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DOWNSIDE RISK AND KAPPA INDEX OF NON-GAUSSIAN

PORTFOLIO WITH LPM

J. SADEFO KAMDEM

UNIVERSITÉ DE MONTPELLIER 1

LAMETA CNRS UMR 5474

Abstract. In this paper, we find analytic expressions of the lower partial

moment and kappa index of linear portfolios when the returns are elliptically
distributed. We also introduced the notion of Target Semi-Kurtosis of portfolio

return and discuss the robust optimization Mean-LPM problem with non-
gaussian risk factors. Special attention is given to the particular case of a

mixture of multivariate t-distributions.

Key Words: Lower partial moment; Kappa Index; Linear Portfolio; Elliptical port-
folio, Performance Measure.

1. Introduction

The concept of risk and its measurement is very important in economics, busi-
ness and industry problems. Thus the literature about financial or insurance risk
and performance measurement has increase continuously in the last three decades.
Basel I, II, III and solvency II banking and insurance regulations for the determi-
nation of capital allocation have increased the importance or the risk measurement.
Variance which is the square of the standard deviation has several mathematical
properties that are very useful such as the decomposition rules. Thus it has been
the common risk measure used in portfolio optimization since the introduction of
mean-variance model in the seminal work of Markowitz (1952). For a long time
ago, the standard deviation as a dispersion or risk measure has been used in risk
modeling, asset pricing theory and portfolio risk. However, the use of variance as
a risk measure have been criticized by several authors. Variance measures upside
as well as downside risk. Investors should however be more interested in maximiz-
ing upside risk than minimizing it. The use of variance implies that the investor
has a quadratic utility function. If an investor disagrees with this view, classi-
cal portfolio theory will not maximized his utility. Markowitz(1959) noted that
variance is invariant under reflection ; it do not recognize asymmetry with asset
return distributions, and it consider favorable and adverse outcomes in the same
way. The nobel prize Markowitz suggested that semi-variance which is particular
case of the lower partial moment (LPM), may serve as an objective function for
portfolio construction. Among the all criticisms against variance as a risk measure,
the risk literature has recognized the importance of distinguishing between adverse
and favorable results, and this has been a serious area of research. That why,
among several alternatives to supplied variance as a risk measure, the LPM plays
an important role in the analysis of risks and in other areas such in income/poverty
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studies because it only penalizes the downside deviation. Also, many of the the-
oretical and experimental research in risk identification and measurement shows
that corporate heads are mostly concerned with one sided risk which the so-called
”downside risk”, that measures the distance between the risky situation and a real
fixed threshold. Unlike variance, LPM avoids the minimization of upside risk and
its give investor the option to select the order of his utility function. Note that,
psychologists studies of Mao (1970), Unser(2000) and Veld and Veld-Merkoulova
(2008) suggested LPM over variance as a measure of the investor’s perception of
risk. In the microeconomics area, the relationship between stochastic dominance
and the LPM, under certain nested utility function classes, was developed by several
authors such as Bawa (1975) and Bawa (1978). The latter author shows that the
ordering of portfolios for an investor with a certain class of utility function is equiv-
alent to the ordering provided by the LPM under certain conditions. Because the
ordering involves evaluating the LPM for each threshold accross the entire return
domain, its follows that LPM is very attractive in utility theory. In fact, it allows
the evaluation of the LPM degree for individual investors with varying preferences.

One of the most popular downside risk measures is the lower partial moment
(LPM). The entry of LPM in portfolio theory has mainly been driven by Bawa(1975),
Fishburn (1977) and Nawrocki(1991, 1992 and 1999). The LPM recognizes asymme-
try within return distributions and does not involve the size of favorable outcomes.
The LPM take into account the size of adverse results, that below a define and fix
threshold. Because LPM can be viewed as the expected value of a powered put op-
tion on the returns of a portfolio, its agrees with intuitive notion of risk. Consider
a portfolio with a random return X and assume individual has a target return τ .
An outcome larger than τ is non-risky and desirable, then individual faces only a
one-sided risk called downside risk that occurs when X falls below τ . Therefore
LPM provides a measure that a specified minimum return (target return) may not
be earned by a financial investment. Is clear that, LPM provides a summary sta-
tistics for the downside risk. For a given integer n, the nth order LPM of a random
variable X yields a measure known as a Target Semi-Variance (TSV) for n = 2, the
so-called Target Semi-Kurtosis (TSK) for n = 4...etc. One reason for the interest in
LPM measures of risk such as TSV is that they reflect investor’s preferences better
than the traditional measure such as variance. Because TSV and TSK penalize
any extremely low returns in the same way that the variance and kurtosis penal-
izes extreme values in either direction, TSV and TSK respectively fit investors risk
preferences better than respectively variance and TSK.

In this paper, we find analytic expressions of the lower partial moments and
kappa index of linear portfolios when the returns are elliptically distributed. Special
attention is given to the particular case of a mixture of multivariate t-distributions.
We also introduced the so-called Target Semi-Kurtosis that take into account the
leptokurticity for the return portfolio that is below the target τ .

The paper is organized as follows: section 2 recalls the definitions of the LPM
and the Kappa index risk-adjusted performance measure. Section 3 describes LPM
and kappa index for portfolios with mixture of elliptical distributions risk factors.
In section 4, we introduce the Mean-LPM portfolio optimization with elliptical
distributed risk factors; special attention given to the mixture of t-Student distri-
butions. Section 5 discuss parameters estimation and section 6 concludes.

