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Abstract

The considered problem of 3-D reconstruction consists mmgationally and passively recovering both topography temture

of a scene surface observed by optical sectioning with adionilepth-of-field imaging system (typically a conventioogtical
microscope). Throughout a sequence of registered 2-D ispabe concepts of shape-from-focus and extended-degdiblof
respectively involve recovering both topography (deptipyaand texture image of the surface by researching in-fatfesmation.
Toward that aim, traditional approaches generally follo+& sectional way and thereby fail to deal with disturbeduwasitions,
quite frequent in transmitted light observations and ofriest in this paper. Such examples are the acquisitionstfiermedical
issue addressed here: the 3-D reconstruction of huexavivocorneal endotheliums. These are mainly damaged by cellular
fragments in the sample immersion medium or contrast ralemmphasized by both sample over-illumination and trétten
light imaging. To achieve with such noisy and disturbed &itjans, a new focus analysis is introduced that originalliopts

a 3-D strategy throughout the image sequence. This methgdiexsimultaneously all available cross-sectional dweecover
the observed surface thatectively strengthens the robustness. More preciselyciéllp performs multivariate statistical analyses
over cross-sectional spatial windows so as to find the swatin-focus positions. Comparisons to state-of-the-athmds on both
synthetic data and real acquisitions from the deal-withicadssue demonstrate théieiency and the robustness of the proposed
approach.

Keywords: Focus measurement, shape from focus, extended depth ofréiblastness, eigenvalues decomposition, cornea
endothelium.

1. Introduction From-Focus (SFF) and Extended Depth-of-Field (EDF) respec
tively; the 3-D reconstruction being deduced by mapping the
Observing through any optical imaging device with tradi- restored texture onto the estimated topography. In thikwor
tional lens and sensor plane system leads to informati@e®s we propose anfeective theoretical improvement, subsequently
(1) topographical information because of the projectiortt@n  applied to an original medical issue.
sensor plane; (2) textural information “stained” by thedoc  The SFF concept exploits the limited depth-of-field to infer
range of the lens system. After the projection on the sensahe topography (or the shape) of the observed surface by axi-
plane, an observed surface scene whose profile covers moggly (along the optical axis) maximizing a focus measuretmen
than the system depth-of-field (then describes as “thick®e  throughout the image sequence (Nayar and Nakagawa, 1994),
tively appears in-focus and sharp on the acquired image onlgSubbarao and Choi, 1995), (Malik and Choi, 2008), (Mah-
at parts lying within it. The remaining out-of-focus part®a mood and Choi, 2008), (Mahmood et al., 2008), (Mahmood
blurred by the point spread function (PSF) of the system. Iret al., 2009). Except that it is locally performed, the focus
order to recover such a “thick” surface scene, one way can comanalysis is identical to autofocus algorithms that inteméltito-
sist in gradually scanning it with the object focal planefwd t matically focus optical imaging systems (Brenner et alZ6)9
imaging systemi,e. by acquiring a large sequence of images by(Krotkov, 1987), (Vollath, 1987), (Subbarao et al., 1993ke-
optical sectioning (Agard, 1984). From such image sequencevise, the EDF concept conversely tries to overcome the depth
this paper focuses on the computational and passive réstora of-field limitation by joining through a focus measuremee t
of both topographical and textural information of the so&fa most focused information from the image sequence into desing
scene through the common complementary concepts of Shapignage: the so-called texture image (Pieper and Korpel, 1983
(Sugimoto and Ichioka, 1985), (Valdecasas et al., 2001)eso
. times through some form of multiresolution analysis (Ferst
“Corresponding author. . . et al., 2004), (Meneses et al., 2008). The latter are often in
Email addressestathieu.fernandes@gmail.com (Mathieu . . . . .
Fernandesgavet@emse. fr (Yann Gavet)pinoli@emse.fr (Jean-Charles troduced in the practical context of image fusion that cstssi
Pinoli) in combining information from some (generally between 2 and
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5) multi-focus or multimodal images of the same scene intof the microscope, the endothelial mosaics are only exainine
a single composite representation (Zhang and Blum, 1999)n 2-D over restricted sharp regions that results in biastd e
Recently, Aguet et al. (2008) proposed a model-based EDRations of endothelial cell density (Thuret et al., 200Bhret
method that therefore do not require any focus measurementst al., 2004). From a practical point of view, this paper @ns
They estimate both textural and topographical informabgn the 3-D reconstruction of endothelial surfaces of humanear
globally fitting a convolutional model of defocus to the ineag grafts through the SFEDF concepts, in order to improve their
sequence, as an iterative energy minimization problempies quality control. As previously mentioned, theffiulty is that
this latter, the major part of SHEDF methods foremost rely such transparent surfaces appear very disturbed throutieu
upon an essential step of focus measurement to detectiis-focacquired image sequence, in our case by some cellular frag-
portions of the images. Toward that end, prominent cuedhare t ments or by intense contrast reversals.
high-spatial-frequency components of the surface textoe The paper is organized as follows. First, some image for-
responding to sharpness information less damaged by the PSRation details and requirements are briefly highlightedc{Se
Nevertheless, this high-pass criterion can be corruptetbise  tion 2). Second, the SHEDF concepts are further explained
introduced by imaging equipments during acquisition. dle and the main existing focus measurements are described (Sec
most noises also result in high-spatial-frequency compts&f  tion 3). Third, behind a brief review of statistical prelimaries
an image (Gonzalez and Woods, 2008) and thus provide falg&ection 4), our new 3-D EIG SFHEDF approach is introduced
information of sharpness that misleads affii¢ets the recon- (Section 5). Finally, the proposed 3-D EIG method is illattd
struction process. From a theoretical point of view, thiskie  and validated on both synthetic data (Section 6) and realiacq
more particularly interested in developing a novel focugme sitions from the just addressed medical issue (Section 7).
surement fiering a large noise robustness to make noisy re-
constructiqng possiple. To that aim, we originally adopt@ 3 2. Image formation details and requirements
strategy within the image sequence and perform local cross-
sectional multivariate statistical analyses. Moreovds hoisy A simplified optical imaging system consisting of a convex
issue is even more frequent with reconstructions of tramspa lens objective (also acting as a diaphragm) and a sensoe plan
surfaces through transmitted light observatioag). common s depicted in Fig. 1. Let@, %, ¥, ) denote a Cartesian coordi-
in medical and biological issues using conventional optitia  nate systemQ is the optical center and theaxis is along the
croscopy. To deal with such cases, @PF methods neces- optical axis. Consider a thick scene surface, either opaqde
sarily require that only the transparent surface appesicins  observed in reflected light or transparent and observedirsir
throughout the image sequence, but it usually arises 8istur mitted light, viewed as a 3-D surface distributiSrof radiancé
in there. Such examples are the acquisitions from the paicti in the direction ofO. A surface point X, y, 2) is perspectively
medical issue presented in this paper: the 3-D reconstruofi  projected by the objective on the sensor plang #trough the
humanex-vivocorneal endotheliums observed by conventionakransformation: X',y) = (-X.z/z -Y.z/2), which will be dis-
optical microscopy. regarded in the ensuing equations about image formatiois. Th
The cornea is the transparent tissue covering the fronteof thsurfaceS can be sectioned into a stack of successive sections
eye. It assumes a role of protection of the eye and, togethey, along thez-axis: S(X, Y, 2) = S,(X, V).
with the crystalline lens, transmits and focuses incidégtit| Imaging with this system féectively presents a common
onto the retina. It is arranged in several basic layers: ssch characteristic: its limited depth-of-field around its so-called
from outside to inside, the epithelium, the stroma and the enobject focal plane at,, becoming more restricted the larger
dothelium. The latter thin innermost layer is constituté@®  the numerical aperture NA (and therefore the magnificagion
sential cells tiled in a monolayer and hexagonal mosaieédd  of the objective i8. Indeed, only surface sectiorss that lie
they pump water from the stroma, thus keeping the cornea cleawithin the depth-of-field appear acceptably sharp on the ac-
Nevertheless, they stretch to compensate for dead cettsiths quired image, as their light rays beingfitiently focused on
of regeneration, no longer maintaining a proper pumpinipact the sensor plane. As for light rays arising from outside sur-
leading to a subsequent loss of stromal transparency. Byjere face sections atz = z - 7, they distribute their energies over
a corneal transplantation may lastly be operated, befoielwh the sensor plane, causing the blur on the acquired imaga(Hor
a careful quality control of the corneal graft endotheliumsin  2001), (Born and Wolf, 1991). Contrary to EDF concept, the
be carried out. A high homogeneous density and a regular moSFF one exploits this limitation and even rather requiresrst v
phometry of the cells reflect the good quality of a corneatgrafrestricted depth-of-field so as to perform well and to became
endothelium. Nowadays, the endothelium is inspected by obeurate. By regarding the light illumination as incoheresich
serving the graft from the backside using conventionaloapti
transmitted |Igh.t mlc_roscopy and the cell dens_lty is estrdan Lin the context of radiometry, the term radiance refers to gnemitted
2-D by performing either a manual cell counting (Thuret &t al aiong a certain direction, per solid angle, and per fordshed area (Horn,
2003) or a (semi)-automated image analysis (Gain et al2)200 2001), (Born and Wolf, 1991).
(Gavet and Pinoli, 2008). However, corneal grafts exhilbiag 2A Gaussian convex lens of focal lengtttheoretically focuses on a fixed

