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The purpose of this note is to investigate the high frequency behaviour of solutions to linear Schrödinger equations. More precisely, Bourgain [3] and Anantharaman-Macia [2] proved that any weak- * limit of the square density of solutions to the time dependent homogeneous Schrödinger equation is absolutely continuous with respect to the Lebesgue measure on R × T d . Our contribution is that the same result automatically holds for non homogeneous Schrödinger equations, which allows for abstract potential type perturbations of the Laplace operator.

Introduction

We are interested in this note in understanding the high frequency behaviour of solutions of linear Schrödinger equations on tori, T d = R d /Z d . Consider a sequence of initial data (u 0,n ), bounded in L 2 (T d ) and denote by (u n ) the sequence of solutions to Schrödinger equation and (ν n ) their concentration measures given by

u n = e it∆ u 0,n , ν n = |u n | 2 (t, x)dtdx,
The sequence ν n on R t ×T d is bounded (in mass) on any time interval (0, T ) by T sup n u 0,n 2 L 2 (T d ) . The following result was proved by Bourgain [3, Remark p 108] and later by Anantharaman-Macia [2, Theorem 1] by a completely different approach, following a more geometric path (see also [START_REF] Jakobson | / Quantum limits on flat tori[END_REF][START_REF] Macià | The Schrödinger flow in a compact manifold: High-frequency dynamics and dispersion, Modern Aspects of the Theory of Partial Differential Equations[END_REF][START_REF] Burq | Geometric control in the presence of a black box[END_REF][START_REF] Burq | Bouncing ball modes and quantum chaos[END_REF][START_REF] Aïssiou | Uniform estimates for the solutions of the Schrdinger equation on the torus and regularity of semiclassical measures Preprint[END_REF] for related works).

Theorem 1. -Any weak- * limit of the sequence (ν n ) is absolutely continuous with respect to the Lebesgue measure dtdx on R t × T d . Remark 1.1. -Actually, in [START_REF] Anantharaman | The dynamics of the Schrödinger flow from the point of view of semiclassical measures[END_REF] a more precise description of the possible limits is given and the result is proved in the case of Schrödinger operators ∆ + V (t, x), if V ∈ L ∞ (R t × T 2 ) is also continuous except possibly on a set of (space-time) Lebesgue measure 0.

The purpose of this note is to show that the result in Theorem 1 extends to the case of solutions to the non-homogeneous Schrödinger equation, and consequently to the case of Schrödinger operators ∆ + V where V ∈ L 1 loc (R t ; L(L 2 (T d ))) (we also give as an illustration an application to a simple non linear equation). Let us emphasize that our approach uses no particular property of the Laplace operator on tori other than self-adjointness (to get L 2 bounds for the time evolution) and the fact that Theorem 1 holds, which is used as a black box, and establishes an abstract link between the study of weak- * limits of solutions of the homogeneous and inhomogeneous Schrödinger equations.
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Inhomogeneous Schrödinger equations

Definition 2.1. -Let T > 0. For any sequence (u n ) bounded in L 2 ((0, T ) × T d ), we say that the sequence (u n ) satisfies property (AC T ) if any weak- * limit, ν of (ν n ) is absolutely continuous with respect to the Lebesgue measure on (0, T ) × T d . Theorem 2. -Let (u n,0 ) and (f n ) be two sequences bounded in L 2 (T d ) and L 1 loc (R t ; L 2 (T d )) respectively. Let u n be the solution of

(i∂ t + ∆)u n = f n , u n | t=0 = u n,0 , u n = e it∆ u n,0 + 1 i t 0 e i(t-s)∆ f n (s)ds.
Then for any T > 0, the sequence (u n ), which is clearly bounded in L 2 ((0, T ) × T 2 ) by

T 1/2 sup n u n,0 L 2 (T d ) + f n L 1 ((0,T );L 2 (T d )) ,
satisfies property (AC T ).

