clB = cl0 satisfies Existence, but clM

does not.

Lemma 5.5. Let X ⊆M. Let M′ be the expansion of M with a predicate P
for X. Assume that M′ is a monster model, and denote by cl′X the closure
operator cl′X(Y ) := clM(XY ) on M′ (cl′X coincides with clX).
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1. If clM is definable, then cl′X is definable on M′;

2. if clM is a matroid, then cl′X is a matroid;

Proof. Let D ⊆ X be such that |D| < κ and clM(X) = clM(D).

1. b ∈ cl′X(A) iff b ∈ clM(AX) iff M |= φ(b, ā, c̄) for some x-narrow formula
φ(x, ȳ, z̄), some ā ⊆ A and some c̄ ∈ Xn. Define ψ(x, ȳ) := ∃z̄

(
P (z̄)

& φ(x, ȳ, z̄)
)
. Notice that ψ is an L(P )-formula, and that, for every

ā′ ⊂M, ψ(M′, ā′) ⊆ cl′X(ā′).

2. Trivial. �

Remark 5.6. Let M, X and M′ be as in the above lemma. Let 〈B, Y 〉 ≺
〈M, X〉; assume moreover that clM is a definable closure operator on M.
Then, (clB)Y = (clX)B: that is, for every A ⊆ B, B ∩ clY (A) = B ∩ clX(A).

Hence, in the above situation, inside B we do not need to distinguish
between clX and clY .

Remark 5.7. Let cl be a definable matroid (not necessarily existential) and
X, Y , X∗, and Y ∗ be elementary substructures of M, such that X ⊆ X∗ ∩Y
andX∗∪Y ⊆ Y ∗. Let L2 be the expansion of L with a new unary predicate P ,
and consider 〈Y,X〉 and 〈Y ∗, X∗〉 as L2-structures. Assume that (Y,X) �
(Y ∗, X∗). Then, X∗ |̂cl

X
Y .

Proof. Let x̄∗ ⊂ X∗; it suffices to prove that x̄∗ |̂cl
X
Y . However, tpL(x∗/Y )

is finitely satisfied in X, and we are done. �

Assume that M expands a ring without 0 divisors. Let M′ be an expansion
of M to a larger language L′; assume that M′ is also a monster model and
that cl′ is an existential matroid on M′. We have seen that in this case cl′ is
the unique existential matroid on M′, and that, for every X definable subset
of M′, dim′(X) = 0 iff F (X4) 6= M′ (where dim′ is the dimension induced
by cl′). It is clear that cl′, in general, is not definable in M. However,
the dimension function dim′ is definable in M: hence, we can restrict the
dimension function dim′ to the sets definable in M (with parameters), and
get a function dim.

Remark 5.8. Let M, M′, dim′ and dim be as above. Then, dim is a di-
mension function on M (i.e., it satisfies the axioms in Definition 3.29). The
matroid cl induces by dim is characterised by:

For every A and b, we have b ∈ cl(A) iff there exists X ⊆M, definable in
M with parameters A, such that F (X4) 6= M and b ∈ X.
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Corollary 5.9. Assume that M expands a ring without zero divisors. Let
M′ be an expansion of M. If M′ is geometric, then M is also geometric.

Compare the above corollary with [Adl05, Corollary 2.38 and Exam-
ple 2.40].

6. Extension to imaginary elements

Again, M is a monster model of a complete theory T , and cl is an exis-
tential matroid on M. Let Meq be the set of imaginary elements, and T eq be
the theory of Meq. Our aim is to extend the matroid cl to a closure operator
cleq on Meq.

We will start with the definition of a ∈ cleq(B) when a is real and B is
imaginary.

Definition 6.1. Let B be a set of imaginary elements (of cardinality less
than κ), and a be a real element. We say that a ∈ cleq(B) iff Ξ(a/B) has
finite rkcl.

It is relatively easy to prove the following fact.

Remark 6.2 (Exchange Principle [Gag05, 3.1]). The operator cleq satisfies
the Exchange Principle for real points over imaginary parameters. That is,
for a and b real elements and C imaginary, if a ∈ cleq(bC) \ cleq(C), then
b ∈ cleq(aC).

Recall that M has geometric elimination of imaginaries if every for imagi-
nary element a there exists a real tuple b̄ such that a and b̄ are interalgebraic.
If M had geometric elimination of imaginaries, we could define a ∈ cleq(B)
iff there exists a real tuple c̄ such that a ∈ acleq(c̄) and c̄ ⊂ cleq(B). With-
out geometric elimination of imaginaries, the definition is substantially more
complicate; however, one can proceed from Remark 6.2 as in [Gag05, §3] to
define the desired extension cleq (notice that [Gag05] uses dim for what we
would call rkcl).

If cl has definable dimension dimcl, then the definition of cleq is much sim-
pler, and proceeds as follows. Let X ⊂Mn be definable, and E be a definable
equivalence relation on X. If the dimension of each equivalence class is con-
stant e, we define the dimension of the imaginary set X/E as dimcleq(X/E) :
= dimcl(X) − e. In the general case, let Xi := {x ∈ X : dimcl(Ex) = i}
(where Ex is the equivalence class of x); then each Xi is definable, and
X = X0 t · · · t Xn; thus, we define dimcleq(X/E) := maxi

(
dimcleq(Xi/E)

)
.

26



It is easy to verify that dimcleq is the dimension function associated to cleq,
and therefore we can define of cleq as:

cleq(A) = {c ∈Meq : ∃X ⊂MeqA-definable s.t. c ∈ X & dimcleq(X) = 0}.

In general, we can use cleq (or, better, the associated rank rkcleq) to extend
the independence relation |̂cl to imaginary elements, setting A |̂cleq

C
B iff, for

every finite subset A′ of A, rkcleq(A′/BC) = rkcleq(A′/C): it is then easy to
verify that |̂cleqis an independence relation on Meq extending |̂cl, and that the
corresponding version of antireflexivity holds for it (cf. Remark 3.7). When
no danger of confusion arises, we will freely use cl to denote also cleq, and
similarly for the related notions dimcleq , rkcleq , and |̂cleq.

Notice that acleq is a closure operator on Meq extending acl; however,
even when cl = acl, in general cleq 6= acleq; hence, when cl = acl , we will
have to pay attention not to confuse the two possible extensions of cl to Meq

(cf. the next remark). On the other hand, by dcleq we will always denote the
usual extension of dcl to imaginary element: a ∈ dcl(b) if Ξ(a/B) = {a}.

Remark 6.3. Assume that M is pregeometric structure and cl = acl. Given
b̄ a real or imaginary tuple, we have acleq(b̄) ⊆ cleq(b̄) and cleq(b̄) ∩ M =
acleq(b̄) ∩ M. However, it is not true in general that cleq = acleq: more
precisely, cleq = acleq iff M is surgical [Gag05]. For instance, if K is either a
p-adic field, or an algebraically closed valued field, then K is geometric but
not surgical; its value group Γ has dimension 0 but it is infinite; therefore,
there exists γ ∈ Γ such that γ ∈ cleq(∅) \ acleq(∅).

7. Density

Again, M is a monster model of a complete theory T , and cl = clM is an
existential matroid on M.

Definition 7.1. Let K � M, and X ⊆ K. We say that X is dense in K if,
for every K-definable subset U of K, if dimcl(U) = 1, then U ∩X 6= ∅. Recall
that clK(X) := clM(X) ∩K; we say that X is cl-closed in K if clK(X) = X.

Examples 7.2. 1. If K is geometric, then X is dense in K iff X intersects
every infinite definable subset of K: in that case, our definition of
density coincides with the one in [Mac75, §1].

2. If K is strongly minimal, then X is dense in K iff X is infinite.
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3. If K is o-minimal and densely ordered, or if K is the field of p-adic
numbers, then X is dense in K in the sense of the above definition iff
X is topologically dense in K (this is the motivation here and in [Mac75]
for the choice of the term “dense”). See also §9 for a generalisation of
this example.

Remark 7.3. If X ⊂ K is dense (in K), and a ∈ X, then X \ {a} is also
dense.

Proof. If U ⊆ K is definable and of dimension 1, then U \{a} is also definable
and of dimension 1. �

Lemma 7.4. Let X ⊆ K � M. If X is cl-closed and dense in K, then
X � K.

Proof. Tarski-Vaught test. Let A ⊆ K be definable, with parameters from A:
we must show that A ∩ X 6= ∅. If dimcl(A) = 1, this is true because X is
dense in K. If dimcl(A) = 0, this is true because X is cl-closed in K. �

Lemma 7.5. Let K �M be a saturated model of cardinality λ > |T |. Then,
there exists X ⊂ K such that X is a cl-basis of K and X is dense in K.
Moreover, there exists F ≺ K such that F is cl-closed and dense in K and F
is not equal to K.

Proof. Let (Ai)i<λ be an enumeration of all subsets of K which are defin-
able (with parameters from K) and of dimension 1. Build a cl-independent
sequence (ai)i<λ inductively: for every µ < λ, we make sure that (ai)i<µ
is cl-independent, and that, for every i < µ, there exists j < µ such that
aj ∈ Ai. Fix µ < λ, and assume that we have already defined ai for every
i < µ; we have to define aµ.
Claim 1. There exists aµ ∈ Aµ such that aµ is cl-independent from (ai)i<µ.

Otherwise, rkcl(Aµ) < λ, absurd.
Define aµ as in the above claim. By construction, X ′ := {ai : i < λ} is

cl-independent and dense in K; we can complete it to a cl-basis X, which is
also dense.

Choose a ∈ X, let Y := X \ {a}, and F := cl(Y ). Since X is dense, Y is
also dense, and therefore F is dense in K. Moreover, since X is a cl-basis,
a /∈ F. Finally, by Lemma 7.4, F ≺ K. �

The proof of the above lemma shows the following stronger results.

Corollary 7.6. Let K be as in Lemma 7.5. Let c ∈ K \ cl(∅). Then, there
exists F ≺ K cl-closed and dense in K, such that c /∈ F.
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Given K |= T , and X, Y subsets of K, we say that X is dense in K
w.r.t. Y if, for every subset U of K definable with parameters from Y , if
dimcl(U) = 1, then U ∩X 6= ∅.

Lemma 7.7. There exist F and K models of T , such that F ≺ K and F is a
proper dense and cl-closed subset of K.

Proof. Notice that if T has a saturated model of cardinality > |T |, we can
apply Lemma 7.5. Otherwise, let K0 ≺ K1 ≺ . . . be an elementary chain of
models of T , such that, for every n ∈ N, Kn+1 is

(
|Kn| + |T |

)+-saturated,
and let K :=

⋃
n∈N Kn. Proceeding as in the proof of Lemma 7.5, for every

n ∈ N we build a cl-independent set An of elements in Kn+1, such that
An ⊆ An+1 and An is dense in Kn+1 w.r.t. Kn. Let A :=

⋃
nAn. Then, A is

a cl-independent set of elements in K, which is also dense in K. Conclude as
in Lemma 7.5. �

8. Dense pairs

Let B be a real closed field and A be a proper dense subfield of A, such
that A is also real closed. We call 〈B,A〉 a dense pair of real closed fields,
and we consider its theory, in the language of ordered fields expanded with a
predicate for a (dense) subfield. Robinson [Rob59] proved that the theory of
dense pairs of real closed fields is complete. Van den Dries [vdD98] extended
Robinson’s theorem to o-minimal theories: if T is a complete o-minimal
theory expanding the theory of (densely) ordered Abelian groups, then the
theory of dense elementary pairs of models of T is complete. Macintyre
[Mac75] introduced an abstract notion of density, in the context of geomet-
ric theories, which for o-minimal theories specialises to the usual topological
notion, and proved various results; more recent work has been done in the
context of so called “lovely pairs” either of geometric structures (see for in-
stance [BV10, Box09]) or of simple structures (see [BYPV03], which extends
Poizat’s work on “beautiful pairs” of stable structures [Poi83]).