2. Lower Partial Moments and Kappa Index

As it has been mentioned in Unser (2002), investors are often only interested in
an evaluation of outcomes values that are below a given real target τ . This features
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yields the importance of downside risk measures (see, e.g. Ebert 2005) such as
LPM. The lower partial moment (LPM) of order n > 0 of the portfolio return Rp,
given a threshold return τ is defined as:

(1) LPMn(τ) = E[max(τ −Rp, 0)n].

Instead of Sharpe Ratio index, the so-called Kappa index can be defined by using
the lower partial moment (LPM) as a standard deviation in the denominator of
the Sharpe ratio. This yields the Kappa index introduced by Kaplan and Knowles
(2004) as follows:

(2) Kn(τ) =
E(Rp)− τ

(LPMn(τ))
1
n

.

When τ = E(Rp) = µ · w, LPM2(τ) correspond to the semi-variance. In general,
for n > 0 an odd number, LPMn(E(Rp)) is the semi-moment of par order n (i.e.
semi-variance (n=1), semi-kurtosis (n=4)). In the Bawa and Linderberg (1977)
framework to characterize equilibrium, risk is defined as deviation below the risk-
free interest rate (i.e. τ = rf ). In this case the Kappa index will produce preference
rankings congruent with the use of a piecewise power-linear utility function of the
form:

(3) u(x) =

{
x, x ≥ τ ;
x− c(x− τ)n, x ≤ τ .

Replacing n = 1 in (2), we get the Omega ratio performance measure (see Keating
and Shadwick (2002)). For n = 2, we get the Sortino ratio (see Kazemi et al.,2004).

Remark 2.1. The order n of the LPMn measure determines the type of the
utility functions consistent with that risk measure. LPM1 is consistent with all
utility functions such that (−1)mu(m) < 0 for m = 1, 2. LPM2 is valid for all risk
averse functions displaying skewness preference ((−1)mu(m) < 0 for m = 1, 2, 3).
In general, LPMp+1 is valid for all risk averse functions displaying pth-moment

preference ((−1)mu(m) < 0 for m = 1, 2, . . . , p). Thus the familiar HARA class is
entirely consistent with LPM1, while all utility function u displaying DARA are
consistent with LPM2 since DARA implies u(3) > 0.

3. LPM and Kappa Index of portfolios with log-elliptically
distributed returns

We will use the following notational conventions for the action of matrices on
vectors: single letters x, y, · · · will denote row vectors (x1, · · · , xn), (y1, · · · yk).
The corresponding column vectors will be denoted by xt, yt,the t standing more
generally for taking the transpose of any matrix. Matrices A = (Aij)i,j , B , etc.
will be multiplied in the usual way. In particular, A will act on vectors by left-
multiplication on column vectors, Ayt, and by right multiplication on row vectors,
xA; x · x = xxt = x2

1 + · · ·+ x2
k will stand for the Euclidean inner product.

A portfolio with time-t value Π(t) is called linear if its profit and loss ∆Π(t) =
(Π(t) − Π(0))/Π(0) over a time window [0, t], is a linear function of the returns
X1(t), . . . , Xn(t) of its constituents over the same time period:

(4) RP = log

(
Π(t)−Π(0)

Π(0)

)
'

k∑
i=1

wiXi

where Xi = log(Si(t)/Si(0)) is the risk factor of asset i in the time interval [0, t].
This will for instance be the case for ordinary portfolios of common stock, if we

use percentage returns, and will also hold to good approximation with log-returns,
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provided the time window [0,t] is small. We will drop the time t from our notations,
since it will be kept fixed, and simply write Xj ,∆Π, etc. We also put

X = (X1, · · · , Xk),

so that ∆Π = δ ·X = δXt.

We now assume that the Xj are elliptically distributed with mean µ and corre-
lation matrix Σ = AAt:

(X1, . . . , Xk) ∼ N(µ,Σ, φ).

This means that the pdf of X is of the form

fX(x) = |Σ|−1g((x− µ)Σ−1(x− µ)t),

where |Σ| stands for the determinant of Σ, and where g : R≥0 → 0 is such that the
Fourier transform of g(|x|2), as a generalized function on Rn, is equal to φ(|ξ|2)1.
Assuming that g is continuous, and non-zero everywhere, the LPM is given as
follows:

LPMn(τ,x) = E[max(τ −Rp, 0)n]

= |Σ|−1/2
∫
Rk

max(τ −Rp, 0)ng((x− µ)Σ−1(x− µ)t) dx

= |Σ|−1/2
∫
{Rp≤τ}

(τ −Rp)ng((x− µ)Σ−1(x− µ)t)dx

= |Σ|−1/2
∫
{
∑k
i=1 wixi≤τ}

(
τ −

k∑
i=1

wixi

)n
g((x− µ)Σ−1(x− µ)t) dx(5)

where in the precede integral x − µ = (x1 − µ1, . . . , xk − µk) is a row vector and
E denotes the mean probability operator. Changing variables to y = (x− µ)A−1 ,
dy =| A | dx , where Σ = At A is a Cholesky decomposition of A, this becomes

LPMn(τ,x) = |Σ|−1/2
∫
{
∑k
i=1 wixi≤τ}

(
τ −

k∑
i=1

wixi

)n
g((x− µ)Σ−1(x− µ)t)dx

=

∫
{wA·y≤τ−w·µ}

(τ − w · µ− wA · y)
n
g(|y|2)dx(6)