Corollary 2.2. -Let V ∈ L 1 loc (R t ; L(L 2 (T 2 ))) (for example V can be chosen to be a potential in L 1 loc (R t ; L ∞ (T 2 )) acting by pointwize multiplication). For any sequence (u n,0 ) n∈N bounded in L 2 (T 2 ), let (u n ) be the sequence of the unique solutions in C 0 (R; L 2 (T 2 )) of

(i∂ t + ∆ + V (t))u n = 0, u n | t=0 = u n,0 .
Then the sequence (u n ) satisfies for any T > 0 the property (AC T ).

Indeed, since d dt u n 2 L 2 (T d ) = 2 Re ∂ t u, u L 2 (T d ) = 2 Re i∆u + iV u, u L 2 (T d ) = -2 Im(V u, u) L 2 (T d ) we obtain by Gronwall inequality u n (t) 2 L 2 (T d ) ≤ u n,0 2 
L 2 (T d ) e t 0 V (s) L(L 2 (T d ) ds ,
and consequently the sequence

(f n ) = (-V (t)u n ) is clearly bounded in L 1 loc (R t ; L 2 (T d ))
and we can apply Theorem 2.

Remark 2.3. -Any time independent V ∈ L(L 2 (T d )) satisfies the assumptions above, and consequently, if (u n ) is a sequence of L 2 normalized eigenfunctions of ∆ + V , it follows from Corollary 2.2 that any weak- * limit of |u n | 2 (x)dx is absolutely continuous with respect to the Lebesgue measure on T d . The proof we present below seems to be intrinsically a time dependent proof. However, it would be interesting to obtain a proof of this result avoiding the detour via the study of the time dependent Schrödinger equation.

Proof of Theorem 2.. -Notice first that if (u n ) satisfies property (AC T ), then the sequence (u n + v n ) satisfies property (AC T ) iff the sequence (v n ) satisfies property (AC T ), because, if |u n | 2 dtdx and |v n | 2 dtdx are converging weakly to ν and µ respectively, then according to Cauchy-Schwarz inequality any weak- * limit of |u n + v n | 2 dtdx is absolutely continuous with respect to ν + µ.

The following result shows that the set of sequences satisfying property (AC T ) is closed in some weak-strong topology.

Lemma 2.4. -Consider (u n ) bounded in L 2 ((0, T ) × T 2 ).
Assume that there exists for any k ∈ N a sequence (u

(k) n ) n∈N such that 1. For any k, the sequence (u (k) n ) n∈N satisfies Property (AC T ) 2. The sequences (u (k) n ) n∈N are approximating the sequence (u n ) in the following sense. (2.1) lim k→+∞ lim sup n→+∞ u n -u (k) n L 2 ((0,T )×T 2 ) = 0.
Then the sequence (u n ) n∈N satisfies property (AC T ).

Démonstration. -Indeed, for any > 0, let k 0 be such that for any k ≥ k 0 , lim sup

n u n -u n,k L 2 ((0,T )×T 2 ) < .
Then, if ν and ν (k) are weak- * limits of the sequences (u n ) n∈N and (u

(k)
n ) n∈N respectively, associated to the same subsequence n p → +∞, we have for any f ∈ C 0 ((0, T ) × T 2 ) and large n,

(2.2) (0,T )×T 2 |u np | 2 χdxdt ≤ (0,T )×T 2 2(|u np -u (k) np | 2 + |u (k) np | 2 )dxdt ≤ 2 2 + 2 (0,T )×T 2 2|u (k) np | 2 )χdxdt.
Passing to the limit p → +∞ we obtain

ν, χ ≤ 2 2 + 2 ν (k) , χ
On the other hand, according to Riesz Theorem (see e.g. [11, Theorem 2.14]) the measures ν, ν (k) which are defined on the Borelian σ-algebra, M, are regular and consequently

(2.3) ∀E ∈ M, ν(E) = sup F closed,F ⊂E ν(U ) = inf U open,E⊂U ν(U ), ∀E ∈ M, ν (k) (E) = sup F closed,F ⊂E ν (k) (U ) = inf U open,E⊂U ν (k) (U ).
For any E ∈ M, taking