In §7 we also proposed an abstract notion of density, which for geometric
theories specialises to the one given by Macintyre. However, it is not true in
general that the theory of dense pairs of models of T is complete (unless T
is geometric and expands the theory of integral domains): the main result of
this section is that if T expands the theory of integral domains, and we add
the additional condition that A is cl-closed in B, we obtain a complete theory,
which we denote by T d (if T is geometric, the additional condition is trivially
true). We will also show that T d admits an existential matroid (the small
closure: §8.4), which will allow us to iterate the procedure, by considering
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dense pairs of models of T d itself, and so on: see §13. For the exposition we
will follow [vdD98], using however some ideas from [Box09, BYPV03].

We assume the structure M is a monster model of a complete theory T ,
and cl = clM is an existential matroid on M. For this section, we will write
dim instead of dimcl, rk instead of rkcl, and |̂ instead of |̂cl.

Definition 8.1. Let L2 be the expansion of L by a new unary predicate P .
Let T 2 be the L2-expansion of T , whose models are the pairs 〈K,F〉, with
F ≺ K, F 6= K, and F cl-closed in K.

Assume that dim is definable. Let T d be the L2-expansion of T saying
that F is a proper, cl-closed and dense subset of K (we need definability of
dim to express in a first-order way that F is dense in K).

Notice that, by Lemma 7.4, T d extends T 2. Notice that if cl = acl, then
T 2 is the theory of pairs 〈K,F〉, with F ≺ K |= T ; however, if cl 6= acl, then
there exists F ≺ M with F not cl-closed in M (take any F ≺ M such that
|F| < κ).

Remark 8.2. The theory T d is consistent.

Proof. By Lemma 7.7. �

Proviso. For the remainder of this section, we assume that T expands the
theory of integral domains (and therefore dim is definable) and that 〈K,F〉 |=
T d.

Theorem 8.3. The theory T d is complete.

Definition 8.4. An L2-formula φ(x̄) is basic if it is of the form

∃ȳ
(
P (ȳ) & ψ(x̄, ȳ)

)
,

where ψ is an L-formula.(5)

Theorem 8.5. Each L2-formula ψ(x̄) is equivalent, modulo T d, to a Boolean
combination of basic formulae, with the same parameters as ψ.

Theorems 8.3 and 8.5 will be proved in §8.2.

(5) Basic formulae were called “special” in [vdD98].
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8.1. Small sets
In this subsection we will assume that 〈K,A〉 |= T 2.

Definition 8.6. A subset X of K is A-small if X ⊆ f(An), for some Z-ap-
plication f : Kn  K which is definable in K (cf. Definition 3.54).

Definition 8.7. Let X ⊆ Kn. We say that X is weakly dense in Kn if, for
every definable U ⊆ Kn, if X ⊆ U , then dim(U) = n.

For instance, if cl = acl, then X is a weakly dense subset of K iff X is
infinite.

Remark 8.8. If X is a weakly dense subset of K, then Xn is a weakly dense
subset of Kn.

Lemma 8.9. If K |= T and K′ � K, then K′ is weakly dense in K.

Proof. W.l.o.g., the pair 〈K,K′〉 is ω-saturated. Assume, for contradiction,
that U ⊂ K is definable, with parameters b̄ ∈ Kn, dim(U) = 0, and K′ ⊆ U .
By saturation, rk(K′) is infinite; let c̄ ∈ K′n+1 be independent elements.
However, c̄ ∈ U , and therefore c̄ ⊂ cl(b̄), absurd. �

The following result is the most delicate one; the use of Z-applications
will allow us to mimic van den Dries’ proof.

Lemma 8.10 ([vdD98, 1.1]). Let f : Kn+1  K be a Z-application A-
definable in K, and let b0 ∈ K \ A. For every x ∈ K and ȳ = 〈y0, . . . , yn〉 ∈
Kn+1 let p(ȳ, x) := y0 + y1x + · · · + ynx

n. Then, there exists ā ∈ An+1 such
that

p(ā, b0) /∈ f(An × {b0}).

Proof. Otherwise, there is, for each ā ∈ An+1, a tuple c̄ ∈ An such that
p(ā, b0) ∈ f(c̄, b0). W.l.o.g., f is definable without parameters. For each
ȳ ∈ Kn+1 and z̄ ∈ Kn, let D(ȳ, z̄) := {x ∈ K : p(ȳ, x) ∈ f(z̄, x)}. Define
W := {〈ȳ, z̄〉 := dim(D(ȳ, z̄)) = 1}, and Y := Π2n+1

n+1 (W ). Since b0 /∈ A and
A is cl-closed in K, we have An+1 ⊆ Y . Since Y is definable, Remark 8.8
and Lemma 8.9 imply that dim(Y ) = n+ 1; therefore, dim(W ) ≥ n+ 1. Let
Z := {z̄ ∈ Kn : dim(W z̄) ≥ 1}. Since dim(W ) ≥ n + 1 and dim(Kn) = n,
we have that dim(Z) ≥ n and hence Z is nonempty. Choose c̄ ∈ Z. Let
ā ∈ Kn+1 be such that 〈ā, c̄〉 ∈ W and rk(ā/c̄) ≥ 1. By definition of W ,
dim(D(ā, c̄)) = 1; choose b ∈ D(ā, c̄) such that rk(b/c̄ā) = 1. Define d :=
p(ā, b); remember that d ∈ f(c̄, b), and therefore d ∈ cl(c̄b). Let ā′ ∈ Kn+1

be such that ā′ ≡c̄bd ā and ā′ |̂
c̄bd
ā. Since d ∈ cl(c̄, b), we have ā′ |̂

c̄b
ā.

Moreover, p(ā′, b) = d; therefore, p(ā− ā′, b) = 0.
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If ā 6= ā′, this implies that b is algebraic over ā − ā′, and therefore b ∈
cl(āā′), contradicting the fact that b /∈ cl(āc̄) and ā′ |̂

c̄b
ā.

If instead ā = ā′, then ā′ |̂
c̄b
ā implies that ā ⊂ cl(c̄b), contradicting the

facts that b /∈ cl(c̄ā) and rk(ā/c̄) ≥ 1. �

Notice that the hypothesis of the above lemma can be weakened to:
K |= T and A is a proper cl-closed and weakly dense subset of K.

Remark 8.11 ([vdD98, 1.3]). Each A-small subset of K is a proper subset
of K.

Proof. Same as [vdD98, Corollary 1.3]. �

Remark 8.12. A finite union of A-small subsets of K is also A-small.

Lemma 8.13. Let B ⊆ K be a proper cl-closed subset. Then, B is co-dense
in K; that is, K \B is dense in K.

Proof. Since B is cl-closed in K, F (B4) ⊆ B (cf. Definition 3.46). Assume,
for contradiction, that there exists U definable in K, such that dim(U) = 1
and U ⊆ B. Then, F (U4) = K, and therefore F (B4) = K, contradicting the
assumption that B 6= K. �

Lemma 8.14 ([vdD98, Lemma 1.5]). If the pair 〈K,A〉 is λ-saturated, where
λ is an infinite cardinal with |T | < λ, then dim(K/A) ≥ λ. Hence, if |X| < λ,
then clK(AX) is co-dense in K.

Proof. Same as [vdD98, Lemma 1.5]. Let E be a generating set for K/A,
and suppose that |E| < λ. Let Γ(v) be the set of L2-formulae of the form

∀y1 . . . ∀yn
(
P (ȳ)→ v /∈ f(ȳ, e1, . . . , ep)

)
,

where f(ȳ, z̄) is a Z-application ∅-definable in K, and e1, . . . , ep are in E. By
Remarks 8.11 and 8.12, Γ(v) is a consistent set of formulae, with less than
λ many parameters. By saturation, there exists b ∈ K realising the partial
type Γ(v). Thus b /∈ clK(AE), absurd. �

Notice that in the original [vdD98, Lemma 1.5], if T expands RCF, then
van den Dries’ assumption that A is dense in B is superfluous; density is used
if however T expands only the theory of ordered Abelian groups.
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8.2. Proof of Theorems 8.3 and 8.5
The proof is similar to the ones in [Box09, BYPV03]: the following defi-

nition is a variant of the ones they use.

Definition 8.15. Let 〈B,A〉 |= T 2 and C ⊆ B. Let c̄ be a tuple of elements
from Beq; the P-type of c̄, denoted by P-tp(c̄), is the information which tells us
which members of c̄ are in A (notice: the elements in c̄ are real or imaginary,
but only real elements can be in A). We say that c̄ is P-independent if
c̄ |̂ A∩c̄ A (where, again, only the real elements of c̄ can be in A ∩ c̄).

Notation 8.16. We will use a superscript 1 to denote model-theoretic no-
tions for L, and a superscript 2 to denote those notions for L2: for instance,
we will write a ≡1

C a′ if the L-types of a and a′ over C are the same, and
a ≡2

C a′ if the L2-types of a and a′ over C are the same; similarly, acl2 will
denote the T 2-algebraic closure.

Both theorems are immediate consequences of the following proposition.

Proposition 8.17. Let 〈B,A〉 and 〈B′,A′〉 be models of T d. Let c̄ be a
(possibly infinite) P-independent tuple in Beq, and c̄′ be an P-independent
tuple in (B′)eq of the same length and the same sorts. If c̄ ≡1 c̄′ and P-tp(c̄) =
P-tp(c̄′), then c̄ ≡2 c̄′.

Proof. Back-and-forth argument. Let λ be a cardinal such that |T | + |c̄| <
λ < κ. W.l.o.g., we can assume that both 〈B,A〉 and 〈B′,A′〉 are λ-saturated.
Let ē (resp. ē′) be the subtuple of c̄ (resp. of c̄′) of nonreal elements. Let

Γ :=
{
f : c̃→ c̃′ : c̄ ⊂ c̃ ⊂ Beq, c̄′ ⊂ c̃′ ⊂ (B′)eq

,

c̃ & c̃′ of the same length less than λ and of the same sorts,
with all nonreal elements of c̃ in ē,
f is a bijection,
c̃ & c̃′ are P-independent, c̃ ≡1 c̃′, P-tp(c̃) = P-tp(c̃′)

}
.