ural convex shape and, most notably, posterior folds thegsie ~Mage plane & at the magnification = z /2, ~ NA only the light rays arising
! ! from a single object plane a, the so-called object focal plane, obeying the

sarily appear during storage ina SpeCiﬁC Organ culture ﬂTIHd.i Snell's formula: ¥z — 1/z, = 1/ f for the same medium refractive indexes in
(Pels and Schuchard, 1983). Through the limited depthetd-fi both front and back of the lens (Mahajan, 1998).
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Figure 1: lllustration of the basic 2-D image formation geomeirhe green

light rays radiated by an in-focus point Sfare well refracted onto the sensor

plane contrary to the red light rays arising from an outadtfs point, which
converge forward and whose energies are distributed oedslthr circle patch.

corrected using optical approaches, such as zoom adjustmen
based on system calibration (Willson, 1994), or compuretio
techniques, commonly referred to as image warping (Darrell
and Wohn, 1988). Notice that acquiring the image sequence
by displacing either the scene or the imaging system along
the z-direction with respect to a fixed focus setting ensures at
least a constant magnificatignfor all successive object focal
planes, but not for the out-of-focus object planes that géva
sufer different magnifications than the focal ones (Nayar and
Nakagawa, 1994). Otherwise, an all-over constant magnifica
tion can be reached through orthographic projection otezie
tric optics (Watanabe and Nayar, 1997). If that is the case, a
well as aforementioned 2-D constraints, the imaging systm
be considered as a 3-D shift-invariant linear system (lered
1967), (Streibl, 1984) and the 3-D imadecan be expressed
by the following 3-D convolution (Agard, 1984):
I(x,Y,2) =S(X V.2 = h(xYy,2), (2)

illustrated in Fig. 2.

Before tackling the reconstruction process, let us briedly d
scribe the #&ects produced by the convolution with the PSF
in Eq. 1 and Eq. 2. The PSF results from the contribution of
many blur factors, such as the defocusing, the optic@ladi-
tion and aberrations and the sampling, principally (Mahaja
1998), (Mahajan, 2001). Many theoretical models of PSF have
been proposed, whose accuracies depend on considered fac-
tors and used approximatioh@orn and Wolf, 1991), (Castle-
man, 1996), (Gibson and Lanni, 1989). Introduced by Pedtlan

an aberration-free imaging system can be modelled as a 2-(1987), a 2-D Gaussian function is often suggested as a PSF
shift-invariant linear systeni,e. in terms of convolutions with model with a standard deviation function of the distanceesf d

its impulsive response: the point spread function PSF (Rach
Wolf, 1991), (Horn, 2001). The irradiant&elated to radiance, filter, whose cut-& spatial frequency falls when the distance of
itself related to intensity) image acquired with the objectal

plane set t@,, denotedy,,, is thereby the contribution of each
successive object secti@ convolved with its corresponding

2-D sectional PSlh;, (Agard, 1984):

whereh denotes the 3-D PSF of the imaging system to a pun

ly(%.y) = f s(x.y) * ha(x.Y) dz

0o

—00

tual object atx,y, Z,).
The final sequence (3-D image) of 2-D images, dendtgd
acquired by optical sectioninge. by varying thez-position of
the object focal plane by constant steysthroughout the sur-
faceS: 7(x.V,2) = 1l(x,y) (Agard, 1984). Both SHEDF con-

cepts necessarily require a sequence with image sectiens sp

@)

tially registered, principally by considering magnificativari-

ations due to changes in focus setting through the perspecti

projection of most optical imaging systéigas in Fig. 1) (Will-
son and Shafer, 1991). These magnification changes can be

3In the context of radiometry, the term irradiance refers tergy incident
per foreshortened area (a pixel of the sensor plane) (H&@®1)2 (Born and

Wolf, 1991).

4Since the intersections of the so-called principal raye (thes passing

3

focuséz. In summary, the PSF always behaves as a low-pass

defocussz raises.

3. Previous work in shape-from-focus (SFF)/ extended-
depth-of-field (EDF)

Traditionally, SFFEDF methods work by means of an essen-

clial step: a local focus measurement that consists in miegsur

the degree of focus of each voxel of the original image secgien
I. The topography, commonly referred to as depth map, and
the texture image of the observed surf&are then inferred,
preferably by taking the discretization of the acquisifiwacess
into account. Otherwise, Aguet et al. (2008) recently setgk
model-based approach, thereby free from focus measutemen
which jointly estimates both topography and texture as bajlo
optimisation problem.

undeflected through the center of the I&jswith the sensor plane vary with
the position of this latter, the image magnification changek deéfocus.

