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Abstract

The considered problem of 3-D reconstruction consists in computationally and passively recovering both topography and texture
of a scene surface observed by optical sectioning with a limited depth-of-field imaging system (typically a conventional optical
microscope). Throughout a sequence of registered 2-D images, the concepts of shape-from-focus and extended-depth-of-field
respectively involve recovering both topography (depth map) and texture image of the surface by researching in-focus information.
Toward that aim, traditional approaches generally follow a2-D sectional way and thereby fail to deal with disturbed acquisitions,
quite frequent in transmitted light observations and of interest in this paper. Such examples are the acquisitions fromthe medical
issue addressed here: the 3-D reconstruction of humanex-vivocorneal endotheliums. These are mainly damaged by cellular
fragments in the sample immersion medium or contrast reversals emphasized by both sample over-illumination and transmitted
light imaging. To achieve with such noisy and disturbed acquisitions, a new focus analysis is introduced that originally adopts
a 3-D strategy throughout the image sequence. This method exploits simultaneously all available cross-sectional cuesto recover
the observed surface that effectively strengthens the robustness. More precisely, it locally performs multivariate statistical analyses
over cross-sectional spatial windows so as to find the sectional in-focus positions. Comparisons to state-of-the-art methods on both
synthetic data and real acquisitions from the deal-with medical issue demonstrate the efficiency and the robustness of the proposed
approach.

Keywords: Focus measurement, shape from focus, extended depth of field, robustness, eigenvalues decomposition, cornea
endothelium.

1. Introduction

Observing through any optical imaging device with tradi-
tional lens and sensor plane system leads to information losses:
(1) topographical information because of the projection onthe
sensor plane; (2) textural information “stained” by the focal
range of the lens system. After the projection on the sensor
plane, an observed surface scene whose profile covers more
than the system depth-of-field (then describes as “thick”) effec-
tively appears in-focus and sharp on the acquired image only
at parts lying within it. The remaining out-of-focus parts are
blurred by the point spread function (PSF) of the system. In
order to recover such a “thick” surface scene, one way can con-
sist in gradually scanning it with the object focal plane of the
imaging system,i.e.by acquiring a large sequence of images by
optical sectioning (Agard, 1984). From such image sequence,
this paper focuses on the computational and passive restoration
of both topographical and textural information of the surface
scene through the common complementary concepts of Shape-
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From-Focus (SFF) and Extended Depth-of-Field (EDF) respec-
tively; the 3-D reconstruction being deduced by mapping the
restored texture onto the estimated topography. In this work,
we propose an effective theoretical improvement, subsequently
applied to an original medical issue.

The SFF concept exploits the limited depth-of-field to infer
the topography (or the shape) of the observed surface by axi-
ally (along the optical axis) maximizing a focus measurement
throughout the image sequence (Nayar and Nakagawa, 1994),
(Subbarao and Choi, 1995), (Malik and Choi, 2008), (Mah-
mood and Choi, 2008), (Mahmood et al., 2008), (Mahmood
et al., 2009). Except that it is locally performed, the focus
analysis is identical to autofocus algorithms that intend to auto-
matically focus optical imaging systems (Brenner et al., 1976)
(Krotkov, 1987), (Vollath, 1987), (Subbarao et al., 1993).Like-
wise, the EDF concept conversely tries to overcome the depth-
of-field limitation by joining through a focus measurement the
most focused information from the image sequence into a single
image: the so-called texture image (Pieper and Korpel, 1983),
(Sugimoto and Ichioka, 1985), (Valdecasas et al., 2001), some-
times through some form of multiresolution analysis (Forster
et al., 2004), (Meneses et al., 2008). The latter are often in-
troduced in the practical context of image fusion that consists
in combining information from some (generally between 2 and
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5) multi-focus or multimodal images of the same scene into
a single composite representation (Zhang and Blum, 1999).
Recently, Aguet et al. (2008) proposed a model-based EDF
method that therefore do not require any focus measurements.
They estimate both textural and topographical informationby
globally fitting a convolutional model of defocus to the image
sequence, as an iterative energy minimization problem. Despite
this latter, the major part of SFF/EDF methods foremost rely
upon an essential step of focus measurement to detect in-focus
portions of the images. Toward that end, prominent cues are the
high-spatial-frequency components of the surface texture, cor-
responding to sharpness information less damaged by the PSF.
Nevertheless, this high-pass criterion can be corrupted bynoise
introduced by imaging equipments during acquisition. Indeed,
most noises also result in high-spatial-frequency components of
an image (Gonzalez and Woods, 2008) and thus provide false
information of sharpness that misleads and affects the recon-
struction process. From a theoretical point of view, this work is
more particularly interested in developing a novel focus mea-
surement offering a large noise robustness to make noisy re-
constructions possible. To that aim, we originally adopt a 3-D
strategy within the image sequence and perform local cross-
sectional multivariate statistical analyses. Moreover, this noisy
issue is even more frequent with reconstructions of transparent
surfaces through transmitted light observations,e.g. common
in medical and biological issues using conventional optical mi-
croscopy. To deal with such cases, SFF/EDF methods neces-
sarily require that only the transparent surface appears in-focus
throughout the image sequence, but it usually arises disturbed
in there. Such examples are the acquisitions from the practical
medical issue presented in this paper: the 3-D reconstruction of
humanex-vivocorneal endotheliums observed by conventional
optical microscopy.

The cornea is the transparent tissue covering the front of the
eye. It assumes a role of protection of the eye and, together
with the crystalline lens, transmits and focuses incident light
onto the retina. It is arranged in several basic layers: suchas,
from outside to inside, the epithelium, the stroma and the en-
dothelium. The latter thin innermost layer is constituted of es-
sential cells tiled in a monolayer and hexagonal mosaic. Indeed,
they pump water from the stroma, thus keeping the cornea clear.
Nevertheless, they stretch to compensate for dead cells instead
of regeneration, no longer maintaining a proper pumping action
leading to a subsequent loss of stromal transparency. Thereby,
a corneal transplantation may lastly be operated, before which
a careful quality control of the corneal graft endothelium must
be carried out. A high homogeneous density and a regular mor-
phometry of the cells reflect the good quality of a cornea graft
endothelium. Nowadays, the endothelium is inspected by ob-
serving the graft from the backside using conventional optical
transmitted light microscopy and the cell density is estimated in
2-D by performing either a manual cell counting (Thuret et al.,
2003) or a (semi)-automated image analysis (Gain et al., 2002),
(Gavet and Pinoli, 2008). However, corneal grafts exhibit anat-
ural convex shape and, most notably, posterior folds that neces-
sarily appear during storage in a specific organ culture medium
(Pels and Schuchard, 1983). Through the limited depth-of-field

of the microscope, the endothelial mosaics are only examined
in 2-D over restricted sharp regions that results in biased esti-
mations of endothelial cell density (Thuret et al., 2003), (Thuret
et al., 2004). From a practical point of view, this paper concerns
the 3-D reconstruction of endothelial surfaces of human cornea
grafts through the SFF/EDF concepts, in order to improve their
quality control. As previously mentioned, the difficulty is that
such transparent surfaces appear very disturbed throughout the
acquired image sequence, in our case by some cellular frag-
ments or by intense contrast reversals.