Let R be a rotation which sends δA to (|δA|, 0, . . . , 0). Changing variables once
more to y = zR, we obtain the equation

LPMn(τ,x) =

∫
{wA·y≤τ−w·µ}

(τ − w · µ− wA · y)
n
g(|y|2)dx

=

∫
{|δA|z1≤−w·µ+τ}

(τ − w · µ− |wA|z1)
n
g(|z|2)dz(7)

If we write that |z|2 = z2
1 + |z′|2 with z′ ∈ Rn−1 then we obtain the following

expression:

(8) LPMn(τ,x) =

∫
Rk−1

[

∫ τ−w·µ
|wA|

+∞
(τ − w · µ− |wA|z1)

n
g(z2

1 + |z′|2)dz1]dz′

1One uses φ as a parameter for the class of elliptic distributions, since it is always well-defined
as a continuous function: φ(|ξ|2) is simply the characteristic function of an X ∼ N(0, Id, φ). Note,
however, that in applications we’d rather know g
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Next, by using spherical variables z′ = rξ with ξ ∈ Sk−2 , dz′ = rk−2dσ(ξ)dr, we
have the following expression
(9)

LPMn(τ,x) = |Sk−2|
∫ +∞

0

rk−2
[ ∫ −wµt+τ

|wA|

−∞

(
τ − wµt − |wA|z1

)n
g(z2

1 + r2)dz1

]
dr,

|Sk−2| being the surface measure of the unit-sphere in Rk−1:

|Sk−2| =
2π

k−1
2

Γ(k−1
2 )

.

We now introduce the parameter s = wµt−τ
|wA| and get the function LPM(τ):

LPMn(τ,x) =
2π

k−1
2 |wA|n

Γ(k−1
2 )

∫ −s
−∞

[ ∫ +∞

0

rk−2 (−s− z1)
n
g(z2

1 + r2)dr
]
dz1

=
π
k−1

2

Γ(k−1
2 )
|wA|n

∫ ∞
s

[
(z1 − s)n

∫ +∞

z2
1

(u− z2
1)

k−3
2 g(u)du

]
dz1,(10)

where for the second line we changed variables u = r2 + z2
1 . and replaced z1 by

−z1. We then have proved the following result:

Theorem 3.1. Let’s assume that the portfolio’s Profit & Loss function over the
time window of interest is, to good approximation, given by ∆Π = w1X1 +w2X2 +
. . .+wkXk, with constant portfolio weights wj . If the random vectorX = (X1, · · · , Xk)
of risk factors follows a continuous elliptic distribution, with probability density
given by fX(x) = |Σ|−1

g((x − µ)Σ−1(x − µ)t) where µ is the vector mean and Σ
is the variance-covariance matrix, and where we suppose that g(s2) is integrable
over R, continuous and nowhere 0, then for a given n, τ ∈ R∗+, the portfolio’s Lower
Partial Moment LPM is define as

(11) LPMn(τ,w) =
π
k−1

2

Γ(k−1
2 )
|wA|n

∫ ∞
s

[
(z1 − s)n

∫ +∞

z2
1

(u− z2
1)

n−3
2 g(u)du

]
dz1,

where the parameter s = wµt−τ
|wA| with w = (w1, w2, . . . , wk).

Remark 3.2. Note that |wA| has a clear financial interpretation, since

(12) |wA| =
√

wΣwt,

which is simply the portfolio’s volatility, or the square of its variance. Moreover, if
τ = rf is the risk free rate, then

(13) s =
wµt − τ
|wA|

=
wµt − τ√

wΣwt

is the classical Sharpe ratio adjusted-risk measure of portfolio performance. It is
clear that LPMn(τ,w) is a function of the Sharpe ratio.
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Remark 3.3. One can do the integral over z1 in (22): by Fubini,

LPMn(τ) =
π
k−1

2

Γ(k−1
2 )
|wA|n

∫ +∞

s

[∫ √u
√
s

(z1 − s)n (u− z2
1)

k−3
2 dz1

]
g(u) du

=
π
k−1

2

Γ(k−1
2 )
|wA|n

n∑
j=0

j!(n− j)!
n!

sj
∫ +∞

s

[∫ √u
√
s

(u− z2
1)

k−3
2 zn−j1 dz1

]
g(u)du(14)

=
π
k−1

2

2Γ(k−1
2 )
|wA|n

n∑
j=0

j!(n− j)!
n!

sj
∫ +∞

s

[∫ u−s

0

w
k−3

2 (u− w)
n−j−1

2 dw

]
g(u)du

=
π
k−1

2

2
|wA|n

n∑
j=0

j!(n− j)!
n!

Γ(n−j−1
2 )

Γ(n+k−j
2 )

sj
∫ +∞

s

(u− s)
n+k−j

2 −1g(u)du(15)

In the precede remark, we have used the following lemma:

Lemma 3.4. (Cf. [12], page 312.) If Re(ν1) > 0 and Re(µ) > 0, then

(16)

∫ z

0

xν1−1(x− w)µ−1dx = zµ+ν1−1B(ν1, µ),

with B(α, β) the Euler Beta function:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

Using the precede lemma with ν1 = k−1
2 , µ = n−j+1

2 and z = u − s in (22), we
have prove the following theorem:

Theorem 3.5. Assume that the risk factors random vector X = (X1, · · · , Xk)
of the portfolio follows a continuous elliptic distribution, with probability density
given by fX(x) = |Σ|−1

g((x − µ)Σ−1(x − µ)t) where µ is the vector mean and Σ
is the variance-covariance matrix, and where we suppose that g(s2) is integrable
over R, continuous and nowhere 0. By applying Fubini to (22), the lower partial
moment LPMn(τ) of the portfolio returns Rp becomes

(17) LPMn,g(τ,w) =

∫ ∞
s

Kn,k(s, u)g(u) du,

where s = wµt−τ
|wA| , w = (w1, w2, . . . , wk) and the kernel function Kn,k is given by:

(18) Kn,k(s, u) =
π
k−1

2

2
|wA|n

n∑
j=0

j!(n− j)!
n!