5According to geometrical optics, a first-order approximaiidrthe defo-
cusing PSF consists in a homogeneous patch, the so-calleditdle in the
case of a spherical diaphragm whose radius increases wittlistance of de-
focuséz (Horn, 2001).
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Figure 2: lllustration of the 3-D image formation model. TheeajsurfaceS is convolved with the 3-D PSR of the imaging system to obtain a 3-D imafi&s a
sequence of 2-D imagels along thez-axis.

3.1. Focus-based approaches decomposition analysi®(g.Laplacian, gradient, ratio-of-low-
3.1.1. Focus measurements pass pyramids or wavelet transform...) in order to perfoigh-h

In view of the fact that the PSF acts as a low-pass filter, focugass filtering at dferent resolution level (Burt and Adelson,
measurements thus try to locally emphasize and quantify-hig 1983), (Toet, 1989), (Forster et al., 2004). They work simi-
spatial frequency components of the original image Seqﬂendarly except for the restoration of the text-ure |mag‘ethat.|s
7. Let I(xy,2) be defined on the spatial supp@rt= Dy x done by a reverse procedure after the fusion of most salent d

D, x D, ¢ R3 and valued into a positive real rangec R, of composition parts (Zhgng apd Blum, 1999). By independently
intensity values. Applying a focus measurement functiadF  Working on each individual image section of the sequefice

on it yields a 3-D focus degree measréx, y, 7) as follows: 2-D approaches are inevitably misled by a rather isolated se
tional noisydisturbance data that appears sharpest, in theory
F D - R, more than the following 3-D approaches.
(%Y,2 —» FM(Z(x.Y,2), 3)

3-D approaches.Recently, Mahmood and Choi (2008) have

wherein the profile at location(y) along thez-direction is des-  'Ntroduced a 3-D focus measuremere, which takes fully ad-
vantage of the three spatial dimensions of the original iEnag

ignated as|xy : D, — R,. Focus measurements can be clas-

sified according to the dimensionality of the adopted te  Sequencd. It is locally based on a principal component anal-
do that. 9 y pted sy ysis within a stack of collected sectional neighborhoods @l

thez-direction. Consequently, it simultaneously exploitsfadl

1-D approaches.From the early 1980s, some methods usingCus cues along the axial (or cross-sectiozaljrection in order

maximum or minimum selection rules throughout single-Voxe to estimate sectional degrees of focus. Contrary to/2-D

stacks along the-direction of the image sequendeare first ~ ones, this novel 3-D strategy would enable to improve the ro-

proposed (Pieper and Korpel, 1983), (Sugimoto and Ichiokabustness. However, we will see that it actuallyffers from

1985), but yielding non-robust approaches. a severe loss of sensitivity. Indeed, it finally uses thedsig
principal component to discriminate in-focus informatitrat

2-D approaches.For the last 40 years, a lot of more reliable represents the global content of the studied data. Henee, th

focus measurements independently acting (in 2-D) on eaeh imauthors combine it with various previous transforms, sugh a

age section of the sequengealso arose. Classically, 2-D fo- discrete wavelet (Mahmood et al., 2009) or cosine (Mahmood

cus measurements work locally over sectional windows in tweet al., 2008) transforms.

successive steps, aiming to emphasize and quantify foass cu

respectively. The first step generally uses either higls-fiks ~ 3.1.2. Topography and texture inferring

tering (Laplacian, Brenner or Tenenbaum gradients.. éfBer  Topographical information.The z-coordinates of the voxels

et al., 1976), (Krotkov, 1987), (Subbarao et al., 1993),yda that exhibit the largest degrees of focus (referred to athdgp

and Nakagawa, 1994) or statistical tools (variance, autels  infer the topography (depth mag@) of the observed surface as

tion or sum of eigenvalues...) (Sugimoto and Ichioka, 1985)follows:

(Wollath, 1987), (Wee and Paramesran, 2007), sometimes in ]

various frequency domaine.@.through discrete Fourier trans- D i Dxx Dy — D,

form) (Malik and Choi, 2008) or with a ffierent image pro- (X.y) > argmaxfixy(2). 4)

cessing framework (Fernandes et al., 2011a). To gain robust zeb:

ness, the second step simply consists in an energy measurem8ecause of the significant thicknedsf the depth-of-field, the

(commonly the sum over the considered windows of the absarecovered topograph® shows inherent “staircaseffects that

lute values) of the results of the first one. Otherwise, somenust be compensated for by a process of interpolation embed-

2-D methods operate through some forms of multiresolutiorded in this basic procedure of reconstruction. The traaiitio
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one consists in fitting a Gaussian distribution, whose mean fiprocess, the current depth mdp and texture image™ are
nally constitutes the interpolated depth value, to theetlte- intrinsically interpolated and deconvolved, respectivel

grees of focus lying on the largest mode (Nayar and Naka-

gawa, 1994). Similarly, a quadratic (or even more) polyradmi  This work aims at creating a novel 3-D focus measurement
model can be fitted, sometimes regarding more than three deffering a large robustness to noise (unlike 2-D ones) while pre
grees of focus (Subbarao and Choi, 1995). A subsequent aperving a sfficient sensitivity to focus cues (unlike 3-D existing
proach (based on approximation of the Focussed Image Suones) in order to well operate through ngdigturbed acquisi-
face (FIS)) locally tries to refine the initial recovered @gp  tions, typically like the ones analysed in the dealt-withdial
raphy D by optimizing both position and orientation of 2-D issue. Within the numerous SEHDF methods proposed in the
planar (then curved) windows to maximize the covered degreespecialized literature, some traditional and recent oiséed in

of focus throughout the 3-D measure (Subbarao and Choi, Tab. 1 have been finally retained for the comparisons with our
1995), (Yun and Choi, 1999), (Asif and Choi, 2001), (Ahmadsuggested 3-D approach.

and Choi, 2005). Finally, the topography is often smoothed

through average or median filters (Mahmood and Choi, 2008)4 Mathematical preliminaries
(Mahmood et al., 2008). Interpolation techniques lyingdrey/ ‘

the scope of this paper, only the traditional one will be used s section briefly reviews the basic theory of multivagiat

herein, finalised by a spline smoothing. statistical analysis (Strang, 1980), (Fukunaga, 1990)i &,

. . ) 2002) used in the ensuing proposed SHDF approach.
Textural information. Throughout the image sequence

I(xy,2), the texture images of the observed surface is 4.1. Multivariate data matrix

restored by joining the intensity voxels with the largesjrées .
Let X € R™" represents an x n matrix of real-valued

of focus: )
data, whose rows and columns are respectively denxtee
T :DyxDy - E t(ri)ie[[l,mﬂ andX = (Cj)jefwn), Wheret stands for the transpose
operation. Consider ardimensional Hilbert spacB™ whose
(xy) = 0y, arzgeglaﬁ&,y(z)). ©) the inner product., -) : R™x R™ — R defined as:

When the optical sectioning step is larger than the depth-of- &

field (Az > d), some regions of the observed surface may never (Cis» €) = (Cjy- Cj) = Z CiiCija» ©6)

appear in-focus throughout the image sequence and therefor =

on the restored texture image. Pradeep and Rajagopalafduces its norni| - ||, such that|c||?> = (c,c). The canonical

(2007) then proposed to perform a non-stationary Wienepasis of this Hilbert spac&™ is denoted:E = (€))jefrm =

filter to locally deconvolve the texture image. Note that no (6i1).pe[Lmz» Where the columnse()icpim are the canonical

deconvolution process will be used herein. vectors such that the Kronecker deltasis = 1 if i = j, and
dij = 0 otherwise. In the same way,radimensional Hilbert

Given the local and sectional action of the major part of thespaceR" can be considered.
focus measurements, a certain depth regularity of the ebder  syppose that each columa;Yjeq1q) Of X constitutes a set

surface is implicitly assumed. On the one hand, the considof m variates. The inertia of these column vectoes) 1.,
ered window has to be as small as possible to guarantee an afsnoted, is defined as:

proximate constant depth within itself and therefore toicvo

too much smoothing the restoration process around shath dep 1< — 9

slopes or even depth discontinuities (Malik and Choi, 2007) I = ﬁz I1CS; = eI )
On the other hand, it has to befBaiently large to always cap- 1=

ture focus cues within wide homogeneous textural contends a \ypere the operatd stands for the mean of the variate veator

to average out noise. Remark that this real-valued amount is thus equal to the gum o
the variances of the column vectorg)(c1,, of X. It measures
3.2. Model-based approach their dispersion in the Hilbert spad¥'.

Lately, Aguet et al. (2008) suggested an approach (called
2.5-D deconvolution) based on the image formation modef+-2. Covariance matrix
described by Eq. 2. The problem is stated as a least-squaresSuppose that each variate column vecim)j(j1,y of X is
minimization where the texturg@ and the depth ma@ are  centered:X = (cj — Cj)je[Ln]- The covariance matrix of the
alternatively updated throughout. The latter is moreover columns €i)jequny Of X, i.e. the covariance matriCy of the
estimated in a coarse-to-fine framework that imposes aioertavariables of (;)icj1n. is the followingn x n real square sym-
regularity and robustness to the update. The PSF in Eq. 2 metric matrix:
modelled by a Gaussian function, whose standard deviation "
must be adjusted to produce satisfying results despiteative! Cy = 1 XX = 1 Z rtn (8)
insensitivity to this parameterization. During the optation m m &4 ’



2-D VAR Variance within a 2-D window (Sugimoto and Ichioka, 1985)
2-D TEN Sum over a 2-D window of the squared responses of the hodkantl vertical Sobel masks(Krotkov, 1987)
2-D OPT Sum over a 2-D window of the absolute real responses of aicapband-pass filter (Malik and Choi, 2008)
2.5-D DEC | Model-based 2.5-D deconvolution method (Aguet et al., 2008
3-D DCT-PCA Principal cqmpopent analysis of d&eients from discrete cosine transforms of ZBHD windows collected
along thez-direction (Mahmood et al., 2008)

Table 1: Designations, details and references of some eetaiate-of-the-art SFHEDF methods.

Theij-th element, proportional to the inner prodyct c;), cor-
responds to the covariance betwegrandc; if i # j or the
variance ofc; otherwise. The inertia of the columns ;) jej1n
is simply the trace o€x: | = tr(Cx).

4.3. Eigenvalues decomposition

5.1. Preliminary set definitions

Firstly, it is important to specify a couple of set definition
LetP(x,y) denotes a stack of single-voxels aty) throughout
the input 3-D imagel and along the-direction:

By ={(X.y.%) e D/ X =xy =y, pe [LN]}, (11)

The eigenvalues decomposition of the covariance matrix

Cx € R™" of the columns §;)jc[1n Of X satisfies the equa-
tion:

CxG = AG, ()]

with a diagonal matrixA € R™" and a matrixG € R™". The
non-negative diagonal elements;§i-jc[1n) Of A are the eigen-
values ofCx. The columns ofG = (g;)jc[1n) are the eigen-
vectors, such thatg;,, g;,) = 1 if j1 = jo, and(g;,, g;,) = 0
otherwise. The eigenbasB = (g;)jc[1n) forms a novel or-
thonormal basis for the rows;ficj1m of X. Each eigenvector
g, With k € [1, n] is associated with a particular eigenvalug
which reveals its considered amount among the inéntibthe
columns €;)jef1n). @s Well as the variance of the rows){c[1,m
projected onto itself:

1 4 18
A= 9Cx 'gy = %k (; ri tri] ‘g = m ;(ria g0’ (10)

Note thatl = tr(Cx) = tr(A) = Yr_; Ak By convention, the
ordering of the eigenvectors is determined by high-to-low-s
ing of the associated eigenvalues, with the highest eideawa
the upper left index of th& matrix. Hence, the first eigenvec-
tor g, accounts for a variancg as large as possible among the
inertial exhibited by €;);cj1.nj. The succeeding eigenvectors
then maximize their considered variances among the rengaini
inertia, in order and subject to the orthogonal condition.

5. 3-D multivariate statistical measurement of focus

Based on the mathematical theory just summarized, a new

3-D focus analysis designated as 3-D EIG is introduced.rit co
sists in several successive steps locally performed:

1.
2.
3.
4.

creation of a multivariate data matrix;
diagonalization of the data matrix (eigenbasis);
dimension reduction of the eigenbasis;

focus measurement.

whose cardinal numbef}3 is equal to the numbeX of sec-
tions of 7. Each voxel stacK3(x,y) materializes a particular
orthographic projection ray of the image formation process

Let B,(x, Y, 2) denotes the 2-D square-shaped neighborhood
of the voxel &, v, Z) of I defined by:

B (X,Y,2) =

(12)

{(X,y,Z) e D/Ix=X|VIly-yI<rz =12,
with v the maximum operator armdthe size of the neighbor-
hood. As a remark, it strictly lies on the 2-D image sectign
including the voxel X, y, 2) and is perpendicular to the projec-
tion ray‘B(x,y). Several other combinations, like disk-shaped
or rectangular-shaped, can be used for the selection a21bis
sectional neighborhood.

5.2. Multivariate data matrix

In the following, let us consider one orthographic projewti
ray B(x,y) at (x,y) within 7. TheliB, voxels of the sectional
neighborhoodB, (X, y, 2) of a particular voxelX, y, 2) of B(x,y)
can be firstly sorted in lexicographic order (see Fig. 3).ifiee
spective intensities can then result in a column vebtox, y, 2):

br(x, y, Z) = t (I(X,, y', Zl))(x’,y’,z’)e‘B,(x,y,z) . (13)
The whole collection of resulting neighborhood vectors
b (x,y, 2) of the voxels composing the stagk(x, y) forms the
multivariate matrixX(x, y) (see Fig. 3) as follows:

X(xy) = (br (.Y, z0)) (14)

pe[LN]
Thei-th row r; of X(x,y), referred to as thieth cross-sectional
response, is constituted by the sairth component of all or-
dered neighborhood vectdy (x,y,2). Alternatively, thej-th
columnc; of X(x,y), referred to as thgth sectional observa-
tion, forms a set off5, variates corresponding to all compo-
nents of the particular ordered neighborhood vebi¢x, y, z;)

(Fig. 3).