The paper is organized as follows. First, some image for-
mation details and requirements are briefly highlighted (Sec-
tion 2). Second, the SFF/EDF concepts are further explained
and the main existing focus measurements are described (Sec-
tion 3). Third, behind a brief review of statistical preliminaries
(Section 4), our new 3-D EIG SFF/EDF approach is introduced
(Section 5). Finally, the proposed 3-D EIG method is illustrated
and validated on both synthetic data (Section 6) and real acqui-
sitions from the just addressed medical issue (Section 7).

2. Image formation details and requirements

A simplified optical imaging system consisting of a convex
lens objective (also acting as a diaphragm) and a sensor plane
is depicted in Fig. 1. Let (O, ~x,~y,~z) denote a Cartesian coordi-
nate system:O is the optical center and thez-axis is along the
optical axis. Consider a thick scene surface, either opaqueand
observed in reflected light or transparent and observed in trans-
mitted light, viewed as a 3-D surface distributionS of radiance1

in the direction ofO. A surface point (x, y, z) is perspectively
projected by the objective on the sensor plane atzi through the
transformation: (x′, y′) = (−x.zi/z,−y.zi/z), which will be dis-
regarded in the ensuing equations about image formation. This
surfaceS can be sectioned into a stack of successive sections
sz along thez-axis:S(x, y, z) = sz(x, y).

Imaging with this system effectively presents a common
characteristic: its limited depth-of-fieldd around its so-called
object focal plane atzo, becoming more restricted the larger
the numerical aperture NA (and therefore the magnificationγ)
of the objective is2. Indeed, only surface sectionssz that lie
within the depth-of-field appear acceptably sharp on the ac-
quired image, as their light rays being sufficiently focused on
the sensor plane. As for light rays arising from outside sur-
face sections atδz = z− zo, they distribute their energies over
the sensor plane, causing the blur on the acquired image (Horn,
2001), (Born and Wolf, 1991). Contrary to EDF concept, the
SFF one exploits this limitation and even rather requires a very
restricted depth-of-field so as to perform well and to becomeac-
curate. By regarding the light illumination as incoherent,such

1In the context of radiometry, the term radiance refers to energy emitted
along a certain direction, per solid angle, and per foreshortened area (Horn,
2001), (Born and Wolf, 1991).

2A Gaussian convex lens of focal lengthf theoretically focuses on a fixed
image plane atzi at the magnificationγ = zi/zo ∼ NA only the light rays arising
from a single object plane atzo, the so-called object focal plane, obeying the
Snell’s formula: 1/zi − 1/zo = 1/ f for the same medium refractive indexes in
both front and back of the lens (Mahajan, 1998).
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Figure 1: Illustration of the basic 2-D image formation geometry. The green
light rays radiated by an in-focus point ofS are well refracted onto the sensor
plane contrary to the red light rays arising from an out-of-focus point, which
converge forward and whose energies are distributed over the blur circle patch.

an aberration-free imaging system can be modelled as a 2-D
shift-invariant linear system,i.e. in terms of convolutions with
its impulsive response: the point spread function PSF (Bornand
Wolf, 1991), (Horn, 2001). The irradiance3 (related to radiance,
itself related to intensity) image acquired with the objectfocal
plane set tozo, denotedı|zo, is thereby the contribution of each
successive object sectionsz convolved with its corresponding
2-D sectional PSFhδz (Agard, 1984):

ı|zo(x, y) =

∞∫

−∞

sz(x, y) ∗ hδz(x, y) dz, (1)

whereh denotes the 3-D PSF of the imaging system to a punc-
tual object at (x, y, zo).

The final sequence (3-D image) of 2-D images, denotedI , is
acquired by optical sectioning,i.e. by varying thez-position of
the object focal plane by constant steps∆z throughout the sur-
faceS: I (x, y, z) = ı|z(x, y) (Agard, 1984). Both SFF/EDF con-
cepts necessarily require a sequence with image sections spa-
tially registered, principally by considering magnification vari-
ations due to changes in focus setting through the perspective
projection of most optical imaging system4 (as in Fig. 1) (Will-
son and Shafer, 1991). These magnification changes can be

3In the context of radiometry, the term irradiance refers to energy incident
per foreshortened area (a pixel of the sensor plane) (Horn, 2001), (Born and
Wolf, 1991).

4Since the intersections of the so-called principal rays (the ones passing

corrected using optical approaches, such as zoom adjustments
based on system calibration (Willson, 1994), or computational
techniques, commonly referred to as image warping (Darrell
and Wohn, 1988). Notice that acquiring the image sequence
by displacing either the scene or the imaging system along
the z-direction with respect to a fixed focus setting ensures at
least a constant magnificationγ for all successive object focal
planes, but not for the out-of-focus object planes that always
suffer different magnifications than the focal ones (Nayar and
Nakagawa, 1994). Otherwise, an all-over constant magnifica-
tion can be reached through orthographic projection of telecen-
tric optics (Watanabe and Nayar, 1997). If that is the case, as
well as aforementioned 2-D constraints, the imaging systemcan
be considered as a 3-D shift-invariant linear system (Frieden,
1967), (Streibl, 1984) and the 3-D imageI can be expressed
by the following 3-D convolution (Agard, 1984):

I (x, y, z) = S(x, y, z) ∗ h(x, y, z), (2)

illustrated in Fig. 2.
Before tackling the reconstruction process, let us briefly de-

scribe the effects produced by the convolution with the PSF
in Eq. 1 and Eq. 2. The PSF results from the contribution of
many blur factors, such as the defocusing, the optical diffrac-
tion and aberrations and the sampling, principally (Mahajan,
1998), (Mahajan, 2001). Many theoretical models of PSF have
been proposed, whose accuracies depend on considered fac-
tors and used approximations5 (Born and Wolf, 1991), (Castle-
man, 1996), (Gibson and Lanni, 1989). Introduced by Pentland
(1987), a 2-D Gaussian function is often suggested as a PSF
model with a standard deviation function of the distance of de-
focusδz. In summary, the PSF always behaves as a low-pass
filter, whose cut-off spatial frequency falls when the distance of
defocusδz raises.

3. Previous work in shape-from-focus (SFF)/ extended-
depth-of-field (EDF)

Traditionally, SFF/EDF methods work by means of an essen-
tial step: a local focus measurement that consists in measuring
the degree of focus of each voxel of the original image sequence
I . The topography, commonly referred to as depth map, and
the texture image of the observed surfaceS are then inferred,
preferably by taking the discretization of the acquisitionprocess
into account. Otherwise, Aguet et al. (2008) recently suggested
a model-based approach, thereby free from focus measurement,
which jointly estimates both topography and texture as a global
optimisation problem.

undeflected through the center of the lensO) with the sensor plane vary with
the position of this latter, the image magnification changes with defocus.