Γ(n−j−1
2 )

Γ(n+k−j
2 )

sj(u− s)
n+k−j

2 −1.

The Kappa index of order n is given by

(19) κn,g(τ,w) :=
wµt − τ

(LPMn,g(τ,w))
1
n

.

Corollary 3.6. For n = 4, τ = E(Rp) = w · µ then s = 0 and the lower semi-
kurtosis of the portfolio return Rp is given by

(20) LPM4(w · µ) =

∫ ∞
s

K4,k(w · µ, u)g(u) du

Corollary 3.7. In short-term Risk Management one can usually assume that µ '
0. In that case, we have that

(21) LPMn(τ) =
π
k−1

2

Γ(k−1
2 )

∫ ∞
−τ
|wA|

[
(τ − |wA|z1)

n
∫ +∞

z2
1

(u− z2
1)

k−3
2 g(u)du

]
dz1.
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3.1. The case of t-student Distributions. Like the multivariate normal distri-
bution, multivariate t distributions belongs to the family of elliptically symmetric
distributions, but with an additional parameter ν, called the degrees of freedom.
As ν tends to infinity, the t-distribution approaches the normal distribution. I now
consider in detail the case where our elliptic distribution is a multivariate Student-t.
We will, unsurprisingly, call the corresponding LPM the ∆-Student LPM.

In the case of multi-variate t-student distributions, the portfolio probability den-
sity function is given by:

fX(x) =
Γ(ν+k

2 )

Γ(ν/2).
√
|Σ|(νπ)k

(
1 +

(x− µ)tΣ−1(x− µ)

ν

)(−ν−k2 )

,

x ∈ Rk and ν > 2. Hence g is given by

g(s) = C(ν, k)(1 + s/ν)
− (k+ν)

2 , s ≥ 0,

where we have put

C(ν, k) =
Γ(ν+k

2 )

Γ(ν/2)
√

(νπ)n
.

Using this g in (22), we find that

LPMn(τ) = C1(ν, k)

n∑
j=0

j!(n− j)!
n!

Γ(n−j−1
2 )

Γ(n+k−j
2 )

sj
∫ +∞

s

(u− s)
n+k−j

2 −1(ν + u)
− (k+ν)

2 du

(22)

Lemma 3.8. (cf. [12], formula 3.197(2)). If |arg
(
u
β

)
| < π or |u| > |β| and

0 < Re(µ) < Re(−ν), then
(23)∫ +∞

u

(x−u)µ1−1(x+β)ν1dx = uµ1+ν1B (−µ1 − ν1, µ1) 2F 1

(
−ν1,−µ1 − ν1;−ν1;−β

u

)
.

where 2F1(α;β, γ;w) is the hypergeometric function.

Applying the precede lemma (33) to the integral part of equation (22) yields the
following theorem:

Theorem 3.9. Assuming that ∆Π ' δ1X1 + δ2X2 + . . .+ δkXk with a multivari-
ate Student-t random vector (X1, X2, · · · , Xk) with vector mean µ , and variance-
covariance matrix Σ, the LPMn of a linear portfolio is given by:
(24)

LPMn,ν(τ) = Cν,n,s

n∑
j=0

Γ
(
n−j−1

2

)
Γ
(
ν−n+j

2

)
j!(n− j)!

n!
2F 1

(
k + ν

2
,
ν + j − n

2
,
k + ν

2
;−ν

s

)
s
j
2

where Cν,n,s = νν/2|wA|n
2
√
πΓ(ν/2)

s
n−ν

2 and s = wµt−τ
|wA| .

The kappa index of order n is given by
(25)

κn,ν(τ) :=
wµt − τ(

Cν,n,s
∑n
j=0

Γ(n−j−1
2 )Γ( ν−n+j

2 )j!(n−j)!
n! 2F 1

(
k+ν

2 , ν+j−n
2 , k+ν

2 ;−νs
)
s
j
2

) 1
n

.

For the proof of the theorem (24), we can also use the following lemma:
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Lemma 3.10. (cf. [12], formula 3.254(2)). If Re
(
β
u

)
> 0, |u| > |β| and 0 <

Re(µ) < Re(1− 2ν1), then
(26)∫ +∞

u

((x−u)µ1−1(x2+β2))ν1dx =
Γ(µ1)Γ(λ1 − µ1)

Γ(λ− 2ν1)u−µ1+λ1
3F 2

(
−ν1,

λ1 − µ1

2
,
λ1 + 1− µ1

2
,
λ1

2
,

1 + λ1

2
;−β

2

u2

)
.

where λ1 = 1− 2ν1 and 3F2(α;β, γ;w) is the hypergeometric function.

