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Abstract. We describe quantum entropic functionals and outline a research program dealing

with entropic fluctuations in non-equilibrium quantum statistical mechanics.

1 Introduction

Starting with papers [7, 8, 18, 19], the mathematical theory of non-equilibrium quantum statistical me-

chanics has developed rapidly in the last decade. The initial developments concerned the theory of

non-equilibrium steady states, the entropy production observable, and linear response theory (Green-

Kubo formulas, Onsager reciprocity relations) for open systems driven by thermodynamical forces (say

temperature differentials). This line of development was a natural direct quantization of the classical

theory. In contrast, extensions of the classical fluctuation relations of Evans-Searles [4] and Gallavotti-

Cohen [6] to the quantum domain have led to some surprises and novel classes of entropic functionals

with somewhat striking mathematical structure and physical interpretation.

A pedagogical introduction to our research program dealing with fluctuation theorems/relations in non-

equilibrium quantum statistical mechanics can be found in [12]. This note can be viewed as a brief

introduction to [12]. We sketch in telegraphic and simple terms the finite time/finite volume theory in the

classical case (for comparison purposes) and in the quantum case, and comment on the resulting research

program. The interested reader may consult [13, 12] for additional information.



2 Classical picture

Consider a pair (E , φ), where E = {ζj}0≤j≤N is a finite phase space and φ : E → E is a discrete time

dynamics. For our purposes without loss of generality we may assume that φ(ζj) = ζj+1 (ζN+1 = ζ0).

Observables are functions f : E → R and states are non-vanishing probability measures ρ on E . We write

ρ(f) =
∑

ζ f(ζ)ρ(ζ). Observables evolve in time as ft = f ◦ φt, t ∈ Z, and states as ρt(f) = ρ(ft).

The relative entropy of two states

S(ρ, ν) =
∑

ζ

ρ(ζ) log (ν(ζ)/ρ(ζ)) ,

satisfies S(ρ, ν) ≤ 0 and S(ρ, ν) = 0 iff ρ = ν. The Rényi relative entropy of order α ∈ R is defined by

Sα(ρ, ν) = log
∑

ζ

ρ(ζ)1−αν(ζ)α.

Our starting point is a dynamical system (E , φ, ω0) where ω0 is a given reference state. We assume that

ω0 is not constant (and hence not invariant under φ) and that ω0(ζj) = ω0(ζN−j). This last assumption

ensures that our dynamical system is time reversal invariant (TRI) with time reversal θ(ζj) = ζN−j .

The entropy observable is S0(ζ) = − logω0(ζ). The observable Σt = (St − S0)/t describes the mean

entropy production rate over the time interval [0, t]. One easily verifies that for t > 0,

ω0(Σ
t) = −

1

t
S(ωt, ω0) ≥ 0, (2.1)

in accordance with the (finite time) second law of thermodynamics. The entropy production observable

(or the phase space contraction rate) is defined by σ(ζ) = − log (ω1(ζ)/ω0(ζ)) and satisfies Σt =
t−1

∑t
s=1 σs.

The relation (2.1) holds without the TRI assumption. The TRI however allows to refine the second law

as follows. Let Etλ = {ζ |Σt(ζ) = λ} and pt(λ) = ω0(Etλ). An easy computation gives the celebrated

Evans-Searles fluctuation relation

pt(−λ) = e−λtpt(λ). (2.2)

This relation implies ω0(Σ
t) ≥ 0 and is saying more: the negative values of the mean entropy production

rate are exponentially suppressed in a universal manner.

The classical entropic functional is defined by

et(α) = logω0

(

e−αtΣt
)

. (2.3)

The symmetry

et(α) = et(1− α), (2.4)

which holds for all α ∈ R, is an equivalent formulation of the fluctuation relation (2.2). Clearly, et(0) =
0, and hence et(1) = 0 (this is sometimes called the Kawasaki identity [2]). The function α 7→ et(α) is

convex, and e′t(0) = −tω0(Σ
t). The classical entropic functional satisfies

et(α) = max
ρ

S(ρ, ω0)− αtρ(Σt), (2.5)
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and

et(α) = Sα(ωt, ω0). (2.6)