We want to prove that Γ has the back-and-forth property. So, let f : c̃→ c̃′

be in Γ, and d ∈ B \ c̄; we want to find g ∈ Γ such that g extends f and
d is in the domain of g. W.l.o.g., c̃ = c̄ and c̃′ = c̄′. Let ā := c̄ ∩ A, and
ā′ := c̄′ ∩ A′. Notice that f(ā) = ā′ and that A ∩ cl(c̄) = A ∩ cl(ā) =: clA(ā),
and similarly for c̄′. We distinguish some cases.
Case 1: d ∈ A ∩ clB(c̄) = clA(ā). Notice that c̄d |̂

ād
A, and therefore c̄d is

P-independent. There is a x-narrow formula φ(x, ȳ) such that B |= φ(d, ā).
Choose d′ ∈ A′ such that c̄d ≡1 c̄′d′; therefore, B′ |= φ(d′, ā′); hence, d′ ∈
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clB
′
(ā′) ⊂ A′, and thus c̄′d′ is also P-independent and has the same P-type

as c̄d. Thus, we can extend f to c̄d setting g(d) := d′.
Case 2: d ∈ A \ clB(c̄) = A \ clA(ā). Since c̄ |̂

ā
A and c̄ ⊂ A, we have

c̄ |̂
ād

A, and therefore c̄d is P-independent. Let q(x) := tp1(d/c̄), and q′ :=

f(q) ∈ S1
1(c̄′). Notice that q |̂

ā
c̄ (because d |̂

ā
c̄), and therefore q′ |̂

ā′
c̄′.

Since A′ is dense in B′ and 〈B′,A′〉 is λ-saturated, there exists d′ ∈ A′ realising
q′. It is now easy to see that c̄′d′ is P-independent, and that we can extend
f to c̄d setting g(d) := d′.
Case 3: d ∈ clB(c̄A) \ A. Let ā0 ∈ An be such that d ∈ clB(b̄ā0) (ā0 exists
because cl is finitary). By applying n times the cases 1 or 2, we can extend
f to f ′ ∈ Γ such that ā0 is a subset of the domain of f ′. By substituting f
with f ′, we are reduced to the case that d ∈ clB(c̄) \ A. Since, c̄ |̂

ā
A and

d ∈ clB(c̄), we have c̄d |̂
ā
A, and hence c̄d is P-independent. Let d′ ∈ B′ be

such that d′c̄′ ≡1 dc̄. For the same reason as above, c̄′d′ is also P-independent.
It remains to show that c̄d and c̄′d′ have the same P-type, that is that d′ /∈ A′.
If, for contradiction, d′ ∈ A′, then d′ ∈ clB

′
(c̄′)∩A′ = clA

′
(ā′); therefore, there

would be a x-narrow-formula witnessing it, and thus d ∈ clB(ā) ⊆ A, absurd.
Case 4: d /∈ clB(c̄A). Let ā0 ⊂ A be of cardinality less than λ such that
d |̂

ā0ā
A (ā0 exists because |̂ satisfies Local Character). By applying cases

1 and 2 sufficiently many times, we can extend f to f ′ ∈ Γ such that ā0 is
contained in the domain of f ′; thus, w.l.o.g., d |̂

ā
A. Let d′ ∈ A′ be such that

d′c̄′ ≡1 dc̄; moreover, by Lemma 8.14 we can also assume that d′ |̂
ā′

A′. We
need only to show that d′ /∈ A′. Assume, for contradiction, that d′ ∈ A′ and
d′ |̂

ā′
A′; then, d′ |̂

ā′
d′, thus d′ ∈ clB

′
(ā′), and hence d ∈ clB(ā), absurd. �

8.3. Additional facts
Reasoning as in [vdD98, 2.6–2.9], from Theorems 8.3 and 8.5, and Propo-

sition 8.17, we can deduce the following facts. We are still assuming that T
expands an integral domain, and we are still using Notation 8.16. To simplify
the statements of various results, we also assume that T ismodel-complete.

Corollary 8.18 ([vdD98, 2.6]). Let 〈B,A〉 be a model of T d. Suppose Y ⊆ Bn

is A0-definable in 〈B,A〉, for some A0 ⊂ A. Then Y ∩ An is A0-definable
in A.

Corollary 8.19 ([vdD98, 2.7]). Let 〈B,A〉 and 〈B′,A′〉 be models of T d,
such that 〈B′,A′〉 ⊆ 〈B,A〉 and B′ and A are cl-independent over A′. Then,
〈B′,A′〉 � 〈B,A〉. In particular, if A ≺ B′ � B, with A 6= B′, then 〈B′,A〉 �
〈B,A〉.
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Corollary 8.20 ([vdD98, 2.8]). Let A ⊆ B ⊂ M be substructures. Assume
that 〈B,A〉 have extensions 〈B1,A1〉 |= T d and 〈B2,A2〉 |= T d, such that
B |̂

A
Ak and B ∩ Ak = A, k = 1, 2. Then, 〈B1,A1〉 ≡2

B 〈B2,A2〉. More
generally, for every ā1 ∈ (A1)n and ā2 ∈ (A2)n, if ā1 ≡1

B ā2, then ā1 ≡2
B ā2.

Notice that the hypothesis of the above Corollary implies that A is
cl-closed (but not necessarily dense) in B.

Proof. Let c̄k := Bāk. Notice that c̄1 and c̄2 have the same P-type, they
are both P-independent, and c̄1 ≡1 c̄2; the conclusion follows from Proposi-
tion 8.17. �

Corollary 8.21 ([vdD98, 2.9]). Let 〈B1,A1〉 |= T d and 〈B2,A2〉 |= T d, and
let A be a common subset of A1 and A2. Suppose that b1 ∈ B1 \ A1 and
b2 ∈ B2 \ A2 satisfy b1 ≡1

A b2. Then, b1 ≡2
A b2.

Proof. Let c̄i := biAi, i = 1, 2. By assumption, c̄1 ≡1 c̄2, they have the
same P-type, and they are both P-independent. The conclusion follows from
Proposition 8.17. �

For the remainder of this section, we will assume that 〈B,A〉 is a model
of T d, and that λ is a cardinal number such that κ > λ > |T |+ |B|.

Lemma 8.22 ([vdD98, Theorem 2]). Let b̄ ⊂ B be P-independent. Given a
set Y ⊂ An, t.f.a.e.:

1. Y is T 2-definable over b̄;

2. Y = Z ∩ An for some set Z ⊆ Bn that is T -definable over b̄.

Proof. (1⇒ 2) follows from compactness and the fact that the L2-type over
b̄ of elements from A is determined by their P-type (cf. the proof of [vdD98,
Theorem 2]). (2⇒ 1) is obvious. �

Lemma 8.23 ([vdD98, 3.1]). The structure A is T 2-algebraically closed in
〈B,A〉.

Proof. As in [vdD98, 3.1]: let b ∈ B \A. Let 〈B∗,A∗〉 � 〈B,A〉 be a monster
model, and let clB

∗
be the extension of cl to B∗. Since clB

∗
is existential, and

b /∈ clB
∗
(A), there exist infinitely many distinct b′ ∈ B∗ such that b ≡1

A b′.
By Corollary 8.21, b ≡2

A b′. Thus, b is not T 2-A-algebraic in 〈B∗,A∗〉, and
therefore not T 2-A-algebraic in 〈B,A〉. �

Lemma 8.24 ([vdD98, 3.2]). Let A0 ⊆ A be T -algebraically closed (resp.,
T -definably closed). Then A0 is T 2-algebraically closed (T 2-definably closed).
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Proof. Assume A0 is T -algebraically closed. Let c ∈ acl2(A0), and C :=
{c1, . . . , cn} be the set of L2-conjugates of c/A0. By definition, C is A0-
definable in 〈B,A〉, and, by the above Lemma, C ⊂ A. Hence, by Corol-
lary 8.18, C is A0-definable in A. The case when A0 is T -definably closed is
similar. �

Lemma 8.25. Assume that 〈B,A〉 is a λ-saturated model of T d. Let D ⊂ B
be such that |D| < λ, and c ∈ B \ cl(D). Define C := {c′ ∈ B : c′ ≡1

D c} ∩ A.
Then, |C| ≥ λ.

Proof. For every µ < λ, consider the following partial L2-type over D:

p(xi : i < µ) :=
(∧

i

xi ≡1
D c
)

&
(∧

i

P (xi)
)

&
(∧
i<j

xi 6= xj

)
.

Claim 1. The type p is consistent.
If not, there exist d̄ ⊂ D, b̄ ⊂ B, and φ(x, d̄) ∈ tp1(c/D), such that

φ(B, d̄) \ A = b̄. Let X := φ(B, d̄) \ b̄: notice that X is definable in B, and
X ⊆ A. Hence, since A is co-dense in B, we conclude that dim(X) ≤ 0, and
therefore dim(φ(B, d̄)) ≤ 0. Thus, c ∈ clB(d̄) ⊆ clB(D), absurd.

Thus, p is satisfied in 〈B,A〉, and the conclusion follows. �

Proposition 8.26 ([vdD98, 3.3]). Let b̄ ⊂ B be P-independent. Then,
dcl2(b̄) = dcl1(b̄), and similarly for the algebraic closure. Let c ∈ Beq (i.e., c is
an imaginary element for the structure B). Then, c ∈ dcl2(b̄) iff c ∈ dcl1(b̄),
and similarly for the algebraic closure.

Sketch of proof. W.l.o.g., we can assume that 〈B,A〉 is ω-saturated and that
b̄ has finite length. Let c ∈ B be such that c ∈ acl2(b̄). We want to prove
that c ∈ acl1(b̄).

If b̄ ⊆ A, the conclusion follows from Lemma 8.24. Otherwise, let B1 :=
clB(Ab̄); by Corollary 8.19, 〈B1,A〉 � 〈B,A〉, and in particular B2 is T 2-alge-
braically closed in 〈B,A〉, and therefore c ∈ B1

eq. Let n ≥ 0 be minimal such
that there exist ā ∈ An with c ∈ clB(b̄ā).
Claim 1. c ∈ clB(b̄), i.e. n = 0.

If n > 0, by substituting b̄ with b̄a1 . . . an−1, and proceeding by induction
on n, we can reduce to the case n = 1; let a := a1. Consider the following
partial L-type over b̄a:

q(x) := (x ≡1
b̄ a) & (x |̂

b̄

a).

Since |̂ satisfies Existence, q is consistent. Let d ∈ B be any realisation of q.
Since d |̂

b̄
a, we conclude that either d /∈ clB(b̄a) or d ∈ clB(b̄). However,
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the latter cannot happen, since d ≡1
b̄
a /∈ clB(b̄); thus, d /∈ clB(b̄a), and

therefore dim(q) = 1. Hence, since A is dense in B and 〈B,A〉 is ω-saturated,
there exists a′ ∈ A satisfying q. Reasoning in the same way, we can show
that there exists a Morley sequence (a′2, a

′
3, a
′
4, . . . ) in q contained in A. By

Corollary 8.20, a′i ≡2
b̄
a for every i. Let c1, c2, . . . , cm be all the L2-conjugates

of c over b̄ (there are finitely many of them), and let φ(x, y, z̄) be an x-narrow
L-formula without parameters such that B |= φ(c, a, b̄).

The L-formula (in y, with parameters in b̄c1 . . . cm)
∨
i φ(ci, y, b̄) is equiv-

alent to an L2-formula in y with parameters b̄; hence, every a′i satisfies it
(because a′i ≡2

b̄
a). Hence, w.l.o.g. c1 ∈ clB(b̄a′2) ∩ clB(b̄a′3) = clB(b̄) (because

a′2 |̂ b̄ a
′
3). Therefore, c ∈ clB(b̄).