Each of them, among others, constitutes one of the following The inertial(x,y) of the sectional observations.g. the

subsections.

columns €;j)jcrng) of X(x,y) measures the dispersion of the
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Figure 3: lllustration of the creation of the multivariatetalanatrix X. In this simple example, the current voxel stakappears in green and every sectional
neighborhoodsB; of size 1 is bordered in red. Finally, the rows and the columithe built matrix X are the cross-sectional responses and the sectional

observations, respectively.

sectional observations f(x, y) in the Hilbert spac®N of di-

denotes the inertia of the sectional observation¥(f y) onto

mensionsN, whereN = #J3 is the number of sections of the this reduced eigenbasBk (x,Y): lg (X, Y) = Zle Akk(%,Y).

sequencel (Eq. 7). Remark that this Hilbert spa@®, in
which the cross-sectional responses. (he rows (;)icj1,ny) of
X(x,y) are defined, abstracts the image sequehcét can be
naturally regarded as an “image sequence space”

sequencel (see Fig. 3). Thus, each vectey of its canoni-
cal basisE = (gj)jeLny cOrresponds to a fierentz-index z;
throughoutl3(x, y).

5.3. Data matrix decomposition

First, the sectional observations X{x, y) are centered and
their N-by-N covariance matrixCx(x,y) is computed using

5.5. Focus measurement
Because of the low-pass filter action of the PSF, a defocused

whose e g ;
) 7 ) . N rt of the object surfac8 appears less contrasted on the ac-
dimension is referred to a fiiérent 2-D image section of the % ) pp

quired image than when it is focused: its correspondinglpixe
exhibit closer intensities, whose variance is thus lowerg(S
moto and Ichioka, 1985). Along an orthographic projectiay r
B, the variances of the sectional observations obviouslgimat
with the variation of their sharpness.

First let us introduce the measuremeti g, e)el| that is
the norm of the orthogonal projection of the eigenvecator
scaled by its respective eigenvaldeonto the canonical vec-

Eg. 8. Cx(xy) is then diagonalized using Eq. 9 so as to ob-tor e. It gauges the amount retained byamong the variance

tain its eigenvaluesi(j)i-jep1np in increasing order and its as-

sociated eigenvectoiS(x,y) = (g;)jepuny Of lengthsN. The
eigenvectors ;) cj1ny Of Cx(x,y) form a novel orthonormal
basis for the cross-sectional responseX (@€ y). This eigenba-

A accounted for byg. By regarding the novel reduced basis
Gk (% Y) = (Gkeqrk] Of B(X,Y), this amount (therefore among
the inertialg, (X, y)) for a particular canonical vect@, (with

p € [1,N]) then appears as a possible estimation of the de-

sisG(x.y) = (9;)je[zny Significantly describes them in a more gree of focus of its corresponding voxel ¥, z,) of index zp.

discriminating way than their canonical bagis= (&;)je[Ln]-

Indeed, the first eigenvectagy, accounts for as much of the in-

ertial1(x,y) exhibited by the sectional observations XX, y)
as possible. It indicates the direction of the Hilbert spate
in which cross-sectional responsesXtk, y) exhibits the maxi-

Throughout3(x, y), we propose as focus measurement the sum
of the orthogonal projection norms of the eigenvectors mak-
ing the novel reduced basBx(x,y) = (9kej1k) and scaled

by their respective eigenvalues®)xe[1k] ONto each canonical
vectorsey, yielding the 3-D focus degree meastieas follows:

mum variancel;. The succeeding eigenvectors, in the increas-

ing order and subject to their mutual orthogonal conditinax-

imize their variances among the remaining inertia. Thusstmo

of the (interesting) information of the inertigx, y) is consid-

ered by the largest eigenvectorg(associated with the largest

eigenvalues) (Joliie, 2002).

5.4. Dimension reduction

As the interesting inertia of the sectional observations o‘
X(x,y) is considered by only the first few eigenvectors, the
eigenbasis can be reduced to them, undergoing a dimensio

K
FOYZp) = ) (% YIKA(XY), epepll.  (15)

k=1

:

‘ 4 aril

ality reduction (Jollffe, 2002). The subset constituted by the

first K elgenvectprGK(x, y) = (gk)lfe[[l,K]] is thus regarded as a Figure 4: Generation of a simulated data sequence conte8giigages: (from
novel reduced eigenbasis, whétds a parameter whose value |eft to right) D5 classical Brodtaz texture (Brodatz, 1966)d-shaped artificial
adjustment will be discussed in the subsection 5.6 1 gix, y) depth map (ground truth) and the corresponding 3-D recartstitsurface.



r (in pixels) 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2-D VAR 0.66 | 0.56 | 0.47| 0.40| 0.44| 0.40| 0.40| 0.43| 0.46| 0.49| 0.52| 0.56 | 0.59 | 0.62
2-D TEN 3.87|241| 148| 093| 059| 047|044 | 045| 048| 0.51| 0.55| 0.59 | 0.63 | 0.68
2-D OPT 219 155|128 1.09| 095| 0.79| 0.66| 0.51| 0.41| 0.39| 0.40| 0.42 | 0.45| 0.48

3-DDCT-PCA | 6.47| 7.63| 831| 8 | 7.14| 6.06| 5.11| 4.62| 4.32| 4.26| 4.35| 433 | 421 | 4.26
3-DEIGK=1 | 1.37| 1.39| 1.26 | 1.03| 0.77 | 0.63| 0.54 | 0.47| 0.47| 0.49| 0.52| 0.54 | 0.57 | 0.59
3-DEIGK=10| 0.86 | 0.79| 0.62 | 0.59| 0.49| 0.41| 0.40| 0.43| 0.46| 0.49| 0.53| 0.56 | 0.60 | 0.64

[ 25-DDEC | 114 |

Table 2: Performances (RMSE) of the SEBF methods for the simulated data of Fig. 4, as a function oh&ighborhood size for the focus-based ones (unlike
the model-based 2.5-D DEC one). In absence of noise, therpafres of our 3-D EIG method are close to the others.