The functional et(α) can be also described in terms of Ruelle transfer operators. For p ∈ [1,∞[ we set

‖f‖pp =
∑

ζ |f(ζ)|
pω0(ζ) and define

Up(t)f = f−te
t
p
Σ−t

= f−te
− 1

p
S−te

1

p
S0 . (2.7)

Then

Up(t1 + t2) = Up(t1)Up(t2), Up(−t)fUp(t)g = ftg, ‖Up(t)f‖p = ‖f‖p,

i.e., Up is a group of isometries of the space Lp(E , ω0) which implements the dynamics. In terms of this

group, one has

et(α) = log ‖Up/α(t)1‖
p
p, (2.8)

where 1(ζ) = 1.

The results described in this section extend under minimal regularity assumptions to an essentially arbi-

trary classical dynamical system [13].

3 Quantum picture

Consider a pair (K, H) where K is a finite dimensional Hilbert space and H is a Hamiltonian. Ob-

servables are linear maps A : K → K (the identity map is denoted by 1) and states are strictly pos-

itive density matrices ρ on K. The observables evolve in time as At = eitHAe−itH , t ∈ R, and

states as ρt = e−itHρeitH . We write ρ(A) = tr(Aρ). The relative entropy of two states S(ρ, ν) =
tr(ρ(log ρ − log ν)) satisfies S(ρ, ν) ≤ 0 and S(ρ, ν) = 0 iff ρ = ν. The Rényi relative entropy is

defined by Sα(ρ, ν) = log tr(ραν1−α).

Our starting point is a quantum dynamical system (K, H, ω0), where ω0 is a given reference state. We

assume that ω0 does not commute with H and that the system is TRI, i.e., that there exists a complex

conjugation on K that commutes with H and ω0.

The entropy observable is S0 = − logω0. Σt = (St − S0)/t is the mean entropy production rate

observable and for t > 0 the finite time second law holds:

ω0(Σ
t) = −

1

t
S(ωt, ω0) ≥ 0. (3.9)

The entropy production observable (or the quantum phase space contraction rate) is σ = −i[H, logω0]
and Σt = t−1

∫ t
0 σsds.

To aid the reader we describe one concrete physical setup. Consider two quantum dynamical systems

(Kl/r, Hl/r, ωl/r), colloquially called the left and the right. Assume that initially the l/r system is in

thermal equilibrium at inverse temperature βl/r, i.e., that ωl/r = e−βl/rHl/r/Zℓ/r. Let K = Kℓ ⊗ Kr,

ω0 = ωl ⊗ ωr, and H = Hl +Hr + V , where V describes the interaction between the left and the right

system. In this case

σ = −βlΦl − βrΦr,
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where Φl/r = i[Hl/r, V ] satisfies

Hl/rt −Hl/r = −

∫ t

0
Φl/rsds,

and describes the energy flux out of the l/r system.

We now turn to quantum fluctuation relations. TRI implies that the spectrum of Σt is symmetric w.r.t. the

origin. If Ptλ is the spectral projection of Σt onto λ and pt(λ) = ω0(Pλt), then the direct quantization of

the fluctuation relation (2.2) is

pt(−λ) = e−λtpt(λ). (3.10)

Setting

et(α) = logω0(e
−αtΣt

),

one easily verifies that (3.10) holds iff et(α) = et(1 − α). However, one can show that the quantum

Kawasaki identity et(1) = 0 holds for all t iff [H,ω0] = 0 and so the direct quantization of (2.2) fails.

The standard route of observable quantization does not lead to quantum fluctuation relations.

The following family of quantum entropic functionals indexed by p ∈ [1,∞] was introduced in [12]:

ept(α) =











log tr

(

[

e
− 1−α

p
S0e

− 2α
p
Ste

− 1−α
p

S0

]

p
2

)

if 1 ≤ p < ∞,

log tr
(

e−(1−α)S0−αSt
)

if p = ∞.

To motivate these functionals, note that

e∞t(α) = max
ρ

S(ρ, ω0)− αtρ(Σt),

and so e∞t(α) is the quantization of the variational formula (2.5). We also have

e2t(α) = Sα(ωt, ω),

and so e2t(α) is the quantization of (2.6). Regarding the other functionals, we need to introduce first the

quantization of Ruelle’s transfer operators. The quantization of the usual Lp-norm is the Araki-Masuda

Lp-norm

‖A‖pp = tr

(

∣

∣Aω
1

p

0

∣

∣

p
)

.