It remains to show that c ∈ acl1(b̄). Let c2 ∈ Beq be such that c2 ≡1
b̄
c.

Since B is ω-saturated, it suffices to prove that there are only finitely many
such c2. Since c ∈ acl2(b̄), it suffices to prove that c2 ≡2

b̄
c. Let b̄1 := b̄c,

b̄2 := b̄c2, and d̄ := b̄ ∩ A. By assumption, b̄1 ≡1 b̄2. By Claim 1, we have
b̄1 ⊆ clB(b̄), and therefore, since b̄ |̂

d̄
A, b̄1 is P-independent. Claim 1 also

implies that b̄2 ⊆ clB(b̄), and hence b̄2 is also P-independent. It remains to
show that b̄1 and b̄2 have the same P-type. Assume e.g. that c ∈ A. Since
b̄ |̂

d̄
A, we have that c ∈ clB(d̄), and therefore c2 ∈ clB(d̄) = clA(d̄) ⊆ A.

The other assertions are proved in a similar way. �

8.4. The small closure
We will are still assuming that T expands an integral domain. Let M∗ :=

〈B∗,A∗〉 be a κ-saturated and strongly κ-homogeneous monster model of T d,
and 〈B,A〉 ≺ M∗, with |B| < κ. Let clB

∗
be the extension of cl to B∗, and

denote by rk the corresponding rank. Notice that rk(B∗/A∗) ≥ κ.

Definition 8.27. For every X ⊆ B∗ we define the small closure of X as

Scl(X) := clB
∗
(XA∗).

For lovely pairs of geometric structures (e.g., dense pairs of o-minimal
structures), the small closure was already defined in [BV10, Def. 4.5].

Remark 8.28. The matroid Scl is a definable matroid (on M∗).

Proof. Notice that Scl coincides with the operator (clB
∗
)A∗ in Lemma 5.5. �

Notice that we can apply Remark 5.6, an obtain that SclB = (clB)A: that
is, we can “compute” the small closure of a subset of B inside B by using A
instead of A∗.

We want to prove that Scl is existential; we will need a preliminary lemma.
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Lemma 8.29. Let b ∈ B∗ \ A∗. Define M∗b the expansion of M∗ with a
constant for b, and Sclb(X) := Scl(bX) = clB

∗
(XA∗b). Then, Sclb is an

existential matroid on M∗b .

Proof. That Sclb is a definable matroid follows from Lemma 5.5, applied
to Scl. Let X ⊆M∗, and Y := Sclb(X).
Claim 1. Y ≺M∗ (as an L2-structure).

By Lemma 7.4, Y is an elementary L-substructure of B∗. Corollary 8.19
applied to B′ := Y implies the claim.

The lemma then follows from the above claim and Lemma 3.23; nontriv-
iality follows from the fact that rk(B∗/A∗) ≥ κ. �

Lemma 8.30. The matroid Scl is an existential matroid (on M∗).

Proof. The only thing that needs proving is Existence. Define Ξ2(a/C) as the
set of conjugates of a over C in M∗. Assume that Ξ2(a/C) ⊆ Scl(CD). We
want to prove that a ∈ Scl(C). By Lemma 8.14, we can choose b and b′ ∈ B∗
which are clB

∗
-independent over A∗C. By applying the previous lemma to

Sclb and Sclb′ , we see that

a ∈ Sclb(C)∩Sclb′(C) = clB
∗
(A∗Cb)∩clB

∗
(A∗Cb′) = clB

∗
(A∗C) = Scl(C). �

Hence, we can define the dimension induced by Scl, and denote it by Sdim.
Notice that, by Theorem 3.48, Scl is the only existential matroid on T d.

Lemma 8.31. Let X ⊆ Bn be definable in B. Then Sdim(X) = dim(X).

Proof. From clB
∗ ⊆ Scl follows immediately that Sdim(X) ≤ dim(X). For

the opposite inequality, we proceed by induction on k := dim(X). Assume,
for contradiction, that Sdim(X) < k. W.l.o.g., dim(Πn

k(X)) = k; therefore,
w.l.o.g. k = n. If k = 1, then Sdim(X) = 0, and therefore F (X4) 6= B,
contradicting dim(X) = 1. For the inductive step, assume k = n > 1, and
let U := {a ∈ Bn : dim(Xa) = 1}. Notice that U is definable in B, and
therefore, by inductive hypothesis, Sdim(U) = dim(U) = n− 1. By the case
k = 1, for every a ∈ Bn−1, dim(Xa) = Sdim(Xa), and therefore Sdim(Xa) = 1
for every a ∈ U . Thus, Sdim(X) = n. �

Definition 8.32. Let X ⊆ (B∗)n be definable in 〈B∗,A∗〉. We say that X is
small if Sdim(X) = 0. Let Y ⊆ Bn be definable in 〈B,A〉. We say that Y is
small if Sdim(Y ∗) = 0, where Y ∗ is the interpretation of Y inside 〈B∗,A∗〉.

Notice that, if X ⊂ Bn is A-small (in the sense of Definition 8.6), then X
is also small in the above sense. The next lemma shows that the converse is
also true.
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Lemma 8.33. Let 〈B,A〉 � 〈B∗,A∗〉 and X ⊆ Bn be definable in 〈B,A〉. Let
X∗ be the interpretation of X inside 〈B∗,A∗〉. Let c̄ ∈ Bk be the parameters
of definition of X. T.f.a.e.:

1. X is small;

2. X∗ is small;

3. X∗ ⊆ Scl(b̄) for some finite tuple b̄ ⊂ B∗;

4. X∗ ⊆ Scl(c̄);

5. X∗ ⊆ clB
∗
(c̄A∗);

6. X∗ is A∗-small: that is, there exists a Z-application f ∗ : B∗m  B∗n,
definable in B∗, such that f ∗(A∗m) ⊇ X∗;

7. X is A-small: that is, there exists a Z-application f : Bm  Bn, defin-
able in B (with parameters c̄), such that f(Am) ⊇ X;

8. there exists a Z-application g∗ : B∗m+k  B∗n, definable in B∗ without
parameters, such that g∗

(
A∗m × {c̄}

)
⊇ X∗,

9. there exists a Z-application g : Bm+k  Bn, definable in B without
parameters, such that f(Am × {c̄}) ⊇ X.

Proof. The only nontrivial implication is (5 ⇒ 7), which is proved by a
compactness argument using Remark 3.55. �

Conjecture 8.34 ([vdD98, 3.6]). Let f : An → A be T 2-definable with
parameters b̄. Let ā ∈ Am be such that b̄ |̂

ā
A and dcl1(b̄ā) ∩ A = dcl1(ā).

Then, f is given piecewise by functions definable in A with parameters ā.

Lemma 8.35 ([Box09, 6.1.3]). Let f : An → B be T 2-definable with parame-
ters b̄. Assume that b̄ is P-independent. Then, there exists g : Bn → B which
is T -definable with parameters b̄, and such that f = g� An.

Proof. Let 〈B∗,A∗〉 be an elementary extension of 〈B,A〉 and a∗ ∈ (A∗)n. By
Proposition 8.26, there exists a function gi : Bn → B which is T -definable
with parameters b̄, such that f(a) = gi(a). By compactness, finitely many gi
will suffice. The conclusion then follows from Lemma 8.22. �

Proposition 8.36 ([vdD98, 3.5]). Let b̄ ∈ Bk and ā ∈ Bk′ be such that
b̄ |̂

ā
A and b̄ ∩ A ⊆ ā. Let X ⊆ Beq be T -definable with parameters b̄, such

that dim(X) = d. Let Y ⊆ X be T 2-definable, with parameters b̄. Then, there
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exist S ⊂ X which is T 2-definable with parameters b̄, and Z ⊆ X which is
T -definable with parameters b̄ā, such that Z ∆ Y ⊆ S and Sdim(S) < d.

In particular, if dim(X) = 0, then every T 2-definable subset of X is
already T -definable.

Proof. The proof is a variant of Beth’s definability theorem, using Propo-
sition 8.17. W.l.o.g., 〈B,A〉 is λ-saturated, for some cardinal λ such that
|T | < λ < κ.

Let W := {p ∈ S2
X(āb̄) : Sdim(p) = d}. Notice that W is a closed

subset of S2
X(āb̄) (the Stone space of T 2-types over āb̄ containing the formula

“x̄ ∈ X”). Let θ : S2
X(āb̄) → S1

X(āb̄) be the restriction map: notice that θ is
continuous, and therefore V := θ(W ) is compact and hence closed in S1

X(āb̄).
Let ρ := θ� W .
Claim 1. The map ρ is injective (and therefore ρ is a homeomorphism be-
tween W and V ).

We have to prove that, for every c̄ and c̄′ ∈ X, if Srk(c̄/āb̄) = Srk(c̄′/āb̄) =
d and c̄ ≡1

āb̄
c̄′, then c̄ ≡2

āb̄
c̄′. Let d̄ := āb̄c̄ and d̄′ := āb̄c̄′. By Proposition 8.17,

it suffices to prove that d̄ and d̄′ are both P-independent and have the same
P-type. Since Srk(c̄/āb̄) = d and c̄ ∈ X, we have that Srk(c̄/āb̄) = rk(c̄/āb̄),
which is equivalent to c̄ |̂

āb̄
A, and hence (since b̄ |̂

ā
A) d̄ |̂

ā
A, that is d̄

is P-independent, and similarly for d̄′. It remains to show that d̄ and d̄′ have
the same P-type. Let di ∈ A; we have to prove that d′i ∈ A. Since d̄ |̂

ā
A,

we have di ∈ clB
∗
(ā), and hence d′i ∈ clB(ā′) ⊆ A.

Let U := S2
Y (āb̄) ∩W ; since Y is definable, U is clopen in W , and since

ρ is a homeomorphism, ρ(U) is clopen in V . Hence, there exists Z subset
of X, such that Z is T -definable over āb̄ and V ∩ S1

Z(āb̄) = ρ(U).
Claim 2. There exists S ⊂ X which is T 2-definable over b̄, such that
Sdim(S) < d and Y ∆ Z ⊆ S.

Assume not. Then, the following partial type over āb̄ is consistent:

Φ(x̄) := x̄ ∈ X & x̄ ∈ Y ∆ Z & x̄ /∈ S,

where S varies among the subsets of X which are T 2-definable over b̄, with
Sdim(S) < d. Let c̄ ∈ X be a realisation of Φ and p := tp2(c̄/āb̄) ∈ S2

X(āb̄).
By assumption, Sdim(c̄/āb̄) = d, and therefore p ∈ W . Hence, ρ(p) =
tp1(c̄/āb̄) ∈ V . Since ρ is injective, we have

ρ(p) ∈ ρ
(
S2
Y (āb̄) ∩W

)
∆ ρ
(
S2
Z(āb̄) ∩W

)
⊆ S1

Z(āb̄) ∆ S1
Z(āb̄) = ∅,

absurd. �
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In general, given b̄ ∈ Bn, it is always possible to find ā ∈ An′ such that
b̄ |̂

ā
A. However, [BV10, Example 6.13] shows that it can happen that B is

o-minimal, but ā cannot be found inside dcl2(b̄).