In fact, using this g in (22), we find that
(27)

LPMST
n (τ) =

π
k−1

2 C(ν, k)

Γ(k−1
2 )

∫ ∞
wµt−τ
|wA|

[
(τ − w · µ+ |wA|z1)

n
∫ +∞

z2
1

(u− z2
1)

k−3
2

(
1 +

u

ν

)− (k+ν)
2

du

]
dz1

then

(28) LPMST
n (τ) = C1(k, ν)|wA|n

∫ ∞
s

(−s+ z1)
n
T (z1)dz1

where C1(k, ν) = π
k−1

2 C(ν,k)

Γ( k−1
2 )ν−

(k+ν)
2

=
π
k−1

2 Γ( ν+k
2 )

Γ( k−1
2 )Γ(ν/2)

√
(νπ)kν−(k+ν)

and

T (z1) =

∫ +∞

z2
1

(u− z2
1)

k−3
2 (ν + u)

− (k+ν)
2 du(29)

The function T (z1) can be evaluated with the help of another one of the integrals
in [3]:

Lemma 3.11. (Cf. [12], page 314.) If |arg(wβ )| < π, and Re(ν1) > Re(µ) > 0 ,

then

(30)

∫ +∞

w

(x− w)µ−1(β + x)−ν1dx = (w + β)
µ−ν1B(ν1 − µ, µ),

with B(α, β) the Euler Beta function:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

Using formula (30) with ν1 = (k+ν)
2 , µ = k−1

2 ,β = ν, and w = z2
1 , and therefore,

µ− ν1 = − 1+ν
2 and −µ+ ν1 = 1+ν

2 , we find that

(31) T (z1) = (z2
1 + ν)

− 1+ν
2 B

(
1 + ν

2
,
k − 1

2

)
.

We have not finished yet, since we still have to integrate over z1 in (28). We
therefore have to evaluate

J(s, ν) =

∫ ∞
wµt−τ
|wA|

(τ − w · µ− |wA|z1)
n
)(z2

1 + ν)
− 1+ν

2 dz1

= |wA|n
∫ ∞
s

(s− z1)
n
)(z2

1 + ν)
− 1+ν

2 dz1(32)

with s = wµt−τ
|wA| .

For the latter integral, we will use another formula from [3], in the case where
λ = 1:
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Lemma 3.12. (cf. [12], formula 3.254(2)). If Re
(
β
u

)
> 0, |u| > |β| and 0 <

Re(µ) < Re(1− 2ν1), then
(33)∫ +∞

u

((x−u)µ1−1(x2+β2))ν1dx =
Γ(µ1)Γ(λ1 − µ1)

Γ(λ− 2ν1)u−µ1+λ1
3F 2

(
−ν1,

λ1 − µ1

2
,
λ1 + 1− µ1

2
,
λ1

2
,

1 + λ1

2
;−β

2

u2

)
.

where λ1 = 1− 2ν1 and 3F2(α;β, γ;w) is the hypergeometric function.

In our case, ν1 = − 1+ν
2 , (µ1 − 1)ν1 = n. therefore µ1 = − 2n

1+ν + 1 and β2 = ν.

If we replace in (32), we obtain the following expression:

J(s, ν) = |wA|n
∫ ∞
u

(u− z1)
n

(z2
1 + ν)

− 1+ν
2 dz1

= |wA|n
∫ ∞
u

(
(u− z1)µ1−1(z2

1 + ν)
)ν1

dz1.

(34)

Then

J(s, ν) = |wA|n Γ(µ1)Γ(λ1 − µ1)

Γ(λ− 2ν1)u−µ1+λ1
3F 2

(
−ν1,

λ1 − µ1

2
,
λ1 + 1− µ1

2
,
λ1

2
,

1 + λ1

2
;− ν

u2

)
=
|wA|n+λ1−µ1Γ(µ1)Γ(λ1 − µ1)

Γ(λ− 2ν1)(wµt − τ)−µ1+λ1
3F 2

(
−ν1,

λ1 − µ1

2
,
λ1 + 1− µ1

2
,
λ1

2
,

1 + λ1

2
;− ν|wA|2

(wµt − τ)2

)
with u = wµt−τ

|wA| .

Hypergeometric 3F2 and 2F1’s have been extensively studies, and numerical soft-
ware for their evaluation is available.

3.2. LPM with a mixture of elliptic Distributions. Mixtures of normal dis-
tributions have been largely considered in the literature such as McLachlan and
peel [], since the early works of Karl Pearson over 100 years ago. However in the
last decade, in presence of data with longer-than-normal tails, mixture of elliptical
distributions such as the mixture of t-Student distributions have proved to be a
more useful as they provide more realistic tails for real world data, see e.g Kotz
et Nadarajah (2004) and Sadefo Kamdem(2004). In the context of likelihood ap-
proach to mixture modeling, many authors follow the seminal works of Dempster
et al. (1977) by using the expectation-maximization (EM) algorithm for estimating
the parameters of the model.

Mixture distributions can be used to model situations where the data can be
viewed as arising from two or more distinct classes of populations; see also [?].
For example, in the context of Risk Management, if we divide trading days into
two sets, quiet days and hectic days, a mixture model will be based on the fact
that returns are moderate on quiet days, but can be unusually large or small on
hectic days. In my knowledge, applications of mixture models to compute LPM
have not been published. Here we sketch how to compute LPM when the portfolios
risk factors follow a mixture of multivariate elliptic distributions, that is, a convex
linear combination of elliptic distributions.