The classical transfer operators (2.7) are quantized as

Up(t)A = A−te
− 1

p
S−te

1

p
S0 .

They satisfy

Up(t1 + t2) = Up(t1)Up(t2), Up(−t)AUp(t)B = AtB, ‖Up(t)A‖p = ‖A‖p,

and for p ∈ [1,∞[,
ept(α) = log ‖Up/α(t)1‖

p
p.
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Hence, the functionals ept(α) for p ∈ [1,∞[ arise as the quantization of (2.8).

The functionals ept(α) have the following properties. The symmetry

ept(α) = ept(1− α),

holds for all p and α and implies the quantum Kawasaki identity ept(1) = ept(0) = 0. The function

α → ept(α) is convex and the function p 7→ ept(α) is continuous and decreasing. For all p, e′pt(0) =
−tω0(Σ

t).

The functional e2t(α) has appeared previously in the literature in two seemingly unrelated contexts. In

[14] this functional was related to the fundamental concept of Full Counting Statistics (FCS) associated

to the repeated measurement protocol of the entropy flow. Let S0 =
∑

λ λPλ be the spectral resolution

of the entropy observable. The probability that a measurement of S0 at time t = 0 (when the sys-

tem is in the state ω0) yields λ is ω0(Pλ). After the measurement, the system is in the reduced state

ω0Pλ/ω0(Pλ) which evolves in time as e−itHω0Pλe
itH/ω0(Pλ). Denoting λ′ the outcome of a second

measurement of S0 at a later time t > 0, the joint probability distribution of these two measurements

is tr
(

e−itHω0Pλe
itHPλ′

)

. It follows that the probability of observing a mean rate of entropy change

φ = (λ′ − λ)/t is

Pt(φ) =
∑

λ′−λ=tφ

tr
(

e−itHω0Pλe
itHPλ′

)

.

The discrete probability measure Pt is the FCS for the operationally defined entropy change over the

time interval [0, t] as specified by the above measurement protocol. It is easy to verify that the e2t(α) is

the cumulant generating function for the FCS, i.e.,

e2t(α) = log
∑

φ

e−tαφ
Pt(φ),

and the symmetry e2t(α) = e2t(1− α) yields the fluctuation relation

Pt(−φ) = e−tφ
Pt(φ).

In [20] the functional e2t(α) was motivated by the algebraic characterization of the Zubarev dynamical

ensemble [21]. Let O be the vector space of all linear maps A : K → K equipped with the inner product

〈A,B〉 = tr(A∗B). The relative modular operator

∆ωt|ω0
(A) = ωtAω

−1
0 ,

is a strictly positive operator on the Hilbert space (O, 〈·, ·〉). Let Qt be the spectral measure of −1
t log∆ωt|ω0

for the vector ω
1/2
0 ∈ O. Then

e2t(α) = log
∑

s

e−αtsQt(s),

and in particular, Pt = Qt. This identification provides a striking link between the FCS and modular

theory with far reaching implications.
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4 Research program

In telegraphic terms, our research program can be outlined as follows.

(a) The first part of the program, carried out in [10], deals with development of the finite time theory

of entropic functionals in a general dynamical system setting. In the classical case this step is relatively

easy [13]. The quantum case is substantially more difficult and the full machinery of Tomita-Takesaki

modular theory is required. The functionals ept(α) and quantum Ruelle transfer operators are based on

the Araki-Masuda theory of non-commutative Lp-spaces [1]. The step (a) can be viewed as an abstract

unraveling of the mathematical structures underlying the entropic functionals. These structures turn out

to be of considerable conceptual and computational importance.