Corollary 8.37 ([vdD98, 3.4]). Let b̄ and ā be as in the above Proposition.
Let Γ be a T -definable set (possibly, in some imaginary sort) over b̄, and let
the function f : Bn → Γ be T 2-definable with parameters b̄. Then, there exist
S ⊆ Bn, which is T 2-definable over b̄ and with Sdim(S) < n, and f̂ : Bn → Γ,
which is T -definable over b̄ā, such that f agrees with f̂ outside S.

Proof. W.l.o.g., 〈B,A〉 is ω-saturated. Let G be the set of functions g : Bn →
Γ that are T -definable with parameters b̄ā.
Claim 1. There exist a set S ⊂ Bn which is T 2-definable with parameters b̄,
with Sdim(S) < n, and finitely many functions g1, . . . , gk in G, such that f
agrees off S with some of the gi.

Assume that the claim does not hold. Hence, for every S as in the claim
and every g ∈ G, there exists c̄ ∈ Bn such that c̄ /∈ S and f(c̄) 6= g(c̄). Thus,
the following partial L2-type over b̄ā is consistent:

p(x̄) := {x̄ ∈ Bn \ Scl(b̄)} ∪ {f(x̄) 6= g(x̄) : g ∈ G}.

Let c̄ be a realisation of p. Notice that the choice of ā and the fact that
Srk(c̄/āb̄) = n imply that c̄b̄ā |̂

ā
A. Hence, by Proposition 8.26, f(c̄) ∈

dcl1(c̄b̄ā). Thus, f(c̄) = g(c̄) for some function g : Bn → B which is T -
definable with parameters b̄ā, absurd.

The above claim plus Proposition 8.36 imply the conclusion. �

The above corollary gives a way to find the parameters of definition of f̂
(and of S) starting from the parameters b̄ of f .

Example 8.38. In general, f̂ cannot be defined using only b̄ as parameters.
Consider a1 and a2 in A which are independent over the empty set, b1 ∈ B\A,
and b2 := a1 + b1 · a2 ∈ B \ A. Let ā := 〈a1, a2〉 and b̄ := 〈b1, b2〉. Notice that
rk(āb̄) = 3, while Srk(āb̄) = 1. Let f be the constant function a1. Then, f is
T 2-definable over b̄, but is not T -definable over b̄.

Question 8.39. Assume that T is d-minimal (see §9). Is it true that, for
every X ⊆ B∗, Scl(X) = acl1(A∗X) (cf. Proposition 8.26)?

Conjecture 8.40 (J. Ramakrishnan). Assume that T is o-minimal. Then,
for every X ⊂ B,

acl2(X) = acl1
(
X ∪ (acl2(X) ∩ A)

)
.
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8.5. Elimination of imaginaries
Let cl be an existential matroid on M and cleq be the extension of cl to

Meq defined in §6. Remember that element e ∈ Meq is an equivalence class
X ⊆Mn for some ∅-definable equivalence relation E on Mn. If c̄ ∈ X we say
that c̄ represents e.

Definition 8.41. We say that M has cl-elimination of imaginaries if, for
every e ∈ Meq, there exists c̄ representing e, such that c̄ ∈ cleq(e). Given
b̄ ⊂ M, we say that M has cl-elimination of imaginaries modulo b̄ if, for
every e ∈Meq, there exists c̄ representing e, such that c̄ ∈ cleq(eb̄).

If K � M we say that K has cl-elimination of imaginaries (modulo some
b̄ ⊂ K) if M has it.

Compare the above notion with weak elimination of imaginaries (see [CF04]).

Remark 8.42. M has cl-elimination of imaginaries iff, for every M-definable
set X, we have X∩cleq(pXq) is nonempty, where pXq ∈Meq is the canonical
parameter of X.

We will prove the next proposition later.

Proposition 8.43. Let b̄ ⊂ M. Assume that cl(b̄) is dense in M. Then, M
has cl-elimination of imaginaries modulo b̄.

Corollary 8.44. Let M be geometric. Assume that acl(∅) is acl-dense in M
(e.g., M is a pure algebraically closed field). Then, M has weak elimination
of imaginaries. If moreover M expands a field, then M has elimination of
imaginaries.

Corollary 8.45. Assume that M expands an integral domain. Let 〈B,A〉 |=
T d. Let b ∈ B\A. Then, 〈B,A〉 has Scl-elimination of imaginaries modulo b.

Proof. For every b ∈ B \ A, we have that SclB(b) is Scl-dense in 〈B,A〉. �

In the situation of the above corollary, it is not true that 〈B,A〉 has
Scl-elimination of imaginaries (modulo ∅). For instance, let X := B \ A.
Then, X ∩ Scleq(pXq) = ∅.

Before proving the Proposition 8.43, we need some preliminaries. Let
X ⊆ Mn be a subset definable with parameters b̄. Let M′ be the expansion
of M with a new predicate denoting X. Notice that M and M′ have the same
definable sets. However, cl is no longer an existential matroid on M′: for
instance, if X = {b} is a singleton, and b /∈ cl(∅), then b ∈ acl′(∅) \ cl(∅),
where acl′ is the algebraic closure in M′, and therefore cl is not existential
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on M′. However, notice that |̂cl satisfies all the axioms of a symmetric
independence relation on M′, except possibly the Extension axiom.

Let e := pXq ∈Meq be the canonical parameter for X. For every Z ⊆M,
define cle(Z) := cleq(eZ) ∩M (notice that, if e = ∅, then cle = cl).

Lemma 8.46. The matroid cle is an existential matroid on M′.

Proof. We only need to check that cle satisfies Existence. Let B and C be
subsets of M such that a /∈ cle(B), that is a /∈ cleq(eB). Let a′ ≡M

eB a be such
that a′ |̂cl

e
BC. Then, a′ ≡M′

B a and a′ /∈ cleq(eBC) = cle(BC). �

Proof of Proposition 8.43. W.l.o.g., b̄ = ∅. Let X be an M-definable set and
e := pXq; by Remark 8.42, we need to show that X ∩ cleq(e) 6= ∅. Let cle
be defined as above. Since cl(∅) is dense in M and cl ⊆ cle, we have that
K := cle(∅) is also dense in M′. Hence, by Lemma 7.4, K � M′. Thus, since
X is ∅-definable in M′, there exists c̄ ∈ X ∩K. �

Other results on elimination of imaginaries for dense pairs of geometric
structures were proved in [Box09].

9. D-minimal topological structures

In this section we will introduce d-minimal structures. They are topo-
logical structures whose definable sets are particularly simple from the topo-
logical point of view; they generalise o-minimal structures. We will show
that for d-minimal structures the topology induces a canonical existential
matroid, which we denote by Zcl. Moreover, the abstract notion of density
introduced in §7 coincides with the usual topological notion. Finally, if T is
a complete d-minimal theory expanding the theory of fields, then in T d the
condition that the smaller structure is cl-closed is superfluous. Our definition
of d-minimality extends an older definition by C. Miller [Mil05], that applied
only to linearly ordered structures.

Let K be a first-order topological structure in the sense of [Pil87]. That
is, K is a structure with a topology, such that a basis of the topology is given
by {Φ(K, ā) : ā ∈ Km} for a certain formula without parameters Φ(x, ȳ); fix
such a formula Φ(x, ȳ), and denote Bā := Φ(K, ā). Examples of topological
structures are valued fields, or ordered structures. On Kn we put the product
topology. Let M � K be a monster model. Given X ⊆ Kn, we will denote by
X and X̊ respectively the topological closure and the interior of X inside Kn.

Definition 9.1. The structure K is d-minimal if:

1. it is T1 (i.e., its points are closed);
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2. it has no isolated points;

3. for every X ⊆ M definable subset (with parameters in M), if X has
empty interior, then X is a finite union of discrete sets.

4. for every X ⊂ Kn definable and discrete, Πn
1 (X) has empty interior;

5. given X ⊆ K2 and U ⊆ Π2
1(X) definable sets, if U is open and

nonempty, and Xa has nonempty interior for every a ∈ U , then X
has nonempty interior.

Notice that (4) implies (2). [BDO08, §4] introduce the notion of “geomet-
ric structures” (distinct from the one we used in this article) which, more or
less, are d-minimal structures where every definable discrete set is finite, plus
some additional conditions (such as definable Skolem functions), and prove
for those theories the analogue of Corollary 9.17.

Examples 9.2.

1. p-adic fields and algebraically closed valued fields are d-minimal;

2. densely ordered o-minimal structures are d-minimal.

In both cases, a definable set is discrete iff it is finite.

Example 9.3. A structure K is definably complete if it expands a linear
order 〈K,<〉, and every K-definable subset of K has a supremum in K t
{±∞}. C. Miller defines a d-minimal structure as a definably complete
structure K such that, given K′ an ℵ0-saturated elementary extension of K,
every K′-definable subset of K′ is the union of an open set and finitely many
discrete sets. In particular, o-minimal structures and ultra-products of o-
minimal structures are d-minimal in Miller’s sense. If K expands a field and
is a d-minimal structures in the sense of Miller, then K is d-minimal in our
sense [For10, §10]. Conversely, any definably complete structure which is
d-minimal in our sense is also d-minimal in Miller’s sense.

Proviso. For the remainder of this section, we assume that K is d-minimal,
and T is the theory of K.

Remark 9.4. 1. Let X ⊂ Kn be discrete. Since K has no isolated points,
X is nowhere dense, that is X̊ = ∅.

2. Let X1, . . . , Xr be nowhere dense subsets of Kn. Then X1 ∪ · · · ∪Xr is
also nowhere dense: this remains true if K is any topological space.
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3. Hence, if X1, . . . , Xr are discrete subsets of Kn, then X1 ∪ · · · ∪ Xr is
nowhere dense (but no longer discrete, in general).

4. Let X ⊆ K be definable. Then, X has empty interior iff X is nowhere
dense.

5. If X1 and X2 are definable subsets of K with empty interior, then
X1 ∪X2 has empty interior. Hence, for every X ⊆ K definable, X \ X̊
has empty interior.

Lemma 9.5. Let Z ⊂ K2 be definable, such that Π2
1(Z) has empty interior,

and Zx has empty interior for every x ∈ K. Then, θ(Z) has empty interior,
where θ is the projection onto the second coordinate.

Proof. By assumption, w.l.o.g. Π2
1(Z) is discrete and, for every x ∈ K, Zx is

also discrete. Therefore, Z is discrete, and hence θ(Z) has empty interior. �

Definition 9.6. Given A ⊂ M and b ∈ M, we say that b ∈ Zcl(A) if there
exists X ⊂ M A-definable such that b ∈ X and X has empty interior (or,
equivalently, X is discrete).

Lemma 9.7. If c /∈ Zcl(A), then Ξ(c/A) has nonempty interior.

Proof. Let X ⊆ M be any A-definable set containing c. Since c /∈ Zcl(A),
c ∈ X̊. Consider the partial type over cA

Γ(ȳ) := {c ∈ Bȳ ⊆ X : X ⊆M is A-definable and c ∈ X}.

By the above consideration, Γ is consistent; let b̄ ⊂M be a realisation of Γ.
Claim 1. c ∈ Bb̄ ⊆ Ξ(c/A).