5According to geometrical optics, a first-order approximationof the defo-
cusing PSF consists in a homogeneous patch, the so-called blur circle in the
case of a spherical diaphragm whose radius increases with the distance of de-
focusδz (Horn, 2001).
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Figure 2: Illustration of the 3-D image formation model. The object surfaceS is convolved with the 3-D PSFh of the imaging system to obtain a 3-D imageI as a
sequence of 2-D imagesı|z along thez-axis.

3.1. Focus-based approaches

3.1.1. Focus measurements
In view of the fact that the PSF acts as a low-pass filter, focus

measurements thus try to locally emphasize and quantify high-
spatial frequency components of the original image sequence
I . Let I (x, y, z) be defined on the spatial supportD = Dx ×

Dy × Dz ⊂ R
3
+ and valued into a positive real rangeE ⊂ R+ of

intensity values. Applying a focus measurement function (FM)
on it yields a 3-D focus degree measureF (x, y, z) as follows:

F : D → R+

(x, y, z) 7→ FM(I (x, y, z)) , (3)

wherein the profile at location (x, y) along thez-direction is des-
ignated asF |x,y : Dz → R+. Focus measurements can be clas-
sified according to the dimensionality of the adopted strategy to
do that.

1-D approaches.From the early 1980s, some methods using
maximum or minimum selection rules throughout single-voxel
stacks along thez-direction of the image sequenceI are first
proposed (Pieper and Korpel, 1983), (Sugimoto and Ichioka,
1985), but yielding non-robust approaches.

2-D approaches.For the last 40 years, a lot of more reliable
focus measurements independently acting (in 2-D) on each im-
age section of the sequenceI also arose. Classically, 2-D fo-
cus measurements work locally over sectional windows in two
successive steps, aiming to emphasize and quantify focus cues
respectively. The first step generally uses either high-pass fil-
tering (Laplacian, Brenner or Tenenbaum gradients...) (Brenner
et al., 1976), (Krotkov, 1987), (Subbarao et al., 1993), (Nayar
and Nakagawa, 1994) or statistical tools (variance, autocorrela-
tion or sum of eigenvalues...) (Sugimoto and Ichioka, 1985),
(Vollath, 1987), (Wee and Paramesran, 2007), sometimes in
various frequency domains (e.g.through discrete Fourier trans-
form) (Malik and Choi, 2008) or with a different image pro-
cessing framework (Fernandes et al., 2011a). To gain robust-
ness, the second step simply consists in an energy measurement
(commonly the sum over the considered windows of the abso-
lute values) of the results of the first one. Otherwise, some
2-D methods operate through some forms of multiresolution

decomposition analysis (e.g.Laplacian, gradient, ratio-of-low-
pass pyramids or wavelet transform...) in order to perform high-
pass filtering at different resolution level (Burt and Adelson,
1983), (Toet, 1989), (Forster et al., 2004). They work simi-
larly except for the restoration of the texture imageT that is
done by a reverse procedure after the fusion of most salient de-
composition parts (Zhang and Blum, 1999). By independently
working on each individual image section of the sequenceI ,
2-D approaches are inevitably misled by a rather isolated sec-
tional noisy/disturbance data that appears sharpest, in theory
more than the following 3-D approaches.

3-D approaches.Recently, Mahmood and Choi (2008) have
introduced a 3-D focus measurement,i.e. which takes fully ad-
vantage of the three spatial dimensions of the original image
sequenceI . It is locally based on a principal component anal-
ysis within a stack of collected sectional neighborhoods along
thez-direction. Consequently, it simultaneously exploits allfo-
cus cues along the axial (or cross-sectional)z-direction in order
to estimate sectional degrees of focus. Contrary to 1-D/2-D
ones, this novel 3-D strategy would enable to improve the ro-
bustness. However, we will see that it actually suffers from
a severe loss of sensitivity. Indeed, it finally uses the largest
principal component to discriminate in-focus informationthat
represents the global content of the studied data. Hence, the
authors combine it with various previous transforms, such as
discrete wavelet (Mahmood et al., 2009) or cosine (Mahmood
et al., 2008) transforms.

3.1.2. Topography and texture inferring
Topographical information.The z-coordinates of the voxels
that exhibit the largest degrees of focus (referred to as depths)
infer the topography (depth map)D of the observed surface as
follows:

D : Dx × Dy → Dz

(x, y) 7→ argmax
z∈Dz

F |x,y(z) . (4)

Because of the significant thicknessd of the depth-of-field, the
recovered topographyD shows inherent “staircase” effects that
must be compensated for by a process of interpolation embed-
ded in this basic procedure of reconstruction. The traditional
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one consists in fitting a Gaussian distribution, whose mean fi-
nally constitutes the interpolated depth value, to the three de-
grees of focus lying on the largest mode (Nayar and Naka-
gawa, 1994). Similarly, a quadratic (or even more) polynomial
model can be fitted, sometimes regarding more than three de-
grees of focus (Subbarao and Choi, 1995). A subsequent ap-
proach (based on approximation of the Focussed Image Sur-
face (FIS)) locally tries to refine the initial recovered topog-
raphyD by optimizing both position and orientation of 2-D
planar (then curved) windows to maximize the covered degrees
of focus throughout the 3-D measureF (Subbarao and Choi,
1995), (Yun and Choi, 1999), (Asif and Choi, 2001), (Ahmad
and Choi, 2005). Finally, the topography is often smoothed
through average or median filters (Mahmood and Choi, 2008),
(Mahmood et al., 2008). Interpolation techniques lying beyond
the scope of this paper, only the traditional one will be used
herein, finalised by a spline smoothing.

Textural information.Throughout the image sequence
I (x, y, z), the texture imageT of the observed surface is
restored by joining the intensity voxels with the largest degrees
of focus:

T : Dx × Dy → E

(x, y) 7→ I (x, y,argmax
z∈Dz

F |x,y(z)) . (5)

When the optical sectioning step is larger than the depth-of-
field (∆z> d), some regions of the observed surface may never
appear in-focus throughout the image sequence and therefore
on the restored texture image. Pradeep and Rajagopalan
(2007) then proposed to perform a non-stationary Wiener
filter to locally deconvolve the texture imageT . Note that no
deconvolution process will be used herein.

Given the local and sectional action of the major part of the
focus measurements, a certain depth regularity of the observed
surface is implicitly assumed. On the one hand, the consid-
ered window has to be as small as possible to guarantee an ap-
proximate constant depth within itself and therefore to avoid
too much smoothing the restoration process around sharp depth
slopes or even depth discontinuities (Malik and Choi, 2007).
On the other hand, it has to be sufficiently large to always cap-
ture focus cues within wide homogeneous textural contents and
to average out noise.

3.2. Model-based approach

Lately, Aguet et al. (2008) suggested an approach (called
2.5-D deconvolution) based on the image formation model
described by Eq. 2. The problem is stated as a least-squares
minimization where the textureT and the depth mapD are
alternatively updated throughoutI . The latter is moreover
estimated in a coarse-to-fine framework that imposes a certain
regularity and robustness to the update. The PSF in Eq. 2 is
modelled by a Gaussian function, whose standard deviation
must be adjusted to produce satisfying results despite a relative
insensitivity to this parameterization. During the optimization

process, the current depth mapD and texture imageT are
intrinsically interpolated and deconvolved, respectively.