F p ⊂ E and E ⊂ O p such that lim p→+∞ ν(F p ) = ν(E), lim p→+∞ ν (k) (O p ) = ν (k) (E)
and χ p ∈ C 0 ((0, 1) × T d ; [0, 1]) equal to 1 on F p and supported in O p , we obtain according to (2.2)

ν(E) ≤ 2 2 + 2ν (k) (E).
Consider now E a subset of (0, T )×T d -Lebesgue measure 0. Since by assumption ν (k) is absolutely continuous with respect to the Lebesgue measure, we have ν (k) (E) = 0, and hence ν(E) ≤ 2 2 and consequently, since > 0 can be taken arbitrarily small, we have ν(E) = 0, which proves that ν is also absolutely continuous with respect to the Lebesgue measure.

We come back to the proof of Theorem 2 and fix T > 0. According to Duhamel formula.

u n = e it∆ u 0,n + 1 i t 0 e i(t-s)∆ f n (s)ds.
According to the remark above, since we know that the sequence (e it∆ u 0,n ) satisfies property (AC T ), it is enough to prove that the sequence (v n ) = ( t 0 e i(t-s) f n (s)ds) satisfies property (AC T ). The key point of the analysis is to remark that if instead of v n we had ṽn = T 0 e i(t-s)∆ V u n (s)ds = e it∆ g n , g n = T 0 e -is∆ V e is(∆+V ) u n,0 (s)ds, then, we could conclude using Theorem 1 because ṽn is a solution to the homogeneous Schrödinger equation with initial data the bounded sequence (g n ). To pass from ṽn to v n , we adapt an idea borrowed from harmonic analysis (Christ-Kiselev' Lemma [START_REF] Christ | Maximal functions associated to filtrations[END_REF]), in the simple form written in Burq-Planchon [START_REF] Burq | Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications[END_REF] (see also [START_REF] Burq | Large-time dynamics for the one-dimensional Schrödinger equation[END_REF]). Here the idea is to show that the sequence (v n ) can be approximated by other sequences (v

(k)
n ) in the sense of (2.1) (actually, we get a stronger convergence, as we can replace the lim sup in (2.1) by a sup), where each (v

(k)
n ) is a finite sum of solutions of the homogeneous Schrödinger equation, properly truncated in time, and hence satisfy property (AC T ). Let

f n L 1 ((0,T );L 2 (T 2 )) = c n ≤ C.
We decompose the interval (0, T ) into dyadic pieces on which the L 1 ((0, T ); L 2 (T d ))-norm of f n is equal to 2 -q c n . For this, we construct recursively (on the index q ∈ N) sequences (t p,q,n ) q∈N p=1,...,2 q such that

-0 = t 0,q,n < t 1,q,n < • • • < t 2 q ,q,n = T , -f n L 1 ((tp,q,n,t p+1,q,n );L 2 (T 2 )) = 2 -q c n , -for any p = 0, • • • 2 q-1 , t 2p,q,n = t p,q-1,n .
Notice that if the function

G n : t ∈ [0, T ] → f n L 1 ((0,t);L 2 (T d )) ∈ [0, c n ]
is strictly increasing, the points t p,q,n are uniquely determined by the relation G n (t p,q,n ) = p2 -q c n , and the last condition above is automatic. In the general case, the function G n (which is clearly non decreasing) can have some flat parts, consequently the points t p,q,n may be no more unique and the last condition above ensures that the choice made at step q + 1 is consistent with the choice made at step q. For j = 0, . . . , 2 q -1, let I j,q,n = [t 2j,q,n , t 2j+1,q,n [, J j,q,n = [t 2j+1,q,n , t 2j+2,q,n [, Q j,q,n = J j,q,n × I j,q,n .