Definition 3.13. We say that (X1, . . . , Xn) has a joint distribution that is the
mixture of m elliptic distributions N(µj ,Σj , φj)

2, with weights {βj} (j=1,..,m ;
βj > 0 ;

∑m
j=1 βj = 1), if its cumulative distribution function can be written as

FX1,...,Xn(x1, . . . , xn) =

m∑
j=1

βjFj(x1, . . . , xn)

2or N(µj ,Σj , gj) if we parameterize elliptical distributions using g instead of φ
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with Fj(x1, . . . , xn) the cdf of N(µj ,Σj , φj).

Remark 3.14. In practice, one would usually limit oneself to m = 2, due to
estimation and identification problems; see [?].

We will suppose that all our elliptic distributions N(µj ,Σj , φj) admit a pdf :

(35) fj(x) = |Σj |−1/2gj((x− µj)Σj−1(x− µj)t).

The pdf of the mixture will then simply be
∑m
j=1 βjfj(x).

Let

Σj = Atj Aj

be a Cholesky decomposition of Σj .

Theorem 3.15. Let ∆Π = δ1X1 + . . . + δnXn with (X1, . . . , Xn) is a mixture of
elliptic distributions, with density

f(x) =

m∑
j=1

βj |Σj |−1/2
gj((x− µj)Σ−1

j (x− µj)t)

where µj is the vector mean, and Σj the variance-covariance matrix of the j-th
component of the mixture. We suppose that each gj is integrable function over R,
and that the gj never vanish jointly in a point of Rm. By a linear combination of
(??), the lower partial moment LPMn(τ) of the portfolio returns Rp is

(36) LPMn(τ) =

k∑
j=1

βj

∫ ∞
sj

Kn,k(sj , u)gj(u) du,

where sj =
wµtj−τ
|wAj | and the kernel function Kn,k is given by:

(37) Kn,k(sj , u) =
π
k−1

2

2
|wA|n

n∑
h=0

h!(n− h)!

n!

Γ(n−h−1
2 )

Γ(n+k−h
2 )

shj (u− sj)
n+k−h

2 −1

However, we shall see in the example of the multi-variate t-distribution which
we will treat next, that it can be easier to work directly with the double integral
version (3) instead of with (36), (??).

3.2.1. LPM with mixture of m Student-t distributions. Among the finite mixture,
the finite t-Students mixture models (SMM) are tolerant for untypical data outliers.
Thus, I now consider in detail the case where our mixture of elliptic distributions is
a mixture of multivariate Student-t. We will, unsurprisingly, call the corresponding
LPM the Delta SMM-LPM.

In the last decade, in presence of data with longer-than-normal tails, mixture of t-
Student distributions have proved to be a more useful as they provide more realistic
tails for real world data, see e.g Sadefo Kamdem (2009). Moreover, the degrees of
freedom of each t distribution can act as an adaptive robustness parameter, tuning
the heaviness of the tails, see e.g. Lange et al. (1989). Thus, using mixture of t
distributions with different degrees of freedom helps to automatically fit a typical
data points.

In the case of the multi-variate t-Student distributions, the portfolio probability
density function is given by:

(38) hX(x) =

m∑
j=1

βj Γ(
νj+n

2 )

Γ(νj/2).
√
|Σj |(νjπ)n

(
1 +

(x− µj)tΣ−1
j (x− µj)
νj

)(
−νj−n

2 )

,
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x ∈ Rn and νj > 2. Hence gj is given by

gj(s) = C(νj , n)(1 + s/νj)
−

(n+νj)

2 , s ≥ 0,

where we have put

C(νj , n) =
Γ(

νj+n
2 )

Γ(νj/2)
√

(νjπ)n
.

Theorem 3.16. Assuming that ∆Π ' δ1X1 + δ2X2 + . . . + δkXk with a mixture
of m multivariate Student-t random vector (X1, X2, · · · , Xk) with vector mean µj ,
and variance-covariance matrix Σj , the the SMM-LPM of a linear portfolio is given
by:
(39)

LPMmixt(τ) =

m∑
k=1

βjCνk,n,s

n∑
j=0

Γ
(
n−j−1

2

)
Γ
(
νk−n+j

2

)
j!(n− j)!

n!
2F 1

(
k + νk

2
,
νk + j − n

2
,
k + νk

2
;−νk

s

)
s
j
2

where Cνk,n,s =
ν
νk/2

k |wAk|n

2
√
πΓ(νk/2)

s
n−νk

2 and s =
wµtk−τ
|wAk| .

(40)

LPMmixt(τ) =

m∑
l=1

βl

n∑
j=0

ν νl2l Γ
(
n−j−1

2

)
Γ
(
νl−n+j

2

)
2F 1

(
k+νl

2 , νl+j−n2 , k+νl
2 ;−νl

√
wΣlwt

wµtl−τ

)
2
√
π Γ
(
νl
2

)
(wµtl − τ)

νl−n− j2 (wΣlwt)
2νl−j

4

j!(n− j)!
n!


The kappa index of order n is given by

(41) κmixt(τ) :=
wµt − τ

(LPMmixt(τ))
1
n

.

Remark 3.17. One might, in certain situations, try to model with a mixture of
t-Student distributions which all have the same νj = ν and the same mean µj ≈ 0,
and obtain for example a mixture of different tail behaviors by playing with the
Σj ’s.