This work aims at creating a novel 3-D focus measurement
offering a large robustness to noise (unlike 2-D ones) while pre-
serving a sufficient sensitivity to focus cues (unlike 3-D existing
ones) in order to well operate through noisy/disturbed acquisi-
tions, typically like the ones analysed in the dealt-with medical
issue. Within the numerous SFF/EDF methods proposed in the
specialized literature, some traditional and recent ones listed in
Tab. 1 have been finally retained for the comparisons with our
suggested 3-D approach.

4. Mathematical preliminaries

This section briefly reviews the basic theory of multivariate
statistical analysis (Strang, 1980), (Fukunaga, 1990), (Jolliffe,
2002) used in the ensuing proposed SFF/EDF approach.

4.1. Multivariate data matrix

Let X ∈ R
m×n represents am × n matrix of real-valued

data, whose rows and columns are respectively denotedX =
t(ri)i∈J1,mK andX = (c j) j∈J1,nK, wheret stands for the transpose
operation. Consider am-dimensional Hilbert spaceRm whose
the inner product〈·, ·〉 : Rm × Rm→ R defined as:

(c j1, c j2) 7→ 〈c j1, c j2〉 =

m∑

i=1

ci j1ci j2, (6)

induces its norm‖ · ‖, such that‖c‖2 = 〈c, c〉. The canonical
basis of this Hilbert spaceRm is denoted:E = (e j) j∈J1,mK =

(δi j )(i, j)∈J1,mK2, where the columns (e j) j∈J1,mK are the canonical
vectors such that the Kronecker delta isδi j = 1 if i = j, and
δi j = 0 otherwise. In the same way, an-dimensional Hilbert
spaceRn can be considered.

Suppose that each column (c j) j∈J1,nK of X constitutes a set
of m variates. The inertia of these column vectors (c j) j∈J1,nK,
denotedI , is defined as:

I =
1
m

n∑

j=1

‖(c j − c̄ j) j∈J1,nK‖
2, (7)

where the operator̄c stands for the mean of the variate vectorc.
Remark that this real-valued amount is thus equal to the sum of
the variances of the column vectors (c j) j∈J1,nK of X. It measures
their dispersion in the Hilbert spaceRn.

4.2. Covariance matrix

Suppose that each variate column vector (c j) j∈J1,nK of X is
centered:X = (c j − c̄ j) j∈J1,nK. The covariance matrix of the
columns (c j) j∈J1,nK of X, i.e. the covariance matrixCX of the
variables of (ri)i∈J1,mK, is the followingn × n real square sym-
metric matrix:

CX =
1
m

t XX =
1
m

m∑

i=1

ri
t ri , (8)

5



2-D VAR Variance within a 2-D window (Sugimoto and Ichioka, 1985)
2-D TEN Sum over a 2-D window of the squared responses of the horizontal and vertical Sobel masks(Krotkov, 1987)
2-D OPT Sum over a 2-D window of the absolute real responses of an “optical” band-pass filter (Malik and Choi, 2008)

2.5-D DEC Model-based 2.5-D deconvolution method (Aguet et al., 2008)

3-D DCT-PCA
Principal component analysis of coefficients from discrete cosine transforms of 2-D/3-D windows collected
along thez-direction (Mahmood et al., 2008)

Table 1: Designations, details and references of some retained state-of-the-art SFF/EDF methods.

Theij -th element, proportional to the inner product〈ci , c j〉, cor-
responds to the covariance betweenci and c j if i , j or the
variance ofci otherwise. The inertiaI of the columns (c j) j∈J1,nK

is simply the trace ofCX: I = tr(CX).

4.3. Eigenvalues decomposition

The eigenvalues decomposition of the covariance matrix
CX ∈ R

n×n of the columns (c j) j∈J1,nK of X satisfies the equa-
tion:

CXG = ΛG, (9)

with a diagonal matrixΛ ∈ R
n×n and a matrixG ∈ R

n×n. The
non-negative diagonal elements (λi j )i= j∈J1,nK of Λ are the eigen-
values ofCX. The columns ofG = (g j) j∈J1,nK are the eigen-
vectors, such that〈g j1, g j2〉 = 1 if j1 = j2, and〈g j1, g j2〉 = 0
otherwise. The eigenbasisG = (g j) j∈J1,nK forms a novel or-
thonormal basis for the rows (ri)i∈J1,mK of X. Each eigenvector
gk with k ∈ J1,nK is associated with a particular eigenvalueλkk,
which reveals its considered amount among the inertiaI of the
columns (c j) j∈J1,nK, as well as the variance of the rows (ri)i∈J1,mK

projected onto itself:

λkk = gkCX
t gk =

1
m

gk


m∑

i=1

ri
t ri

 t gk =
1
m

m∑

i=1

〈ri , gk〉
2. (10)

Note thatI = tr(CX) = tr(Λ) =
∑n

k=1 λkk. By convention, the
ordering of the eigenvectors is determined by high-to-low sort-
ing of the associated eigenvalues, with the highest eigenvalue in
the upper left index of theΛ matrix. Hence, the first eigenvec-
tor g1 accounts for a varianceλ1 as large as possible among the
inertia I exhibited by (c j) j∈J1,nK. The succeeding eigenvectors
then maximize their considered variances among the remaining
inertia, in order and subject to the orthogonal condition.

5. 3-D multivariate statistical measurement of focus

Based on the mathematical theory just summarized, a new
3-D focus analysis designated as 3-D EIG is introduced. It con-
sists in several successive steps locally performed:

1. creation of a multivariate data matrix;
2. diagonalization of the data matrix (eigenbasis);
3. dimension reduction of the eigenbasis;
4. focus measurement.

Each of them, among others, constitutes one of the following
subsections.

5.1. Preliminary set definitions

Firstly, it is important to specify a couple of set definitions.
LetP(x, y) denotes a stack of single-voxels at (x, y) throughout
the input 3-D imageI and along thez-direction:

P(x, y) =
{
(x′, y′, z′p) ∈ D / x′ = x, y′ = y, p ∈ J1,NK

}
, (11)

whose cardinal number♯P is equal to the numberN of sec-
tions ofI . Each voxel stackP(x, y) materializes a particular
orthographic projection ray of the image formation process.

Let Br (x, y, z) denotes the 2-D square-shaped neighborhood
of the voxel (x, y, z) of I defined by:

Br (x, y, z) =

{(x′, y′, z′) ∈ D / |x− x′| ∨ |y− y′| 6 r, z′ = z} ,
(12)

with ∨ the maximum operator andr the size of the neighbor-
hood. As a remark, it strictly lies on the 2-D image sectionı|z
including the voxel (x, y, z) and is perpendicular to the projec-
tion rayP(x, y). Several other combinations, like disk-shaped
or rectangular-shaped, can be used for the selection of this2-D
sectional neighborhood.