5.6. Noise robustness vs. focus resolution Thus, the threshold may be set so as to considem., the first

In this subsection, the adjustment of the paramétere- 90 per cent of the inerti&(x, y), excluding the last 10 per cent
ducing the considered eigenbaSg is discussed. As previ- highly related to noisy content.
ously mentioned, noisgdisturbances result in incorrect infor-
mation of sharpness.€. they generally constitute high-spatial- 5.7. Computational aspects
frequency components of an image, like focus cues) that mis-
leads the reconstruction process. Nevertheless, thidgmob
can be minimized in our proposed 3-D EIG analysis by elim-
inating the lower range of eigenvectors. Throughout the 3-
image7, a (well-contrasted) correct data has a larger influenc
in the eigenvalues decomposition than a naisturbance one.
Even if it sectionally appears more contrasted, this |afesrer-
ally affects a narrower range of depth than the one of interes
As aresult, its respective information is restricted todoarder

Because of its 3-D strategy, the proposed 3-D EIG method
incurs a higher computational cost than the 2-D reference
nes. Both covariance matrix calculation and diagonatinat
contribute most of its computational complexity and reguir
%(ﬂmz #9,) and O@B®) computations, respectively. Neverthe-
less, the only involved operations are matrix-vector rplitta-
{ions, easily implementable. Furthermore, a number of meth
0ds have been proposed to reduce the computational complex-

) ity of the second diagonalization step. Notably, Sharma and
eigenvectors (Fukunaga, 1990) and a small value of the parar|[3>)<;1Iiwal (2007) introdl?ced a fixed—poigt algorith?/n calleakE

eterK allows to reduce it in the focus measure. The lower thePCA whose estimated computational complexitv is of order
K parameter value is, the larger the noise robustness of Bur 3- > . putat ompiexity
EIG method is OB~ K). Finally, the process being carried out at each voxel
' . stack’3 independently, the computational cost can be substan-
In the same way, such a small valuekoiight, on the con- . L . ) .
tially minimized by employing a parallel implementationtb&

gg{g’ ﬁ:soreg(a)\:illtil)n:o;nr;tloerrl \?a]:lSeclgﬁr;?:(;teg:ésptohcg%gsgﬂa- 3-D EIG method, moreover with a GPU (Graphics Processing
) PP ' 9 Units) parallel optimized version (Andrecut, 2009).

surement sensitivity: the 3-D EIG measurement gains indocu
resolution but loses robustness to noldesturbances; the focus
resolution being the capacity of a focus measurement tmdist g vialidation on synthetic data

guish the poorest contrasted but focused data. So, there is a

trade-df associated with choosing the appropriate value of the | order to dispose of a ground truth for carrying out quan-
K parameter. However, i value set to 1 will be preferred in itative assessments of the results produced by the stateo
most usual cases, moreover necessarily tarnished by @6 ( art retained methods (summarized at Tab. 1) and our 3-D EIG
nandes et al., 2011b). The eigenvalues decompositiomsitri - approach, a first experiment using synthetic data is coeduct
cally results in eigenvaluesl)i-jej1ny that rapidly decreases gq, the theoretical robustness to several artificial adgitoises
and whose the first ong, accounts for the major part of the || pe particularly studied.

total inertial (Jolliffe, 2002). By first mapping an arbitrary texture onto an artificial depth

In addition, the parametef can be locally adjusted in an map (that constitutes the ground truth), a synthetic 3-B sur
adaptive way throughout the input sequedce For each or-  ace is constructed (Fig. 4). Notice that this surface togog

thographic rayB(x,y), K(xy) can be chosen so tha,g.the  ppy s relatively smooth, consistent with the ones encaedte
normalized inertidg, exhibited onto the reduced eigenbasisj, the dealt-with medical issue (see the next Section 7)erAft

G (x%.Y) = (9))jeqrr’ wards, a sequence of 2-D images is generated and collected by
K K using a discrete version of Eq. 1 for a finite range of succes-
o () = Iy _ Z//ikk(x y) = Ak(X, y) (16) sive locations of the object focal plane by constant steessiz
’ I(xy) & ’ = tr(A(X, y)’ Az To that end, the 2-D PSF is approximated by a 2-D Gaus-
sian function normalized to account for an uniform illumina
is under a fixed thresholsl€ [0, 1], such as: tion (e.g.a Kohler illumination), whose standard deviation is
— — proportional to the distance of defocés(Aguet et al., 2008).
K(xy) = argKmax{IGK(x, )/ le(XY) < S}' a7) Additive Gaussian or impulse noise are finally introducetth&
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Figure 5: Performances (RMSE) of SEBDF methods (if necessany,= 8 pixels) for the simulated data of Fig. 4 under various nowyditions. Our 3-D EIG
method clearly outperforms the other ones in presence of.noise

simulated image sequence to test the robustness of the aforgynthetic surface exhibits neither sharp depth slopes iser d
mentioned methods. Performances are measured in terms ofntinuities, these ones perform better with a rather laige

the root-mean-square-error (RMSE) metric with respeché t r. In absence of noise, the performance of the 3-D EIG method
ground truth (Gonzalez and Woods, 2008). is similar to the other ones, despite the performed 3-Deggat

Tab. 2 reports the performances of aforementioned a that tends to slightly enlarge the focus resolution. As etex

proaches on the synthetic image sequence of Fig. 4 withourFmark that a larger value & improves its performances for
noise, and as a function of the neighborhood sizfér the small sizeg by narrowing its focus resolution needing to dis-

ocus messurementd 20 VAR, 20 TEN, 2.0 0P, 30 _1D0USh some erla et oo wie pomogencous
DCT-PCA and 3-D EIG methods). In view of the fact that the 9 P gn-sp q Y )

(a) Section 1 (b) Section 10 (c) Section 20 (d) Section 30 (e) Section 40

Figure 6: Some individual 2-D image sections among the 40 comgdise image sequence 1. This sequence was imaged in stepg.af 4sing an Olympus BX
41 transmitted white-light microscope equipped witk10/ NA 0.25 objective in air immersion. Each image section is 18402 pixels, representing 728533
pm. Note that both bottom left corner and right edge regionenappear in-focus throughout the sequence. The markedhsegioB and C will be used as
sites for comparison of restored textures. The cellulamfragts dumped in the dilating biochemical solution are cleadiple on (a) and (b) as small dark spots,
e.g.throughout the region B.

) 1= WiV
‘_Yw_,r’_‘,% 2 o - (Q‘ B ad E
(a) Section 17 o (€) Section 33

Figure 7: Some individual 2-D image sections among the 35 comgadise image sequence 2. This sequence was imaged in stepgof dsing a Leica Laborlux
S transmitted white-light microscope equipped witkE0 / NA 0.25 objective in air immersion. Each image section is ¥3974 pixels, representing 759574
pm. The marked region will be used as a site for comparison ofnexbtextures. The contrast reversals are clearly visilele (gghlights of the marked region in
Fig. 9).
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Figure 9: lllustration of contrast reversalfexting both endothelial cell rims
and borders by zooming in on two regions of the image sequent€ig.or.