4. Utility Theory and Mean-LPM Portfolio Theory

4.1. Mean-LPM Portfolio theory. In this section, I modify classical portfolio
theory so that the normal distribution can be relaxed by another elliptically dis-
tribution. Investors will instead of caring solely about means and variances, care
about the so-called Target Semi-Moments such as the Target Semi-Kurtosis that
will sufficiently consider leptokurticity for returns portfolio that are below the fixed
real target τ .

4.2. The portfolio choice problem with LPM. Consider an investor who is
averse to LPMn,g(τ) with target rate return τ . Let w = (w1, w2, . . . , wk) and
R = (R1, . . . , Rk) represent the raw vector of security returns. Assume that R
follows an elliptic distribution with mean vector µ, the variance-covariance matrix
Σ and the density generator function g. Following (36), the investor’s optimal
portfolio choice problem can be represented by

(42) min
w∈W

LPMn,g(τ,w)

where W = {w = (w1, . . . , wk) ∈ [0, 1]k /
∑k
i=1 wi = 1, rfwk+1 + µwt = E}

where E is the expected return of the investor, and rf is the risk free interest
rate. Equation (42) represents the fact that the (downside risk-averse) investor
chooses the optimal portfolio weights such that the relevant risk measure (LPMn,g)
is minimized for a specified value of the expected portfolio return E.
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In the special case where we consider t-Student distribution, g is given by

g(s) = C(ν, k)(1 + s/ν)
− (k+ν)

2 , s ≥ 0,

with C(ν, k) =
Γ( ν+k

2 )

Γ(ν/2)
√

(νπ)n
. Using this g in (36) and using (24), we find w0 ∈ W

such that
(43)

w0 := arg min
w∈W

n∑
j=0


j!(n− j)!νν/2Γ

(
n−j−1

2

)
Γ
(
ν−n+j

2

)
2F 1

(
k+ν

2 , ν+j−n
2 , k+ν

2 ;− ν
wµt−τ√

wΣwt

)

2n!
√
πΓ(ν/2)

(
wµt−τ√
wΣwt

)ν−n− j2
(wΣwt)−n/2


where W = {w = (w1, . . . , wk) ∈ [0, 1]k /

∑k
i=1 wi = 1, wk+1rf +µwt = E} where

E is the expected return of the investor, and rf is the risk free interest rate.

4.3. Worst case Elliptical LPM. In this paper, following Duan et al.(2007), we
can assume that the random vector X of portfolio risk factors density generator
function is belong to a certain set of density generators functions G that characterize
elliptic distributions. We can then develop a robust portfolio policies when the
density generator function gX ∈ G.

Definition 4.1. The worst-case n-degree lower partial moment (n ≥ 0) of the
portfolio return RP with respect to g is defined as

(44) WLPMn(τ,w) := LPMn,g0(τ,w0) = sup
g∈G

LPMn,g(τ,w)

where LPMn,g(τ,w) is given in 22) or in (36).

We can obtain a robust portfolio optimization in the case where only a par-
tial information about the distribution of the portfolio risk factors is known (e.g.
elliptic distribution). The robust selection is achieved by minimizing the worst-
case downside risk measure WLPMn(τ,w), which results in the following min-max
problem:

(45) LPMn,g0
(τ,w0) := min

w∈W
sup
g∈G

LPMn,g(τ,w)

where W = {w = (w1, . . . , wk) ∈ [0; 1]k/
∑k
i=1 wi = 1, µwt = E} where E is the

expected return of the investor.

4.3.1. WLPM with Student distribution. If we consider the family of Student dis-
tributions, we obtain the following robust portfolio min-max formulation:
(46)

min
w∈W

sup
ν∈]2,+∞[

n∑
j=0

j!(n− j)!νν/2Γ
(
n−j−1

2

)
Γ
(
ν−n+j

2

)
2F 1

(
k+ν

2 , ν+j−n
2 , k+ν

2 ;− ν
wµt−τ√

wΣwt

)

2n!
√
πΓ(ν/2)

(
wµt−τ√
wΣwt

)ν−n− j2
(wΣwt)−n/2

(47)

min
w∈W

sup
ν∈]2,+∞[

n∑
j=0

ν ν2 Γ
(
n−j−1

2

)
Γ
(
ν−n+j

2

)
2F 1

(
k+ν

2 , ν+j−n
2 , k+ν

2 ;−ν
√
wΣwt

wµt−τ

)
2
√
π Γ
(
ν
2

)
(wµt − τ)

ν−n− j2 (wΣwt)
2ν−j

4

j!(n− j)!
n!


where s = wµt−τ

|wA| . Cν,n,s = νν/2

2
√
πΓ(ν/2)
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5. Parameters estimation

5.1. GO-GARCH covariance matrix. The GO-GARCH model was proposed
by van der Weide [28] . The starting point of the model is that an observed vector
of risk factors can be expressed as a non-singular linear transformation of inde-
pendent latent factors that have GARCH type conditional variance specification.
Following Van der Weide [28], I puts forward a three step estimation method that is
numerically attractive and easy to implement. The first two steps define a method
of moments (MM) estimator for the linear transformation with a good convergence
regardless of the dimension. The identification of linear transformation is done by
using the fact that latent factors are heteroscedastic. All that is assumed is that
the factors exhibit persistence in variance and have finite moments. The third and
final step involves estimation of the univariate GARCH-type model for each factors.