5.2. Multivariate data matrix

In the following, let us consider one orthographic projection
rayP(x, y) at (x, y) within I . The♯Br voxels of the sectional
neighborhoodBr (x, y, z) of a particular voxel (x, y, z) of P(x, y)
can be firstly sorted in lexicographic order (see Fig. 3). Their re-
spective intensities can then result in a column vectorbr (x, y, z):

br (x, y, z) =
t (I (x′, y′, z′)

)
(x′,y′,z′) ∈Br (x,y,z) . (13)

The whole collection of resulting neighborhood vectors
br (x, y, z) of the voxels composing the stackP(x, y) forms the
multivariate matrixX(x, y) (see Fig. 3) as follows:

X(x, y) =
(
br (x, y, zp)

)
p∈J1,NK

. (14)

The i-th row ri of X(x, y), referred to as thei-th cross-sectional
response, is constituted by the samei-th component of all or-
dered neighborhood vectorbr (x, y, z). Alternatively, thej-th
column c j of X(x, y), referred to as thej-th sectional observa-
tion, forms a set of♯Br variates corresponding to all compo-
nents of the particular ordered neighborhood vectorbr (x, y, zj)
(Fig. 3).

The inertia I (x, y) of the sectional observations (i.e. the
columns (c j) j∈J1,NK) of X(x, y) measures the dispersion of the
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Figure 3: Illustration of the creation of the multivariate data matrix X. In this simple example, the current voxel stackP appears in green and every sectional
neighborhoodsB1 of size 1 is bordered in red. Finally, the rows and the columns of the built matrix X are the cross-sectional responses and the sectional
observations, respectively.

sectional observations ofX(x, y) in the Hilbert spaceRN of di-
mensionsN, whereN = ♯P is the number of sections of the
sequenceI (Eq. 7). Remark that this Hilbert spaceRN, in
which the cross-sectional responses (i.e. the rows (ri)i∈J1,NK) of
X(x, y) are defined, abstracts the image sequenceI . It can be
naturally regarded as an “image sequence space”, whose each
dimension is referred to a different 2-D image section of the
sequenceI (see Fig. 3). Thus, each vectore j of its canoni-
cal basisE = (e j) j∈J1,NK corresponds to a differentz-index zj

throughoutP(x, y).

5.3. Data matrix decomposition

First, the sectional observations ofX(x, y) are centered and
their N-by-N covariance matrixCX(x, y) is computed using
Eq. 8. CX(x, y) is then diagonalized using Eq. 9 so as to ob-
tain its eigenvalues (λi j )i= j∈J1,NK in increasing order and its as-
sociated eigenvectorsG(x, y) = (g j) j∈J1,NK of lengthsN. The
eigenvectors (g j) j∈J1,NK of CX(x, y) form a novel orthonormal
basis for the cross-sectional responses ofX(x, y). This eigenba-
sisG(x, y) = (g j) j∈J1,NK significantly describes them in a more
discriminating way than their canonical basisE = (e j) j∈J1,NK.
Indeed, the first eigenvectorg1 accounts for as much of the in-
ertia I (x, y) exhibited by the sectional observations ofX(x, y)
as possible. It indicates the direction of the Hilbert spaceR

N

in which cross-sectional responses ofX(x, y) exhibits the maxi-
mum varianceλ1. The succeeding eigenvectors, in the increas-
ing order and subject to their mutual orthogonal condition,max-
imize their variances among the remaining inertia. Thus, most
of the (interesting) information of the inertiaI (x, y) is consid-
ered by the largest eigenvectors (i.e. associated with the largest
eigenvalues) (Jolliffe, 2002).

5.4. Dimension reduction

As the interesting inertia of the sectional observations of
X(x, y) is considered by only the first few eigenvectors, the
eigenbasis can be reduced to them, undergoing a dimension-
ality reduction (Jolliffe, 2002). The subset constituted by the
first K eigenvectorsGK(x, y) = (gk)k∈J1,KK is thus regarded as a
novel reduced eigenbasis, whereK is a parameter whose value
adjustment will be discussed in the subsection 5.6. LetIGK (x, y)

denotes the inertia of the sectional observations ofX(x, y) onto
this reduced eigenbasisGK(x, y): IGK (x, y) =

∑K
k=1 λkk(x, y).

5.5. Focus measurement

Because of the low-pass filter action of the PSF, a defocused
part of the object surfaceS appears less contrasted on the ac-
quired image than when it is focused: its corresponding pixels
exhibit closer intensities, whose variance is thus lower (Sugi-
moto and Ichioka, 1985). Along an orthographic projection ray
P, the variances of the sectional observations obviously match
with the variation of their sharpness.

First let us introduce the measurementλ‖〈g, e〉e‖ that is
the norm of the orthogonal projection of the eigenvectorg
scaled by its respective eigenvalueλ onto the canonical vec-
tor e. It gauges the amount retained bye among the variance
λ accounted for byg. By regarding the novel reduced basis
GK(x, y) = (gk)k∈J1,KK of P(x, y), this amount (therefore among
the inertiaIGK (x, y)) for a particular canonical vectorep (with
p ∈ J1,NK) then appears as a possible estimation of the de-
gree of focus of its corresponding voxel (x, y, zp) of index zp.
ThroughoutP(x, y), we propose as focus measurement the sum
of the orthogonal projection norms of the eigenvectors mak-
ing the novel reduced basisGK(x, y) = (gk)k∈J1,KK and scaled
by their respective eigenvalues (λkk)k∈J1,KK onto each canonical
vectorsep, yielding the 3-D focus degree measureF as follows:

F (x, y, zp) =
K∑

k=1

λkk(x, y)‖〈gk(x, y), ep〉ep‖. (15)

Figure 4: Generation of a simulated data sequence containing32 images: (from
left to right) D5 classical Brodtaz texture (Brodatz, 1966), fold-shaped artificial
depth map (ground truth) and the corresponding 3-D reconstructed surface.
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r (in pixels) 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2-D VAR 0.66 0.56 0.47 0.40 0.44 0.40 0.40 0.43 0.46 0.49 0.52 0.56 0.59 0.62
2-D TEN 3.87 2.41 1.48 0.93 0.59 0.47 0.44 0.45 0.48 0.51 0.55 0.59 0.63 0.68
2-D OPT 2.19 1.55 1.28 1.09 0.95 0.79 0.66 0.51 0.41 0.39 0.40 0.42 0.45 0.48

3-D DCT-PCA 6.47 7.63 8.31 8 7.14 6.06 5.11 4.62 4.32 4.26 4.35 4.33 4.21 4.26
3-D EIG K=1 1.37 1.39 1.26 1.03 0.77 0.63 0.54 0.47 0.47 0.49 0.52 0.54 0.57 0.59
3-D EIG K=10 0.86 0.79 0.62 0.59 0.49 0.41 0.40 0.43 0.46 0.49 0.53 0.56 0.60 0.64

2.5-D DEC 1.14

Table 2: Performances (RMSE) of the SFF/EDF methods for the simulated data of Fig. 4, as a function of theneighborhood sizer for the focus-based ones (unlike
the model-based 2.5-D DEC one). In absence of noise, the performances of our 3-D EIG method are close to the others.