Distance of defocus 8z [um]
considered herein; both are described and illustratedgn @i
Figure 8: Castleman's OTF approximation (Castleman, 1996)ofnalated  and Fig. 7 respectively. The graft concavity is beforehaltetfi
x10/ NA 0.25, WD 105 mm objective as azfuncztlon of the dl.stance of defo- with a specific biochemical solution that dilates the intdicc
cuséz and for some radial components= /v + v of both spatial-frequency lar spaces between endothelial cell bodies (referred tels ¢

coordinates’y andvy. The OTF correctly acts as a low-pass filter whose cut- .
off frequency decreases when the distance of defézirereases. Particularly borders) (Sperllng, 1986). Thereby’ the cell borders areemo

note that the OTF, out of a certain degree of defocus, eshitigative reso- Opaque than the whole bodies and normally appear darker (re-
nances for some spatial-frequency ranges that are thusstbontrast rever-  mark that they are often poorly visible). SHEHDF concepts

sals in the acquired image. Agincreases, the OTF becomes increasingly os- appear here as adapted ways so as to reconstruct the endothe-
cn_llatory, with the con_trast reversal#fecting ever smaller spatl;a_l—frequenues. lial scene surfaces. Indeed through such conventionizdajpt
Finally, remark the slight OTF asymmetry from the focus positio . : ’ L
microscope, the inherent use of large magnificatipns NA
significantly limits the éfered depth-of-field and the performed
other 3-D focus measurement (3-D DCT-PCA), it shows theprojection tends towards an orthographic behaviour (aeckth
weakest performances: the previous discrete cosine tmansf fore an all-over constant magnification) since the workiisy d
mation does not allow the statistical analysis to biisiently  tance WD = |z,| is much larger than the profile thickness of
sensitive and discriminating. the observed surface. Nevertheless, such observatioes-nec
Secondly, SFEEDF methods are put to the test (still on sarily result in noisy and disturbed acquisitions. For eptem
the simulated image sequence of Fig. 4) with various adglitivsequence 1 is disturbed by some cellular fragments dumped in
noises: their performances are shown in Fig. 5. Accordinghe dilating solution (see Fig. 6). Both are even more damhage
to previous noise-free experiment, the sizef neighborhood- by intense contrast reversals (see Fig. 6, and more deegly, F
based focus measurements is here approximately adjusted 4ad its highlights in Fig. 9). This disturbance data thraugh
the trade-@ value of 8 pixels (see Tab. 2). In presence ofthe image sequence misleads the reconstruction process, pr
noise, the proposed 3-D EIG method withset to 1 clearly  venting from practical results.
outperforms the other ones. This robustness to noise isadue t The PSE can féectively cause contrast reversals for some
the adopted 3-D statistical strategy: the simultaneoustial  sjze ranges of textural contents, from bright to dark or vice-
cross-sectional cues throughout the image sequence Nf&kes {ersa hetween the observed scene surface and the acquired im
discrimination of in-focus positions “drowned” IN NOISeg® > 546 (Mahajan, 2001). In order to briefly investigate this-phe
ble. As expected, the lower tii€ parameter value is, the more nomenon, it would be appropriate to introduce the opticalsr
robust to noise the 3-D EIG method is. fer function (OTF) that is the Fourier transform of the PSF
and therefore transforms the blurring operation of Eg. 1 and
7. Application to 3-D reconstruction of human ex-vivo  EQ. 2 from convolution to multiplication. An OTF approxima-
corneal endotheliums tion according to Castleman’s formulation (Castleman 6) &9
depicted in Fig. 8. Hectively, the OTF becomes negative for
We now illustrate the potential of our 3-D EIG method on some distinct ranges of distances of defoémsthen causing
real acquisitions from the dealt-with medical issue: the 8- contrast reversals for some specific ranges of spatialénecy
construction of endothelial surfaces of human corneatgraf  components of the surface texture. This is the case for the

order to improve their quality control. endothelial cell borders that are normally darker than #ie c
_ . o bodies and look brighter on several distinct 2-D image sec-
7.1. Disturbed image acquisitions tions of the sequence (see Fig. 9). Remark that contrast-reve

Endotheliums of human corneal grafts are inspected by obsals are here rather emphasized and intense, notably leexfaus
serving the grafts from the backside using conventionatapt both sample over-illumination and transmitted light inragiln
transmitted light microscopy. Two sequences tagged 1 anel 2 amany cases, the cell body rims are extremely bright (and satu

10



(d) 2.5-D DEC (e) 3-D DCT-PCA (f) 3-DEIGK =1

Figure 10: Reconstructed depth maps for the image sequend®Xolorz-scale is:0 e e 29250 ¢ 585« « 8775 oo 146256 ¢ 1755 um. The 3-D EIG
depth map (f) distinctly contains fewer both blue spots aret-ogd regions caused by cellular fragments and contrastsale, respectively.

. S |
(a) 2-D VAR (b) 2-D TEN (c) 2-D OPT (d) 2.5-D DEC (e) 3-D DCT-PCA (f) 3-DEIGK =1

Figure 11: Details of the restored textures for the image esecgi 1 in the regions A, B, C of Fig. 6. Artifacts attributedbtmth cellular fragments and contrast
reversals are noticeably fewer on the details of the textu(® restored by the 3-D EIG method.

rated at the focus on the acquired image). At contrast raleers 7.2. Results and discussion

occurrence, they then lead to saturated bright cell boutetse We now discuss the results of state-of-the-art retainedmet
acquired image and, as for them alsteated, become darker s (summarized at Tab. 1) and our 3-D EIG approach on the
but narrower. couple of image sequences 1 and 2. Given their noisy and dis-

11
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Figure 12: Reconstructed depth maps for the image sequendeeXolorz-scale is:75e e ¢ 88e o o 101 o oo 140e ¢ @ 153um. The 3-D
EIG depth maps (f-h) distinctly contain fewer over-red spiégions caused by intense contrast reversals.
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Figure 13: Details of the restored textures for the image eecgi 2 in the marked region of Fig. 7. Red circles highlight sorigerecovered regions because of the
presence of contrast reversals, whereas the well-recmtsth ones indicated by blue circles. The reader can retéetoriginal images in Fig. 9 for comparison.

turbed appearances, only a robust S method will suc- surface reconstruction. If contrast reversals are preseeir
ceed in satisfactory reconstructing the endothelial segsaThe information is normally restricted to the second eigenvegs,
neighborhood-based focus measurements are performed withich then accounts for a much larger normalized eigenvalue
the large size of 10 pixels, because of both wide textural con- 1,. Thereby, the normalized inertids mainly shared between
tent and noisy aspect of the endothelial surfaces. Moreoveboth 1; (contrast normal sense) angl(contrast reversal). Oth-
this is here not prejudicial in view of the relative depthuleg-  erwise, the first eigenvecta; accounts for the major pavia

ity of the surface (see the results on the synthetic data ishowl; . Consequently, the adaptit&x, y) can be simply adjusted to

in Tab. 2). The reconstructed depth maps are shown in Fig. 10 ifﬁl(x, y) is under a certain threshosbr a much larger value,
and Fig. 12; the restored textures are highlighted in Figardd  e.g.10, otherwise. In this way, the 3-D EIG methofilers a ro-
Fig. 13. bust behaviour in presence of contrast reversals, wherpes i