(b) This step concerns the existence and regularity properties of the limiting functionals

ep+(α) = lim
t→∞

1

t
ept(α), (4.11)

and is a difficult ergodic type problem that can be studied only in the context of concrete models. The

existing results cover open spin-fermion and spin-boson systems (the proofs are based on the analysis of

resonances of quantum Ruelle transfer operators, see also [16] for a pioneering work on the subject), and

open locally interacting fermionic systems (the proofs are based on C∗-scattering techniques). In some

special cases (like the XY chain) the functionals ep+(α) can be expressed in closed form and analyzed

in great detail. The step (b) of the program has been carried out in a series of papers and is a joint work

with B. Landon, Y. Ogata, A. Panati, Y. Pautrat, and M. Westrich. It remains a challenge to extend these

results to a wider class of models. We emphasize that the step (b) is meaningful only in the context of

infinitely extended models (in other words, the thermodynamic limit must precede the large time limit).

The thermodynamic limit is also needed for the physical interpretation of the finite time quantum en-

tropic functionals of infinitely extended systems.

(c) The Legendre transform of the limiting functional e2+(α) is the rate function describing the large

deviation fluctuations of the full counting statistics as t → ∞. In the linear regime and under suitable

regularity assumptions the existence of e2+(α) also implies the central limit theorem for the full count-

ing statistics. For open quantum systems and in the linear regime (near equilibrium and for small α) all

functionals ep+(α) reduce to Green-Kubo formulas for heat/charge currents. However, the development

of linear response theory that goes beyond open quantum systems and allows for general thermody-

namical/mechanical forces can be based only on the functional e∞+(α) (see [5, 13] for the results in

the classical case that motivated this development). The functionals ep+(α), together with symmetries

ep+(α) = ep+(1−α), can be viewed as extensions of the fluctuation-dissipation theorem to the far from

equilibrium regime.

(d) The functional e2+(α) coincides with the Chernoff error exponent for the quantum hypothesis testing

of the arrow of time and this links quantum hypothesis testing, a rapidly developing branch of quantum

information theory, to non-equilibrium statistical mechanics. This connection has been explored in [11].

(e) We have only discussed the entropic functionals defined with respect to the reference (initial) state

of the system (they are sometimes called Evans-Searles type functionals). The Gallavotti-Cohen type

entropic functionals are defined with respect to the non-equilibrium steady state (NESS) (the state that

the infinitely extended system reaches in the large time limit). The Gallavotti-Cohen type function-

als are considerably more technical to introduce and study, and in the quantum case have a somewhat

delicate physical interpretation. The Principle of Regular Entropic Fluctuations (PREF) introduced in
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[13, 10] asserts that under normal conditions the limiting entropic functional of the Evans-Searles and

Gallavoti-Cohen type are identical. Since under normal conditions the NESS is singular with respect to

the reference state, the PREF can be viewed as a strong ergodic property of the physical model under

consideration.

(f) The developement of nonequilibrium statistical mechanics of open quantum systems in the Markovian

approximation started with the pioneering work of Lebowitz and Spohn [15]. Since the Markovian ap-

proximation is often the only technically accessible way to describe an open system, it is also important

to develop a general theory of entropic fluctuations in this framework. The first attempts in this direction

are due to Dereziński, De Roeck and Maes [17, 3]. In [9], we derive fluctuation relations starting from

structural properties of the generator (Lindbladian) of the Markovian dynamics.

5 Remarks

Non-equilibrium statistical mechanics is a difficult subject and for many years our theoretical under-

standing has been restricted to linear regime near equilibrium (linear response theory, the fluctuation-

dissipation theorem). There are good reasons for this: the richness and variety of non-equilibrium phe-

nomena indicate that far from equilibrium physics may tolerate very few universal constraints. The

recently discovered fluctuation relations of Evans-Searles and Gallavotti-Cohen are two universally valid

constraints that hold far from equilibrium and reduce to linear response near equilibrium. These insights

and subsequent developments (see [13] for references) have dramatically altered our understanding of

classical non-equilibrium statistical mechanics. The extensions of fluctuation relations to quantum do-

main have led to further surprises that still remain to be fully explored. The research program outlined

in this note is a first step in this direction.

References

[1] Araki H., Masuda T.: Positive cones and Lp-spaces for von Neumann algebras. Publ. RIMS, Kyoto

Univ. 18, 339–411 (1982).

[2] Carberry D.M., Williams S.R., Wang G.M., Sevick E.M., Evans D.J.: The Kawasaki identity and the

fluctuation theorem. J. Chem. Phys. 121, 8179–8182 (2004).
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