5.6. Noise robustness vs. focus resolution

In this subsection, the adjustment of the parameterK re-
ducing the considered eigenbasisGK is discussed. As previ-
ously mentioned, noises/disturbances result in incorrect infor-
mation of sharpness (i.e. they generally constitute high-spatial-
frequency components of an image, like focus cues) that mis-
leads the reconstruction process. Nevertheless, this problem
can be minimized in our proposed 3-D EIG analysis by elim-
inating the lower range of eigenvectors. Throughout the 3-D
imageI , a (well-contrasted) correct data has a larger influence
in the eigenvalues decomposition than a noisy/disturbance one.
Even if it sectionally appears more contrasted, this lattergener-
ally affects a narrower range of depth than the one of interest.
As a result, its respective information is restricted to lower order
eigenvectors (Fukunaga, 1990) and a small value of the param-
eterK allows to reduce it in the focus measure. The lower the
K parameter value is, the larger the noise robustness of our 3-D
EIG method is.

In the same way, such a small value ofK might, on the con-
trary, disregard information of a correct but poorly contrasted
data. In opposition, a larger value ofK increases the focus mea-
surement sensitivity: the 3-D EIG measurement gains in focus
resolution but loses robustness to noises/disturbances; the focus
resolution being the capacity of a focus measurement to distin-
guish the poorest contrasted but focused data. So, there is a
trade-off associated with choosing the appropriate value of the
K parameter. However, aK value set to 1 will be preferred in
most usual cases, moreover necessarily tarnished by noise (Fer-
nandes et al., 2011b). The eigenvalues decomposition intrinsi-
cally results in eigenvalues (λi j )i= j∈J1,NK that rapidly decreases
and whose the first oneλ1 accounts for the major part of the
total inertiaI (Jolliffe, 2002).

In addition, the parameterK can be locally adjusted in an
adaptive way throughout the input sequenceI . For each or-
thographic rayP(x, y), K(x, y) can be chosen so that,e.g. the
normalized inertiâIGK exhibited onto the reduced eigenbasis
GK(x, y) = (g j) j∈J1,KK:

ÎGK (x, y) =
IGK

I (x, y)
=

K∑

k=1

λ̂kk(x, y) =
K∑

k=1

λkk(x, y)
tr(Λ(x, y))

, (16)

is under a fixed thresholds ∈ [0,1], such as:

K(x, y) = argmax
K

{
ÎGK (x, y) / ÎGK (x, y) 6 s

}
. (17)

Thus, the thresholdsmay be set so as to consider,e.g., the first
90 per cent of the inertiaI (x, y), excluding the last 10 per cent
highly related to noisy content.

5.7. Computational aspects

Because of its 3-D strategy, the proposed 3-D EIG method
incurs a higher computational cost than the 2-D reference
ones. Both covariance matrix calculation and diagonalization
contribute most of its computational complexity and require
O(♯P2 ♯Br ) and O(♯P3) computations, respectively. Neverthe-
less, the only involved operations are matrix-vector multiplica-
tions, easily implementable. Furthermore, a number of meth-
ods have been proposed to reduce the computational complex-
ity of the second diagonalization step. Notably, Sharma and
Paliwal (2007) introduced a fixed-point algorithm, called Fast
PCA, whose estimated computational complexity is of order
O(♯P2 K). Finally, the process being carried out at each voxel
stackP independently, the computational cost can be substan-
tially minimized by employing a parallel implementation ofthe
3-D EIG method, moreover with a GPU (Graphics Processing
Units) parallel optimized version (Andrecut, 2009).

6. Validation on synthetic data

In order to dispose of a ground truth for carrying out quan-
titative assessments of the results produced by the state-of-the-
art retained methods (summarized at Tab. 1) and our 3-D EIG
approach, a first experiment using synthetic data is conducted.
So, the theoretical robustness to several artificial additive noises
will be particularly studied.

By first mapping an arbitrary texture onto an artificial depth
map (that constitutes the ground truth), a synthetic 3-D sur-
face is constructed (Fig. 4). Notice that this surface topogra-
phy is relatively smooth, consistent with the ones encountered
in the dealt-with medical issue (see the next Section 7). After-
wards, a sequence of 2-D images is generated and collected by
using a discrete version of Eq. 1 for a finite range of succes-
sive locations of the object focal plane by constant step sizes
∆z. To that end, the 2-D PSF is approximated by a 2-D Gaus-
sian function normalized to account for an uniform illumina-
tion (e.g.a Köhler illumination), whose standard deviation is
proportional to the distance of defocusδz (Aguet et al., 2008).
Additive Gaussian or impulse noise are finally introduced tothe
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Figure 5: Performances (RMSE) of SFF/EDF methods (if necessary,r = 8 pixels) for the simulated data of Fig. 4 under various noisy conditions. Our 3-D EIG
method clearly outperforms the other ones in presence of noise.

simulated image sequence to test the robustness of the afore-
mentioned methods. Performances are measured in terms of
the root-mean-square-error (RMSE) metric with respect to the
ground truth (Gonzalez and Woods, 2008).

Tab. 2 reports the performances of aforementioned ap-
proaches on the synthetic image sequence of Fig. 4 without
noise, and as a function of the neighborhood sizer for the
focus measurements (i.e. 2-D VAR, 2-D TEN, 2-D OPT, 3-D
DCT-PCA and 3-D EIG methods). In view of the fact that the

synthetic surface exhibits neither sharp depth slopes nor dis-
continuities, these ones perform better with a rather largesize
r. In absence of noise, the performance of the 3-D EIG method
is similar to the other ones, despite the performed 3-D strategy
that tends to slightly enlarge the focus resolution. As expected,
remark that a larger value ofK improves its performances for
small sizesr by narrowing its focus resolution needing to dis-
tinguish some critical texture regions,e.g.wide homogeneous
regions made up of few high-spatial-frequency cues. As for the

(a) Section 1
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(b) Section 10
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C

(c) Section 20
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(d) Section 30

A

B

C

(e) Section 40
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Figure 6: Some individual 2-D image sections among the 40 composing the image sequence 1. This sequence was imaged in steps of 4.5 µm using an Olympus BX
41 transmitted white-light microscope equipped with a×10 / NA 0.25 objective in air immersion. Each image section is 1040× 772 pixels, representing 718× 533
µm. Note that both bottom left corner and right edge regions never appear in-focus throughout the sequence. The marked regions A, B and C will be used as
sites for comparison of restored textures. The cellular fragments dumped in the dilating biochemical solution are clearly visible on (a) and (b) as small dark spots,
e.g.throughout the region B.