Clearly, c ∈ Bb̄. Let c′ ∈ Bb̄ and let X ⊆ M be A-definable and contain-
ing c. By our choice of b̄, we have c′ ∈ X, and therefore c′ satisfies all the
A-formulae satisfied by c. �

Theorem 9.8. The operator Zcl is an existential matroid.

Proof. Finite character, extension and monotonicity are obvious.
The fact that Zcl is definable is also obvious.
Idempotency) Let b̄ := 〈b1, . . . , bn〉, a ∈ Zcl(b̄c̄) and b̄ ⊂ Zcl(c̄). We must
prove that a ∈ Zcl(c̄). Let φ(x, ȳ, z̄) and ψi(y, z̄) be formulae, i = 1, . . . , n,
such that φ(M, ȳ, z̄) and ψi(M, z̄) are discrete for every ȳ and z̄, and M |=
φ(a, b̄, c̄) and M |= ψi(bi, c̄), i = 1, . . . , n. Let

Z := {〈x, ȳ〉 : M |= φ(x, ȳ, c̄) &
n∧
i=1

ψi(yi, c̄)},
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and W := Πn+1
1 Z. By hypothesis, Z is a discrete subset of Mn+1, and

therefore, by Assumption (4), W has empty interior. Moreover, W is c̄-
definable and a ∈ W , and hence a ∈ Zcl(c̄).
EP) Let a ∈ Zcl(bc̄) \ Zcl(c̄). We must prove that b ∈ Zcl(ac̄). Assume not.
Let Z ⊂M2 be c̄-definable, such that 〈a, b〉 ∈ Z and Zy is discrete for every
y ∈ M. Since b ∈ Za and b /∈ Zcl(ac̄), b ∈ int(Za); hence, w.l.o.g. Zx is open
for every x ∈ M. Let U := Π2

1(Z). Since a ∈ U and a /∈ Zcl(c̄), a ∈ Ů .
Hence, by Condition (5), Z has nonempty interior; but this contradict the
fact Zy is discrete for every y ∈M.
Existence follows from Lemma 9.7.
Nontriviality) Consider the following partial type over the empty set:

Λ(x) := {x /∈ Y },

where Y varies among the discrete ∅-definable sets. Since M has no isolated
points, Λ is finitely satisfiable; if a ∈ M is a realisation of Λ, then a /∈
Zcl(∅). �

We will denote by Zrk, |̂ , and dim the rank, independence relation, and
dimension on M induced by Zcl.

Remark 9.9. Let X ⊆ Kn be definable. If X has nonempty interior, then
dim(X) = n. If Πn

d(X) has nonempty interior, then dim(X) ≥ d.

Conjecture 9.10. Let X ⊆ Kn be definable. Then, dim(X) ≥ d iff, after a
permutation of variables, Πn

d(X) has nonempty interior.

Conjecture 9.11. For every X ⊆ Kn definable, dim(X) = dimX.

Example 9.12. It is not true that dim(∂X) < dim(X) if X is definable
and nonempty. For instance, let K := 〈R,+, ·, <, 2Z〉 be the expansion of the
real field by a predicate for the integer powers of 2. Then, K is d-minimal
[vdD85, Theorem II]. Let X := 2Z. Thus, ∂X = {0}, and hence dim(X) =
0 = dim(∂X).

Lemma 9.13. The set X is Zcl-dense in K according to Definition 7.1 iff
X is topologically dense in K.

Proof. Assume that X is dense in K according to Zcl. Let A ⊆ K be an open
definable set; thus, dim(A) = 1, and therefore A∩X 6= ∅. Conversely, if X is
topologically dense in K, let A ⊆ K be definable and of dimension 1. Thus,
A has nonempty interior, and therefore A ∩X 6= ∅. �
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Lemma 9.14. Let d ∈M, V be a definable neighbourhood of d, and C ⊂M.
Then, there exists ā ∈Mm such that ā |̂

d
C and d ∈ Bā ⊆ V .

Proof. Let X := {ā ∈ Mn : d ∈ Bā}. Let ≤ be the quasi-ordering on X
given by reverse inclusion: that is, ā ≤ ā′ if Bā ⊇ Bā′ . Fix b̄ ∈ X such that
Bb̄ ⊆ V . Since (X,≤) is a directed set, by Lemma 3.68, there exists ā ∈ X
such that ā |̂

d
C and Bā ⊆ Bb̄ ⊆ V . �

Proviso 9.15. For the remainder of this section, will assume that K is
d-minimal and expands an integral domain, that + and − are continuous
(and therefore 〈K,+〉 is a topological group), and that T is the theory of K.
In the following, when K is a d-minimal expansion of an integral domain, we
will always assume that + and − are continuous.

Notice that an algebraically closed field with the Zariski topology is not
a topological group, because + is not continuous. Notice also that, since we
required that points are closed, K is a regular topological space.

Remark 9.16. Let X ⊆ K be dense (but not necessarily definable). Then,
for every b ∈ K and every V neighbourhood of 0, there exists a ∈ X such
that b ∈ a+ V .

Proof. Since − is continuous, there exists V ′ neighbourhood of 0 such that
V ′ = −V ′ and V ′ ⊆ V . Since X is dense, there exists a ∈ X such that
a ∈ b+ V ′. Hence, b ∈ a− V ′ ⊆ a+ V . �

Corollary 9.17. The theory T d is complete. Besides, T d is the theory of
pairs 〈K,F〉 such that F ≺ K |= T and F is a (topologically) dense proper
subset of K.

Proof. By Theorem 8.3, it suffices to show that if F � K is dense in K, then
F is Zcl-closed in K. W.l.o.g., the pair 〈K,F〉 is ω-saturated. Let b ∈ ZclK(F);
we must prove that b ∈ F. Let Z ⊂ K be F-definable and discrete, such that
b ∈ Z. Let U ′ be a definable neighbourhood of b, such that Z ∩ U ′ = {b}.
Define U := U ′− b; since K is a topological group, U is a neighbourhood of 0
in K, and there exists V open neighbourhood of 0 definable in K, such that
V = −V and V + V ⊆ U .
Claim 1. There exists an F-definable open neighbourhood W of 0 such that
W ⊆ V .

Suppose the claim is not true. Since K is a regular space, there exists X
definable open neighbourhood of 0 such that X ⊆ V . Let XF := X∩F. Since
XF is a neighbourhood of 0 in F and since the topology has a definable basis,
there exists WF ⊆ XF such that the set WF is F-definable and WF is an open
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neighbourhood of 0. Let W be the interpretation of WF in K. Since W is
open and F is dense in K, WF is dense in W ; therefore, W ⊆ WF ⊆ X ⊆ V .

By Remark 9.16, there exists a ∈ F such that b ∈ W ′, whereW ′ := a+W .
Claim 2. W ′ ⊆ U ′.

The claim is equivalent to a+W ⊆ b+ U , that is W + (a− b) ⊆ U . By
assumption, b ∈ a + W , and therefore a − b ∈ −W . Hence, W + (a − b) ⊆
W −W ⊆ V − V ⊆ U .

Finally, W ′ is F-definable, and b ∈ W ′ ∩ Z ⊆ V ∩ Z = {b}. Hence, b is
F-definable, and therefore b ∈ F. �

Given ā := 〈ā1, . . . , ān〉 ∈Mn×m and b̄ ∈Mn, denote

Bā + b̄ := (Bā1 + b1)× · · · × (Bān + bn) ⊆Mn.

Lemma 9.18. Let d̄ ∈Mn, V be a definable neighbourhood of d̄, and C ⊂M.
Then, there exist ā ∈ Mm×n and b̄ ∈ Mn such that d̄ ∈ Bā + b̄ ⊆ V and
āb̄ |̂ Cd̄.

Proof. Proceeding by induction on n, it suffices to treat the case n = 1. Let
V0 := V − d; it is a definable neighbourhood of 0. Since M is a topological
group, there exists V1 definable and open, such that 0 ∈ V1, V1 = −V1, and
V1 + V1 ⊆ V0. By Lemma 9.14, there exists ā ∈ Mm such that ā |̂ Cd and
0 ∈ Bā ⊆ V1. Let W := d− Bā. Since dim(W ) = 1, there exists b ∈ W such
that b /∈ Zcl(Cād).
Claim 1. d ∈ Bā + b.

In fact, b ∈ −Bā + d, and therefore d− b ∈ Bā

Claim 2. āb |̂ Cd.
By construction, b |̂ Cād, and therefore b |̂

ā
Cd, and hence āb |̂

ā
Cd.

Together with ā |̂ Cd, this implies the claim. �

Corollary 9.19. Let X ⊆ Mn be a definable set, and k ∈ N. Assume that,
for every x̄ ∈ X, there exists Vx̄ definable neighbourhood of x̄, such that
dim(Vx̄ ∩X) ≤ k. Then, dim(X) ≤ k.

Proof. Let C be the set of parameters of X. By Lemma 9.18, for every x̄ ∈ X
there exist ā ∈ Kn×m and b̄ ∈ Kn such that āb̄ |̂ Cx̄ and x̄ ∈ Bā + b̄ ⊆ Vx̄;
notice that dim(X ∩ (Bā+ b̄)) ≤ k. Hence, by Lemma 3.69, dim(X) ≤ k. �

We do not know if the above corollary remains true if we drop the as-
sumption that M expands a group.

Corollary 9.20. Let C ⊂ M and p ∈ Sn(C). Then, p is stationary iff p is
realised in dcl(C).
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Proof. Assume for contradiction, that p is stationary, but dim(p) > 0. Let
ā0 and ā1 be realisations of p independent over C. Since dim(p) > 0,
ā0 6= ā1. Since M is Hausdorff, Lemma 9.18 implies that there exists V
open neighbourhood of ā0, definable with parameters b̄, such that ā1 /∈ V
and b̄ |̂ Cā0ā1. Hence, by Lemma 3.11, ā0 |̂ Cb̄ ā1. Since p is stationary,
Lemma 3.64 implies ā0 ≡b̄ ā1, contradicting the fact that ā0 ∈ V , while
ā1 /∈ V . �

10. Cl-minimal structures

Let M be a monster model, T be the theory of M, and cl be an existential
matroid on M. We denote by dim and rk the dimension and rank induced
by cl.

Definition 10.1. A type p ∈ Sn(A) is a generic type if dim(p) = n. The
structure M is cl-minimal if, for every A ⊂M, there exists only one generic
1-type over A.

Remark 10.2. For every 0 < n ∈ N and A ⊂ M, there exists at least one
generic type in Sn(A). If M is cl-minimal, then for every n and A there exists
exactly one generic type in Sn(A).

Lemma 10.3. If M is cl-minimal, then dim is definable.

Proof. Notice that, given x̄ := 〈x1, . . . , xn〉 and a formula φ(x̄, ȳ), the set
Un
φ := {ā : dim(φ(K, ā)) = n} is always type-definable (Remark 3.43). By

the above remark, Kn \ Un
φ = Un

¬φ, and therefore Un
φ is both type-definable

and ord-definable, and hence definable. �

Remark 10.4. The structure M is cl-minimal iff, for every n > 0 and every
X definable subset of Kn, exactly one among X and Kn \X has dimension n.