Notice that

{((t, s) ∈ [0, T [ 2 ; s ≤ t} = +∞ q=0 2 q -1 j=0 Q j,q,n ⇒ 1 s≤t = +∞ q=0 2 q -1 j=0 1 Q j,q,n (t, s).
We now have (if we are able to prove that the series in q converges) 

T T Q 0,0 Q 0,1 Q 1,1 Q 0,2 Q 1,2 Q 2,2 Q 3,2
(2.4) v n = t 0 e i(t-s)∆ f n (s)ds = T 0 1 s≤t e i(t-s)∆ f n (s)ds = +∞ q=0 2 q -1 j=0 1 t∈J j,q,n
T 0 e i(t-s)∆ 1 s∈I j,q,n f n (s)ds = +∞ q=0 2 q -1 j=0 1 t∈J j,q,n e it∆ g j,q,n ds, with (2.5) g j,q,n (x) =

T 0 e -is∆ 1 s∈I j,q,n f n (s)ds = t 2j+1,q,n t 2j,q,n e -is∆ f n (s)ds,

g j,q,n L 2 (T d ) ≤ f n L 1 ((t 2j,q,n ,t 2j+1,q,n T );L 2 (T d )) = 2 -q c n . Let v (k) n = k q=0 2 q -1 j=0 
1 t∈J j,q,n e it∆ g j,q,n ds.

Noticing that if a sequence (w n ) satisfies property(AC T ), then for any sequences 0 ≤ t 1,n < t 2,n ≤ T , the sequence (1 t∈(t 1,n ,t 2,n ) w n ) satisfies property(AC T ), we see that for any k ∈ N, the sequence (v

(k)
n ) satisfies property (AC T ). On the other hand, since for j = j , 1 t∈J j,q,n and 1 t∈J j ,q,n have disjoint supports, we get, according to (2.5), (2.6) 2 q -1 j=0 1 t∈J j,q,n e it∆ g j,q,n L ∞ ((0,T );L 2 (T d )) ≤ sup 0≤j≤2 q -1 1 t∈J j,q,n e it∆ g j,q,n L ∞ ((0,T );L 2 (T d ))

≤ sup 0≤j≤2 q -1 g j,q,n L 2 (T d )) ≤ 2 -q c n As a consequence, we get that the series (2.4) is convergent and

v n -v (k) n L 2 ((0,T )×T d ) ≤ √ T c n 2 -k ≤ C2 -k ,
which, according to Lemma 2.4, concludes the proof of Theorem 2.

An illustration

We consider here the following non-linear Schrödinger equation

(3.1) (i∂ t + ∆)u + V (u, t)u = 0, on T d , u | t=0 = 0
where the the function z ∈ C → V (z, t)z ∈ C is globally Lipshitz with respect to the z variable, with time integrable Lipschitz constant:

∃C > 0; ∀z, z ∈ C, |V (z, t)z -V (z , t)z | ≤ C(t)|z -z |, C ∈ L 1 loc (R). Notice that for example the choice V (u, t) = |u| 2
1+ |u| 2 satisfies these assumptions for any > 0.

Proposition 3.1. -For any u 0 ∈ L 2 (T d ), there exists a unique solution u ∈ C(R; L 2 (T d )) to (3.1). Furthermore, there exists a continuous increasing function, F (t) such that for any u 0 ∈ L 2 (T d ), the solution u satisfies

(3.2) u L 2 (T d ) (t) ≤ F (t) u 0 L 2 (T d ) .
Corollary 3.2. -For any sequence of initial data (u 0,n ) bounded in L 2 (T d ), the sequence (u n ) of solutions to (3.1) satisfies

V (u n , t)u n L 2 (T d ) ≤ C(t) u n L ∞ ((0,t);L 2 (T d )) ≤ C(t)f (t) u 0,n L 2 (T d ) ∈ L 1 loc (R t )
, and consequently, the sequence (u n ) satisfies property (AC T ) for any T > 0.

Proof of Proposition 3.1. -Let K : u ∈ L ∞ ((0, T ); L 2 (T d )) → e it∆ u 0 + 1 i t 0 e i(t-s) V (u(s), s)u(s) ds.

We have We obtain that the map K has a unique fixed point on the ball centered on e it∆ u 0 with radius u 0 L 2 (T d ) in L ∞ ((0, T ); L 2 (T d )), as soon as T 0 C(s)ds ≤ 1 2 . This proves the local existence claim. To obtain existence on any time interval [0, T ], we write [0, T ] = ∪ N j=1 [t j , t j+1 ], where we choose t j recursively such that 
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