(a) Section 17 (b) Section 21 (c) Section 25 (d) Section 29 (e) Section 33

Figure 7: Some individual 2-D image sections among the 35 composing the image sequence 2. This sequence was imaged in steps of 4.5 µm using a Leica Laborlux
S transmitted white-light microscope equipped with a×10 / NA 0.25 objective in air immersion. Each image section is 759× 574 pixels, representing 759× 574
µm. The marked region will be used as a site for comparison of restored textures. The contrast reversals are clearly visible (see highlights of the marked region in
Fig. 9).
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Figure 8: Castleman’s OTF approximation (Castleman, 1996) of asimulated
×10 / NA 0.25, WD 10.5 mm objective as a function of the distance of defo-

cusδz and for some radial componentsρ =
√
ν2x + ν

2
y of both spatial-frequency

coordinatesνx andνy. The OTF correctly acts as a low-pass filter whose cut-
off frequency decreases when the distance of defocusδz increases. Particularly
note that the OTF, out of a certain degree of defocus, exhibits negative reso-
nances for some spatial-frequency ranges that are thus subject to contrast rever-
sals in the acquired image. Asδz increases, the OTF becomes increasingly os-
cillatory, with the contrast reversals affecting ever smaller spatial-frequencies.
Finally, remark the slight OTF asymmetry from the focus position.

other 3-D focus measurement (3-D DCT-PCA), it shows the
weakest performances: the previous discrete cosine transfor-
mation does not allow the statistical analysis to be sufficiently
sensitive and discriminating.

Secondly, SFF/EDF methods are put to the test (still on
the simulated image sequence of Fig. 4) with various additive
noises: their performances are shown in Fig. 5. According
to previous noise-free experiment, the sizer of neighborhood-
based focus measurements is here approximately adjusted to
the trade-off value of 8 pixels (see Tab. 2). In presence of
noise, the proposed 3-D EIG method withK set to 1 clearly
outperforms the other ones. This robustness to noise is due to
the adopted 3-D statistical strategy: the simultaneous useof all
cross-sectional cues throughout the image sequence makes the
discrimination of in-focus positions “drowned” in noise possi-
ble. As expected, the lower theK parameter value is, the more
robust to noise the 3-D EIG method is.

7. Application to 3-D reconstruction of human ex-vivo
corneal endotheliums

We now illustrate the potential of our 3-D EIG method on
real acquisitions from the dealt-with medical issue: the 3-D re-
construction of endothelial surfaces of human corneal grafts, in
order to improve their quality control.

7.1. Disturbed image acquisitions

Endotheliums of human corneal grafts are inspected by ob-
serving the grafts from the backside using conventional optical
transmitted light microscopy. Two sequences tagged 1 and 2 are

(a) Near-focus section 25 (b) Out-of-focus section 33

Figure 9: Illustration of contrast reversals affecting both endothelial cell rims
and borders by zooming in on two regions of the image sequence 2 of Fig. 7.

considered herein; both are described and illustrated in Fig. 6
and Fig. 7 respectively. The graft concavity is beforehand filled
with a specific biochemical solution that dilates the intercellu-
lar spaces between endothelial cell bodies (referred to as cell
borders) (Sperling, 1986). Thereby, the cell borders are more
opaque than the whole bodies and normally appear darker (re-
mark that they are often poorly visible). SFF/EDF concepts
appear here as adapted ways so as to reconstruct the endothe-
lial scene surfaces. Indeed, through such conventional optical
microscope, the inherent use of large magnificationsγ ∼ NA
significantly limits the offered depth-of-field and the performed
projection tends towards an orthographic behaviour (and there-
fore an all-over constant magnification) since the working dis-
tance WD= |zo| is much larger than the profile thickness of
the observed surface. Nevertheless, such observations neces-
sarily result in noisy and disturbed acquisitions. For example,
sequence 1 is disturbed by some cellular fragments dumped in
the dilating solution (see Fig. 6). Both are even more damaged
by intense contrast reversals (see Fig. 6, and more deeply, Fig. 7
and its highlights in Fig. 9). This disturbance data throughout
the image sequence misleads the reconstruction process, pre-
venting from practical results.

The PSF can effectively cause contrast reversals for some
size ranges of textural contents,i.e. from bright to dark or vice-
versa between the observed scene surface and the acquired im-
age (Mahajan, 2001). In order to briefly investigate this phe-
nomenon, it would be appropriate to introduce the optical trans-
fer function (OTF) that is the Fourier transform of the PSFh
and therefore transforms the blurring operation of Eq. 1 and
Eq. 2 from convolution to multiplication. An OTF approxima-
tion according to Castleman’s formulation (Castleman, 1996) is
depicted in Fig. 8. Effectively, the OTF becomes negative for
some distinct ranges of distances of defocusδz, then causing
contrast reversals for some specific ranges of spatial-frequency
components of the surface texture. This is the case for the
endothelial cell borders that are normally darker than the cell
bodies and look brighter on several distinct 2-D image sec-
tions of the sequence (see Fig. 9). Remark that contrast rever-
sals are here rather emphasized and intense, notably because of
both sample over-illumination and transmitted light imaging. In
many cases, the cell body rims are extremely bright (and satu-
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(a) 2-D VAR (b) 2-D TEN (c) 2-D OPT

(d) 2.5-D DEC (e) 3-D DCT-PCA (f) 3-D EIG K = 1

Figure 10: Reconstructed depth maps for the image sequence 1. The colorz-scale is:0 • • 29.25• • 58.5 • • 87.75• • 117• • 146.25• • 175.5 µm. The 3-D EIG
depth map (f) distinctly contains fewer both blue spots and over-red regions caused by cellular fragments and contrast reversals, respectively.

A

B

C

(a) 2-D VAR (b) 2-D TEN (c) 2-D OPT (d) 2.5-D DEC (e) 3-D DCT-PCA (f) 3-D EIG K = 1

Figure 11: Details of the restored textures for the image sequence 1 in the regions A, B, C of Fig. 6. Artifacts attributed toboth cellular fragments and contrast
reversals are noticeably fewer on the details of the texturein (f) restored by the 3-D EIG method.

rated at the focus on the acquired image). At contrast reversals
occurrence, they then lead to saturated bright cell borderson the
acquired image and, as for them also affected, become darker
but narrower.

7.2. Results and discussion

We now discuss the results of state-of-the-art retained meth-
ods (summarized at Tab. 1) and our 3-D EIG approach on the
couple of image sequences 1 and 2. Given their noisy and dis-
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(a) 2-D VAR (b) 2-D TEN

(c) 2-D OPT (d) 2.5-D DEC

(e) 3-D DCT-PCA (f) 3-D EIG K = 1

(g) 3-D EIGK = 10 (h) K-adaptive 3-D EIG withs= 0.55

Figure 12: Reconstructed depth maps for the image sequence 2. The colorz-scale is:75 • • • 88 • • • 101• • • 114• • • 127• • • 140• • • 153µm. The 3-D
EIG depth maps (f-h) distinctly contain fewer over-red spikeregions caused by intense contrast reversals.
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(a) 2-D VAR (b) 2-D TEN (c) 2-D OPT

(d) 2.5-D DEC (e) 3-D DCT-PCA (f) K-adaptive 3-D EIG withs =
0.55

Figure 13: Details of the restored textures for the image sequence 2 in the marked region of Fig. 7. Red circles highlight somemis-recovered regions because of the
presence of contrast reversals, whereas the well-reconstructed ones indicated by blue circles. The reader can refer tothe original images in Fig. 9 for comparison.

turbed appearances, only a robust SFF/EDF method will suc-
ceed in satisfactory reconstructing the endothelial surfaces. The
neighborhood-based focus measurements are performed with
the large sizer of 10 pixels, because of both wide textural con-
tent and noisy aspect of the endothelial surfaces. Moreover,
this is here not prejudicial in view of the relative depth regular-
ity of the surface (see the results on the synthetic data shown
in Tab. 2). The reconstructed depth maps are shown in Fig. 10
and Fig. 12; the restored textures are highlighted in Fig. 11and
Fig. 13.