Remark 10.5. If K � M and dim is definable, then K is cl-minimal iff, for
every X definable subset of K, either dim(X) ≤ 0, or dim(K \X) ≤ 0; that
is, we can check cl-minimality inside K.

Examples 10.6. 1. M is strongly minimal iff acl is a matroid and M is
acl-minimal.

2. Consider Example 3.59(2). In that context, a type is generic in our
sense iff it is generic in the sense of stable groups. Hence, G is cl-min-
imal iff it has only one generic type iff it is connected (in the sense of
stable groups).
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Lemma 10.7. Assume that T is cl-minimal; let Scl be the small closure
inside T d. Then, T d is Scl-minimal. Moreover, T d coincides with T 2.

Proof. Let 〈B∗,A∗〉 be a monster model of T d. Let C ⊂ B∗ with |C| < κ.
Define A := clB

∗
(A∗C), and qC(x) the partial L2-type over C given by

qC(x) := x /∈ A.

It is clear that every generic 1-T d-type over C expands qC . Hence, it suffices
to prove that qC is complete. Let b and b′ ∈ B∗ satisfy qC . By Corollary 8.19,
〈B∗,A∗〉 � 〈B∗,A〉. By assumption, b and b′ are not in A; hence, since T is
cl-minimal, they satisfy the same generic 1-T -type pA; thus, by Corollary 8.21,
b ≡2

A b
′. �

11. Connected groups

Let M be a monster model, and cl be an existential matroid on it. Denote
dim := dimcl, rk := rkcl, and |̂ := |̂cl.

Definition 11.1. Let X ⊆Mn be definable (with parameters). Assume that
m := dim(X) > 0. We say that X is connected if, for every Y definable
subset of X, either dim(Y ) < n, or dim(X \ Y ) < n.

For instance, if M is cl-minimal and X = M, then X is connected.

Remark 11.2. If X is connected, then, for every l ≥ 0, X l is also connected.

Remark 11.3. Let X ⊆Mn be definable and of dimension m > 0.
1. X is connected iff, for every A ⊂ M containing the parameters of

definition of X, there exists exactly one n-type over A in X which is
generic (i.e., of dimension m).

2. If X is connected and Y is a definable subset of X of dimension less
than m (e.g., Y is finite), then X \ Y is connected.

Lemma 11.4. Let G ⊆ Mn be definable and connected. Assume that G is
a semigroup with left cancellation. Assume moreover that G has either right
cancellation or right identity. Then G is a group.

Cf. [Poi87, 1.1].

Proof. Assume not. Let m := dim(G). W.l.o.g., G is definable without
parameters. For every a ∈ G, let a · G := {a · x : a ∈ G}. Since G has left
cancellation, we have dim(a ·G) = m.

Let F := {a ∈ G : a ·G = G}. Our aim is to prove that F = G. It is easy
to see that F is multiplicatively closed.
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First, assume that G has a right identity element 1. The reader can verify
that following claim is true for any abstract semigroup with left cancellation
and right identity.
Claim 1. F is a group.
Claim 2. dim(F ) < m.

Assume, for contradiction, that dim(F ) = m. Let a ∈ G \ F . Then,
F ∩ (a · F ) 6= ∅; let u, v ∈ F be such that u = a · v.

Since u ∈ F and F is a group, there exists w ∈ F such that v · w = 1;
hence, u · w = a · 1 = a, and therefore a ∈ F , absurd.

Choose a, b ∈ G independent (over the empty set). Since dim(a · G) =
dim(b · G) = m, we have a ∈ b · G and b ∈ a · G. Let u, v ∈ G be such that
b = a · u and a = b · v. Hence, a = a · u · v.

Since a · 1 = a · u · v, we have 1 = u · v. Hence, both u and v are in F .
However, since dim(F ) < m and b = a · u, we have rk(b/a) ≤ rk(u) < m,
absurd.

If instead G has right cancellation, it suffices, by symmetry, to show that
G has a left identity. Reasoning as above, we can show that there exist a
and b in G such that a · b = a. We claim that b is a left identity. In fact,
for every c ∈ G, we have a · b · c = a · c, and therefore b · c = c, and we are
done. �

Proviso. For the remainder of this section, 〈G, ·〉 is a definable connected
group, of dimension m > 0, with identity 1.

If G is Abelian, we will also use + instead of · and 0 instead of 1.
Hence, if G expands a ring without zero divisors, then, by applying the

above lemma to the multiplicative semigroup of G, we obtain that G is a
division ring.

Remark 11.5. Let X ⊆ G be definable, such that X · X ⊆ X. Then,
dim(X) = m iff X = G.

Proof. Assume that dim(X) = m. Let a ∈ G. Then, X ∩ (a · X−1) 6= ∅;
choose u, v ∈ X such that u = a · v−1. Hence, a = u · v ∈ X ·X = X. �

Lemma 11.6. Let f : G→ G be a definable homomorphism. If dim(ker f) =
0, then f is surjective.

Cf. [Poi87, 1.7].

Proof. Let H := f(G) and K := ker(f); notice that H < G and K < G.
Moreover, by additivity of dimension, m = dim(H) + dim(K). Hence, if
dim(K) = 0, then dim(H) = m, therefore H = G and f is surjective. �
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Example 11.7. The group 〈Z,+〉 cannot be cl-minimal, because the homo-
morphism x 7→ 2x has trivial kernel but is not surjective.

Lemma 11.8. Let H < G be definable, with dim(H) = k < m. Then, G/H
is connected, and dim(G/H) = m− k.

Proof. That dim(G/H) = m − k is obvious. Let X ⊆ G/H be definable of
dimensionm−k. We must prove that dim(G/H\X) < m. Let π : G→ G/H
be the canonical projection, and Y := π−1(X). Then, dim(Y ) = m, and
therefore dim(G \ Y ) < m. Thus, dim(G/H \ X) = dim(π(G \ Y )) <
m− k. �

Conjecture 11.9. If m = 1, then G is Abelian. Cf. Reineke’s Theorem
[Poi87, 3.10].

Proceeding as in [Poi87, 3.10], to prove the above conjecture it would be
enough to consider the case when any two elements of G different from the
identity are conjugate.

Lemma 11.10. Assume that m = 1 and G is Abelian. Let p be a prime
number. Then, either pG = 0, or G is divisible by p.

Proof. Let H := pG and K := {x ∈ G : px = 0}. If dim(H) = 1, then
G = H and therefore G is p-divisible. If dim(H) = 0, then dim(K) = 1, thus
G = K and pG = 0. �

Notice that the above lemma needs the hypothesis that m = 1. For
instance, let M be the algebraic closure of Fp, and let G := M×M∗ (where
M∗ is the multiplicative group of M).

Theorem 11.11. Assume that G expands an integral domain (and is con-
nected). Then, G is an algebraically closed field.

The proof if the above theorem is the same as the one of Macintyre’s The-
orem [Poi87, 3.1 and 6.11] (cf. Corollary 3.53); notice also that the first step
in the proof of Macintyre’s Theorem is showing that G is connected. More-
over, in the above theorem it is essential that G is connected: for instance,
if M is a formally p-adic field, then M itself is a nonalgebraically closed field
(of dimension 1).

Question 11.12. Can we weaken the hypothesis in the above theorem from
“G expands an integral domain” to “G expands a ring without zero divisors”?
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12. Ultraproducts

Let I be an infinite set, and µ be an ultrafilter on I. For every i ∈ I,
let 〈Ki, cli〉 be a pair given by a first-order L-structure Ki and an existential
matroid cli on Ki. Let K be the family

(
〈Ki, cli〉

)
i∈I , and K := ΠiKi/µ be

the corresponding ultraproduct.
We will give some sufficient condition on the family K, such that there is

an existential matroid on K induced by the family of cli. Denote by di the
dimension induced by cli.

Definition 12.1. We say that the dimension is uniformly definable (for
the family K) if, for every formula φ(x̄, ȳ) without parameters, for every
tuples x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , ym〉, and for every l ≤ n, there is a
formula ψ(ȳ), also without parameters, such that, for every i ∈ I,

ψ(Ki) = {ȳ ∈ Km
i : di

(
φ(Ki, ȳ)

)
= l}.

We denote by dlφ the formula ψ.

Remark 12.2. The dimension is uniformly definable if, for every formula
φ(x, ȳ) without parameters, ȳ = 〈y1, . . . , ym〉, there is a formula ψ(ȳ), also
without parameters, such that, for every i ∈ I,

ψ(Ki) = {ȳ ∈ Km
i : di

(
φ(Ki, ȳ)

)
= 1}.

For instance, if every Ki expands a ring without zero divisors, then the
dimension is uniformly definable: given ψ(x, ȳ), define ψ(ȳ) by

∀z ∃x1, . . . , x4

(
z = F (x1, . . . , x4) &

4∧
i=1

φ(xi, ȳ)
)
.

For the remainder of this section, we assume that the dimension is uni-
formly definable for K.

Definition 12.3. Let d be the function from definable sets in K to {−∞}∪N
defined in the following way:

Given a K-definable set X = Πi∈IXi/µ and l ∈ N, d(X) = l if, for
µ-almost every i ∈ I, di(Xi) = l.

The following result is the justification for definitions 12.1 and 12.3.

Remark 12.4. The map d is a dimension function on K. Let cl be the
existential matroid induced by d. Then, a ∈ cl(b̄) implies that, for µ-almost
every i ∈ I, ai ∈ cli(b̄i), but the converse is not true.

53



Remark 12.5. Let X ⊆ Kn be definable with parameters c̄; let φ(x̄, c̄) be
the formula defining X. Given l ∈ N , d(X) = l iff, for µ-almost every i ∈ I,
Ki |= dlφ(c̄i).

Lemma 12.6. If each Ki is cl-minimal, then K is also cl-minimal.

Proof. By Remark 10.5. �

Example 12.7. The ultraproduct K of strongly minimal structures is not
strongly minimal in general (it will not even be a pregeometric structure),
but if each structure expands a ring without zero divisors, then K will have
a (unique) existential matroid, and will be cl-minimal.

In fact, let F be an algebraically closed field of finite characteristic. For
every n ∈ N, let Pn be a subset of F with n element. Let P be a new unary
predicate, define Kn := (F, Pn) in the language of fields expanded by P , and
let K := 〈K,+, ·, P ∗〉 be a nonprincipal ultraproduct of the Kn. Then, P ∗
will be an infinite definable subset of K of dimension 0, and therefore K will
not be geometric. By taking instead for Pn suitable finite subsets of F3, we
can also attain that any nonprincipal ultraproduct K of K is not geometric,
does satisfy the Independence Property, and has an infinite definable subset
with a definable linear ordering. Moreover, one can also impose that the
trivial chain condition for uniformly definable subgroups of 〈K,+〉 fails in K
[Poi87, 1.3].

However, K will satisfy the following conditions:
1. Every definable monoid with left cancellation is a group [Poi87, 1.1];
2. Given G a definable group acting in a definable way on a definable set E,

if A is a definable subset of E and g ∈ G such that g · A ⊆ A, then
g · A = A [Poi87, 1.2].

We do not know if conditions (1) and (2) in the above example are true
for an arbitrary cl-minimal structure expanding a field.