5.1.1. GO-GARCH model with elliptic distribution. In the definition of elliptic dis-
tribution N(µt,Σt, g), we can consider a dynamic covariance matrix Σt. The ran-
dom vector Xt = (X1t, . . . , Xnt)

> be the n-dimensional column vector process of
risk factors (ie: log-returns) with conditional mean vector µt that is assumed to be
known or correctly fitted, decompose as

(48) Xt|Ft−1 = µt + ηt ∼ N(µt,Σt, g),

where ηt is the zero mean random vector with covariance matrix Σt, that is inde-
pendent dependent on Ft−1 the information set available up to time t−1 (filtration)
on which Xt is adapted and

(49) Σt = var (Xt/Ft−1) = ZtHtZt and µt = E(Xt/Ft−1)

are respectively a positive definite Ft−1-measurable dispersion conditional variance
matrix depending on time, where Ht is the n× n diagonal matrix defined by

(50) Z2
t = diag(ωi) + diag(θi) ◦Xt−1X

>
t−1 + diag(βi) ◦ Z2

t−1,

where the symbol ◦ is the Hadamard product of two matrices, that is element-by-
element multiplication and the Ft−1-measurable conditional mean. The matrix Ht
is defined via Q by

Qt = (11′ −A1 −A2)Ω +A1 ◦
(
ηt−1η

>
t−1

)
+A2 ◦Qt−1(51)

where ηt = Z−1
t Xt ∼ N(0,Ht, g), Ω = E

[
ηtη
>
t

]
is the unconditional correlation

matrix which is estimated using the sample correlation of the standardized residuals
ηt, A1 = θθ

′
with θ = (θ1, . . . , θn), A2 = ββ

′
with β = (β1, . . . , βn), β

′
is the

transpose of β and

(52) Ht = (diag(Qt))
−1/2Qt (diag(Qt))

−1/2.

In fact, for each i = 1, . . . , n, we can write

(53) hit =

1−
n∑
j=1

αij − βj

+

n∑
j=1

αijy
2
i,t−1 + βihi,t−1

with αij , βi ≥ 0 and
∑n
j=1 αij + βi < 0.

Paper [8] gives necessaries conditions for Rt to be positive definite.

step 1 : We find the marginal density function of the risk factor Xit as:

fi(xi) = |Σ|−1/2

∫
Rn−1

g
(
xΣ−1xt

)
dx−i,

where dx−i = dx1dx2 . . . dxi−1dxi+1 . . . dxn.
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step 2 : Since the precede step 0 gives the marginal density function, the param-
eters ωi, θi and βi of the sequence of the univariate GARCH models of
equation (50) may be estimated by maximizing the n marginals univariate
likelihoods

l(θi) =

T∑
t=1

log (fi(Xit)) , i = 1, . . . , n.

Then the matrix Dt and the standardized residuals, ηt = D−1
t Xt may be

estimated.
step 3 : To estimate the matrix Ω in equation , we used the sample covariance

matrix of the residuals estimated in Step 2.
step 4 : Finally, using the estimated Dt and Ω, the likelihood

l(θ) =

T∑
t=1

[
−1

2
log|Σt| + log(g(XtΣ

−1
t X

′

t))

]
,

is maximized with respect to the parameters A1, A2 and g, for a moderate
number k of assets in the portfolio.

Consider the polar decomposition of Z:

(54) Z = SU

where S is the positive definite symmetric matrix, and U is an orthogonal matrix.
It is easy to see that S is a squared root of the unconditional covariance matrix (e.g.
H is an identity matrix) and that it can be written as S = PL1/2P t, where PLP t

is the spectral decomposition of Σt. Thus, estimating Z may be reduced to the
problem of identifying the orthogonal matrix U from the conditional information.
It’s follows that, the unconditionally standardized returns st = Σ−1/2ηt follows a
GO-GARCH specification st = Uyt with an orthogonal link matrix U .

5.2. Parameters estimation for the mixture of elliptic distributions dis-
tributions. Consider the likelihood L(Θ) based on a sample X drawn from (38)
with parameters

(55) θ = (β1, . . . , βk, µ1, . . . , µk,Σ1, . . . ,Σk, ν1, . . . , νk)

where µj is the parameter location, Σj is a positive definite variance-covariance
matrix and νj is the degree of freedom of the j-th distribution for j = 1, 2, . . . , k.
The parameter space is

(56) Θ = {θ ∈ R
k(4+3q+q2)

2 /

k∑
1

βk = 1, βk ≥ 0, |Σj | > 0 for j = 1, 2, . . . , k}

Following Shoham (2002), we recall the main steps of the EM algorithm for the
mixture of t distributions. The EM algorithm generates a sequence of estimates
{θ(m)} where θ(0) ∈ Θ denotes the initial guess and θ(m) ∈ Θ for m ∈ N is such that
the sequence L(θ(m))m∈N is not decreasing. The E-step, on the (m+1)-th iteration
of the EM algorithm, requires the calculation of the conditional expectation of
the complete-data likelihood function Q(θ, θ(m)) := ln(Lc(θ), evaluated using the
current fit θ(m) for θ. See [15] for more details on the estimation of the parameters
for mixture of elliptical distributions.
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6. Conclusion

This paper provides analytical expressions of the lower partial moment and the
risk-adjusted performance (kappa index) of a linear portfolio with mixture of el-
liptically distributed risk factors. After introducing the the notion of target semi-
kurtosis, we also discuss the classical and robust Mean-LPM portfolio optimization
problem. After then we provide some discussion concerning estimation of parame-
ters with data.
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