Depth maps inferred by the proposed 3-D EIG method with
K set to 1 clearly exhibit fewer artefacts, anatomically impos-
sible as the endothelium surface is necessarily continuous. In
Fig. 10, it distinctly contains fewer underestimated (blue) and
overestimated (over-red) regions caused by cellular fragments
and contrast reversals, respectively. In Fig. 12, it clearly ex-
hibits fewer overestimated (over-red) spike regions and dis-
continuities due to the presence of intense contrast reversals
throughout the sequence. As for the model-based 2.5-D DEC
method, resulting depth maps and the more numerous arte-
facts damaging them appear smoothed owing to the performed
coarse-to-fine optimization (see Subsection 3.2).

In some regions, the 3-D EIGK = 1 method slightly lacks
focus resolution and therefore accuracy, made visible whenno
disturbance arises,e.g.at the top of the fold of the sequence 2
(Fig. 12(f)). As expected, a larger value ofK, e.g.set to 10,
increases the focus resolution but instead decreases the robust-
ness (Fig. 12(g)). In this case, an adaptive parameterK function
of the presence or not of contrast reversals should improve the

surface reconstruction. If contrast reversals are present, their
information is normally restricted to the second eigenvector g2,
which then accounts for a much larger normalized eigenvalue
λ̂2. Thereby, the normalized inertiâI is mainly shared between
bothλ̂1 (contrast normal sense) andλ̂2 (contrast reversal). Oth-
erwise, the first eigenvectorg1 accounts for the major partvia
λ̂1. Consequently, the adaptiveK(x, y) can be simply adjusted to
1 if λ̂1(x, y) is under a certain thresholdsor a much larger value,
e.g.10, otherwise. In this way, the 3-D EIG method offers a ro-
bust behaviour in presence of contrast reversals, whereas it pro-
vides a more sensitive focus resolution in all other cases (see
Fig. 12(h)).

Restored textures are respectively highlighted on some cru-
cial regions in Figs. 11 and 13 for a better visibility. Theirin-
spection corroborates the above appreciation, as each of them
being intimately related to the associated depth map. So, the
3-D EIG method achieves strong improvements: its restored
textures are not too much damaged by disturbances, like cellu-
lar fragments or contrast reversals.

To cope with noisy/disturbance issues, the 3-D EIG method
exploits the fact that they generally affect a narrower range of
depth than the one of interest (the true surface), in spite ofsome-
times exhibiting the largest contrasts. This notice is onlypossi-
ble through a 3-D strategy within the image sequence. Here, the
cellular fragments move continually and the OTF negative reso-
nance causing the contrast reversals theoretically reveals a nar-
rower bandwidth (Fig. 8). Consequently, noisy/disturbance data
has a lesser influence in the eigenvalues decomposition thanthe
one of interest and their respective information is pushed into
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(a) 3-D EIGK = 1 (b) 3-D EIGK = 1

Figure 14: 3-D reconstructions of the endothelial surfacesfor both image sequences 1 and 2 using the 3-D EIG method. The posterior folds are clearly visible and
the endothelial cell mosaics appear sharply as a whole, except for some regions of (a) never in-focus throughout the image sequence 1 (see Fig. 6).

lower order eigenvectors.
Finally, 3-D EIG depth maps are interpolated and smoothed

using cubic B-splines, respective textures are deduced and3-D
reconstructions of the surfaces are recovered by mapping tex-
ture images onto depth maps. Three-dimensional endothelial
surface reconstructions for both image sequences 1 and 2 are
shown in Fig. 14, thereby making the examination of the en-
dothelial cell mosaics over wider regions possible.

8. Conclusions

In this paper, we have introduced a new method designated as
3-D EIG for 3-D image reconstructions of scene surfaces from
optical sectioning with a limited depth-of-field imaging sys-
tem. Through the common SFF/EDF concepts, the suggested
3-D EIG method succeeds in recovering both depth map and
texture of the observed surface, without needing any knowledge
of the characteristics of the imaging system. By locally per-
forming multivariate statistical analyses within cross-sectional
spatial windows, it originally exploits all cross-sectional (axial)
cues simultaneously to infer the observed surface throughout
the image sequence, whereas state-of-the-art methods generally
follow a sectional way. This adopted 3-D statistical strategy of-
fers a strong robustness that is an important constraint of focus
analysis and SFF/EDF concepts, more particularly when deal-
ing with noisy and disturbed acquisitions as in the addressed
medical issue concerning the 3-D reconstructions of human
organ-cultured corneal endotheliums.

In the proposed approach, theK parameter enables to gauge
the noise robustness versus the focus resolution. Indeed, asmall
value of K confers a large robustness but causes a slight en-
largement of the focus resolution. Notice that thisK parameter
value can be automatically and adaptively adjusted within the
image sequence,e.g. by simply imposing a threshold on the
normalized eigenvalues. As for the choice of the neighborhood
size parameterr, there is a trade-off too. Large values raise
the robustness but reduce the spatial resolution and increase the
computational time. On the contrary, smaller sizes increase the
spatial resolution and decrease the computational time butare
more affected by noise and homogeneous textural regions.

The validity of our 3-D EIG method is clearly demonstrated
on both synthetic data and real acquisitions of the addressed
medical issue. The simulation experiment shows that with-
out noise the 3-D EIG approach exhibits performances close to
state-of-the-art methods, while it outperforms them in presence
of noise. Real acquisitions of organ-cultured corneal endothe-
liums present difficult noisy/disturbance problems, for which
the improvements on account of the manifested robustness are
clearly visible. Our 3-D EIG approach succeeds in reconstruct-
ing the endothelial surfaces of human corneal grafts, making
the examination of the cell mosaics over wider sharp regions
possible. We conceive automatically estimating endothelial cell
density in 2-D on the restored texture image (Gavet and Pinoli,
2008) and then correct it through topographical information of
the inferred depth map, yielding a 3-D estimation.

Despite the relative regularity of the studied surfaces, itis
important to stress the fact that the 3-D-EIG approach is not
limited to any specific kind or model of surfaces (Fernandes
et al., 2011b). Furthermore, while it is illustrated in the context
of conventional optical microscopy, it is applicable to thewider
range of imaging systems offering a limited depth-of-field, pro-
vided the acquired image sequence is previously registered.
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