Remark 12.8. Assume that each Ki is a first-order topological structure,
and that the definable basis of the topology of each Ki is given by the same
function Φ(x, ȳ). Then, K is also a first-order topological structure, and
Φ(x, ȳ) defines a basis for the topology of K. If each Ki is d-minimal, then
K has an existential matroid, but it needs not be d-minimal.
Assume that each Ki is d-minimal and satisfies the additional condition

(*) Every definable subset of Ki of dimension 0 is discrete.
Then, K is also d-minimal and satisfies condition (*).

Example 12.9. An ultraproduct of o-minimal structures is not necessarily
o-minimal, but it is d-minimal, and satisfies condition (*).
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13. Dense tuples of structures

In this section we assume that T expands the theory of integral domains.
We will extend the results of §8 to dense tuples of models of T .

Definition 13.1. Fix n ≥ 1. Let Ln be the expansion of L by (n − 1)
new unary predicates P1, . . . , Pn−1. Let T n be the Ln-expansion of T , whose
models are sequences K1 ≺ · · · ≺ Kn−1 ≺ Kn |= T , where each Ki is a proper
cl-closed elementary substructure of Ki+1. Let T nd be the expansion of T n+1

saying that K1 is dense in Kn. We also define T 0d := T .

For instance, T 1 = T , T 2 is the theory we already defined in §8, and
T 1d = T d.

Lemma 13.2. If T is cl-minimal, then T n is complete for every n ≥ 1
(and therefore coincides with T (n−1)d). Moreover, T n has a (unique) ex-
istential matroid cln: given 〈Kn, . . . ,K1〉 |= T n, we have b ∈ cln(A) iff
b ∈ clKn(AKn−1). Finally, T n is cln-minimal.

Proof. By induction on n: iterate n times Lemma 10.7. �

Corollary 13.3. Assume that T is strongly minimal. Then, T n is complete,
and coincides with the theory of tuples K1 ≺ · · · ≺ Kn |= T .

Proof. One can use either the above Lemma, or reason as in [Kei64], using
Lemma 8.10. �

Remark 13.4. Let 〈B,A〉 be a λ-saturated model of T d, for some cardinal λ.
Let U ⊆ B be B-definable and of dimension 1. Then rk(U ∩ A) ≥ λ.

Theorem 13.5. The theory T nd is complete. There is a (unique) existential
matroid on T nd.

Proof. By induction on n, we will prove that T nd is (· · · (T d)d · · · )d iterated n
times. This implies both that T nd is complete, and that it has an existential
matroid.

It suffices to treat the case n = 2. Notice that 〈K2,K1〉 ≺ 〈K3,K1〉 |= T d.
It suffices to show that K2 is Scl-dense in 〈K3,K1〉. W.l.o.g., we can assume
that 〈K3,K2,K1〉 is ω-saturated.

LetX ⊆ K3 be definable in 〈K3,K1〉 (with parameters from K3), such that
Sdim(X) = 1. We need to show that X intersects K2. By Corollary 8.36,
there exist U and S subsets of K3, such that U is definable in K3, S is
definable in 〈K3,K1〉 and small, and X = U ∆ S. Therefore, dim(U) = 1. If,
by contradiction, X ∩K2 = ∅, then K2 ∩ U ⊆ S; therefore, Srk(K2 ∩ U) < ω
(where Srk is the rank induced by Scl), contradicting Remark 13.4. �
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The above theorem has an analogue version for “beautiful tuples” of stable
structures [BP88, Proposition 5].

Example 13.6. To clarify a possible source of confusion, consider the case
when T is the theory of algebraically closed fields of characteristic 0. Then, T 2

is a complete theory, and therefore it coincides with both T d and the theory
of beautiful pairs for T . Hence, T d is stable [Poi83], and therefore we can
consider in turn beautiful pairs of models of T d. However, such a beautiful
pair will not be a model of T 2d, because it will be of the form 〈K,F1,F2,L〉,
where L, F1, F2 and K are models of T , with F1 and F2 substructures of K,
L = K1 ∩K2, and K1 |̂ L K2.

Corollary 13.7. Assume that T is d-minimal (and Proviso 9.15 holds).
Then, T nd coincides with the theory of (n + 1)-tuples K1 ≺ · · · ≺ Kn ≺
Kn+1 |= T , such that K1 is (topologically) dense in Kn+1.

Proof. Notice that if 〈Kn, . . . ,K1〉 satisfy the assumption, then, by Corol-
lary 9.17, each Ki is cl-closed in Kn. �

13.1. Dense tuples of topological structures
Assume that T expands the theory of integral domains. Assume that

M has both an existential matroid cl and a definable topology (in the sense
of [Pil87]). We have two distinct notions of closure and of density on M: the
ones given by the topology and the ones given by the matroid; to distinguish
them, we will speak about topological closure and cl-closure respectively (and
similarly for density).

Let Φ(x, ȳ) be a formula such that the family of sets

Bb̄ := Φ(M, b̄),

as b̄ varies in Mk, is a basis of the topology of M. If b̄ = 〈b̄1, . . . , b̄m〉, we
denote by Bn

b̄
:= Bb̄1 × · · · ×Bb̄m ⊆Mm.

The first of the following two conditions is taken from [BH10].

Hypothesis. I. For every m ∈ N, every U open subset of Mm, and every
ā ∈ U , the set {b̄ : ā ∈ Bb̄ ⊆ U} has nonempty interior.

II. Every definable nonempty open subset of M has dimension 1.

Remark 13.8. Assumption II implies that a definable subset of Mm with
nonempty interior has dimension m (but the converse is not true: there can
be definable subsets of dimension m but with empty interior). Moreover, it
implies that a cl-dense subset of Mm is also topologically dense (but, again,
the converse is not true: see Theorem 13.11).
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Examples 13.9. 1. If M is either a valued field (with the valuation topol-
ogy) or a linearly ordered field (with the order topology), then it satis-
fies Assumption I.

2. If M is a d-minimal structure, then it satisfies Assumption II.

3. Let M be either a formally p-adic field, or an algebraically closed valued
field, or a d-minimal expansion of a linearly ordered definably complete
field (cf. Example 9.3). Then, M satisfies both assumptions.

Fact 13.10 ([BH10, Corollary 3.1]). Suppose Assumption I is true. Let
〈B,A〉 |= T 2 and C ⊆ B. Assume that, for every m ∈ N, there is a set
Dm ⊆ Bm such that:

1. Dm is topologically dense in Bm;

2. for every ā ∈ Dm and every open set U ⊆ Bm, if tp1(ā/C) is realised
in U , then tp1(ā/C) is realised in U ∩Dm;

3. for every d̄ ∈ Dm, tp2(d̄/C) is implied by tp1(d̄/C) in conjunction with
“d̄ ∈ Dm”.

Then, every open set T 2-definable over C is T -definable over C.

The following theorem, which is a generalisation of [BH10, Corollary 3.4],
follows easily from the above fact.

Theorem 13.11. Assume that the Hypothesis holds. Let C := 〈B,An−1, . . . ,
A1〉 |= T nd. Let c̄ ⊂ B be cl-independent over c̄ ∩ An−1. Let U ⊆ Bm be
open and definable in C, with parameters c̄. Then, U is definable in B, with
parameters c̄. Moreover, T nd also satisfies the Hypothesis.

In the terminology of [DMS10], the above theorem proves that B is the
open core of C.

Proof. By induction on n, it suffices to do the case when n = 2, i.e. when
C = 〈B,A〉 |= T d. W.l.o.g., C is λ-saturated and λ-homogeneous, for some
|T | < λ < κ. Define Dm := {d̄ ∈ Bm : Srk(d̄/c̄) = m}. We want to verify
that the hypothesis of Fact 13.10 are satisfied for the above Dm.

1. By Lemma 8.31, if V ⊆ Bm is B-definable and of dimension m, then
V ∩Dm is nonempty: therefore, by Assumption II, Dm is topologically
dense in Bm.
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2. Let d̄ ∈ Dm and U ⊆ Mm be open, and assume that p := tp1(d̄/c̄) is
realised in U . We have to show that p is realised in U ∩Dm. Let d̄′ ∈ U
be a realisation of p, and let b̄ ⊂ B be such that d̄′ ∈ Bb̄ ⊆ U . Since
d̄′ ≡1

c̄ d̄, we have that d̄′ is cl-independent over c̄. By changing b̄ if nec-
essary, we can also assume that d̄′ |̂ b̄c̄ (cf. the proof of Lemma 9.18),
and thus d̄′ is cl-independent over b̄c̄. Finally, since A is cl-dense in
B, there exists d̄′′ ≡1

b̄c̄
d̄ such that d̄′′ is cl-independent over b̄c̄A, and

therefore d̄′′ ∈ Bb̄ ∩Dm ⊆ U ∩Dm.

3. By Proposition 8.17.

Hence, we can apply Fact 13.10, and we are done. �

14. The (pre)geometric case

Remember that M is a pregeometric structure if acl satisfies EP. If more-
over M eliminates the quantifier ∃∞, then M is geometric.

In this section we gather various results about (pre)geometric structures,
mainly in order to clarify and motivate the general case of structures with
an existential matroid.

Remember that M has geometric elimination of imaginaries if every for
imaginary tuple ā there exists a real tuple b̄ such that ā and b̄ are interalge-
braic.

Remark 14.1. A theory T is pregeometric iff T is a real-rosy theory of real
þ-rank 1. Moreover, if T is pregeometric and has geometric elimination of
imaginaries, then |̂þ = |̂acl, and dimacl is equal to the þ-rank: see [EO07] for
definitions and proofs.

Remark 14.2. The model-theoretic algebraic closure acl is a definable clo-
sure operator.

For the remainder of this section, M is pregeometric (and T is its theory).

Remark 14.3. The operator acl is an existential matroid on M. The induced
independence relation |̂acl coincides with real þ-independence |̂þ and with
the M -dividing notion |̂M of [Adl05]. A formula is x-narrow (for acl) iff it is
algebraic in x.

Remark 14.4. Let X ⊆ Mn be definable. We have that dimacl(X) ≤ 0 iff
X is finite.

Remark 14.5. The structure M is geometric iff dimacl is definable.
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Remark 14.6. The structure M is acl-minimal iff it is strongly minimal.

In §6 we defined an extension of acl to the imaginary sorts, which here
we will denote by ãcl (while will we use acleq to denote the usual algebraic
closure for imaginary elements).

Remark 14.7. If a is real and B is imaginary, then a ∈ ãcl(B) iff a ∈
acleq(B).

Remark 14.8. T.f.a.e.:

1. acleq coincides with ãcl;

2. T is superrosy of þ-rank 1 [EO07];

3. T is surgical [Gag05].

Remark 14.9. A set X is dense in M iff for every U infinite definable subset
of M, U ∩X 6= ∅. If F � K, then F is acl-closed in K.

Remark 14.10. Assume that T is geometric. Then, T 2 is the theory of pairs
〈K,F〉, with F ≺ K |= T , and T d is the theory of pairs 〈K,F〉 |= T 2, such
that F is dense in K. For every X ⊆ K, Scl(X) = acl1(FX) = acl2(FX) (cf.
Question 8.39).

For more on the theory T d in the case when T is geometric, and in par-
ticular when T is o-minimal, see [Box09, BV10].
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