Depth maps inferred by the proposed 3-D EIG method WithVi_deS a more sensitive focus resolution in all other cases (s
K set to 1 clearly exhibit fewer artefacts, anatomically ispo Fig. 12(h)).
sible as the endothelium surface is necessarily continutsus Restored textures are respectively highlighted on some cru
Fig. 10, it distinctly contains fewer underestimated (blard  cial regions in Figs. 11 and 13 for a better visibility. Thigif
overestimated (over-red) regions caused by cellular feagen  spection corroborates the above appreciation, as eaclewf th
and contrast reversals, respectively. In Fig. 12, it clead-  being intimately related to the associated depth map. %o, th
hibits fewer overestimated (over-red) spike regions arsgd di 3-D EIG method achieves strong improvements: its restored
continuities due to the presence of intense contrast ralgers textures are not too much damaged by disturbances, like-cell
throughout the sequence. As for the model-based 2.5-D DEGr fragments or contrast reversals.

method, res_ulting depth maps and the more numerous arte- r, cope with noisydisturbance issues, the 3-D EIG method
facts dama'gmg th.erp appear smoothed owing to the performe&ploits the fact that they generallyfect a narrower range of
coarse-to-fine optimization (see Subsection 3.2). depth than the one of interest (the true surface), in spgemwie-

In some regions, the 3-D EI& = 1 method slightly lacks times exhibiting the largest contrasts. This notice is qudgsi-
focus resolution and therefore accuracy, made visible wizen ble through a 3-D strategy within the image sequence. Heee, t
disturbance ariseg.g.at the top of the fold of the sequence 2 cellular fragments move continually and the OTF negatige+e
(Fig. 12(f)). As expected, a larger value kéf e.g.set to 10, nance causing the contrast reversals theoretically reeeahr-
increases the focus resolution but instead decreaseshibstro rower bandwidth (Fig. 8). Consequently, ngdigturbance data
ness (Fig. 12(g)). In this case, an adaptive parantefanction ~ has a lesser influence in the eigenvalues decompositioritiean
of the presence or not of contrast reversals should imptowe t one of interest and their respective information is pusiméal i
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Figure 14: 3-D reconstructions of the endothelial surfdoedoth image sequences 1 and 2 using the 3-D EIG method. Therjposolds are clearly visible and
the endothelial cell mosaics appear sharply as a whole, efaegome regions of (a) never in-focus throughout the imageeece 1 (see Fig. 6).

lower order eigenvectors. The validity of our 3-D EIG method is clearly demonstrated
Finally, 3-D EIG depth maps are interpolated and smoothe@dn both synthetic data and real acquisitions of the adddesse
using cubic B-splines, respective textures are deduce®@dnhd medical issue. The simulation experiment shows that with-
reconstructions of the surfaces are recovered by mappiag teout noise the 3-D EIG approach exhibits performances close t
ture images onto depth maps. Three-dimensional enddtheliatate-of-the-art methods, while it outperforms them irspreee
surface reconstructions for both image sequences 1 and 2 avénoise. Real acquisitions of organ-cultured corneal #émelo
shown in Fig. 14, thereby making the examination of the enliums present dificult noisydisturbance problems, for which

dothelial cell mosaics over wider regions possible. the improvements on account of the manifested robustness ar
clearly visible. Our 3-D EIG approach succeeds in reconstru
8. Conclusions ing the endothelial surfaces of human corneal grafts, ngakin

the examination of the cell mosaics over wider sharp regions

In this paper, we have introduced a new method designated g®ssible. We conceive automatically estimating endagheill
3-D EIG for 3-D image reconstructions of scene surfaces frongiensity in 2-D on the restored texture image (Gavet and Rinol
optical sectioning with a limited depth-of-field imagingssy 2008) and then correct it through topographical infornatié
tem. Through the common SFEDF concepts, the suggested the inferred depth map, yielding a 3-D estimation.
3-D EIG method succeeds in recovering both depth map and Despite the relative regularity of the studied surfacess it
texture of the observed surface, without needing any kndgde important to stress the fact that the 3-D-EIG approach is not
of the characteristics of the imaging system. By locally-per |imited to any specific kind or model of surfaces (Fernandes
forming multivariate statistical analyses within crosstonal et al., 2011b). Furthermore, while it is illustrated in tfentext
spatial windows, it originally exploits all cross-sectiifaxial)  of conventional optical microscopy, it is applicable to thiler
cues simultaneously to infer the observed surface thrautgho range of imaging systemsfering a limited depth-of-field, pro-

the image sequence, whereas state-of-the-art methodsaigne vided the acquired image sequence is previously registered
follow a sectional way. This adopted 3-D statistical siygtef-

fers a strong robustness that is an important constrairgaofsf

analysis and SFEDF concepts, more particularly when deal- ACknowledgments

ing with noisy and disturbed acquisitions as in the addiksse
medical issue concerning the 3-D reconstructions of huma&
organ-cultured corneal endotheliums.

In the proposed approach, theparameter enables to gauge
the noise robustness versus the focus resolution. Indesecakh
value of K confers a large robustness but causes a slight en-
largement of the focus resolution. Notice that tkiparameter References
value can be automatically and adaptively adjusted withén t Acard. . A 1684, Ontical sectioning mi Collumeh _
mage Sequence.g.by Smply mposing a ireshold on the A% . 196« Obles sectenis meeseony - Calaeiecure
normalized eigenvalues. As for the choice of the neighbmiho 191 519,
size parameter, there is a tradefbtoo. Large values raise Aguet, F., Van De Ville, D., Unser, M., 2008. Model-based-R.Beconvolution
the robustness but reduce the spatial resolution and setea for extended de_pth of field in brightfield microscopy. IEEE$actions on
Com.pUtatlonal.“me' On the contrary, smaller S,Izes Ingehe Ah:rr?aa(feMFf,ro((?:ﬁ;?r':g-éi g30é114hé$ﬁ§tlc approach for findbest focused
spatial resolution and decrease the computational tim@teut ~ shape. IEEE Transactions on Circuits and Systems for Videbritdogy
more dfected by noise and homogeneous textural regions. 15 (4), 566-574.

14

The authors wish to thank Pr. Gilles Thuret and Pr. Philippe
ain from University Hospital Centre, Saifitienne, France
for supporting this work and for providing pictures of human
organ-cultured corneal endotheliums.



Andrecut, M., 2009. Parallel GPU implementation of iterafR@A algorithm.
Journal of Computational Biology 16 (11), 1593-1599.

Asif, M., Choi, T.-S., 2001. Shape from focus using multilajeedforward
neural networks. IEEE Transactions on Image Processing 1)) {670—
1675.

Born, M., Wolf, E., 1991. Principles of optics - Electromaga¢heory of prop-
agation interference andftfiaction of light, 6th Edition. Pergamon Press,
New York, USA.

Brenner, J. F,, Dew, B. S., Horton, J. B., King, T., NeurathjR Selles, W. D.,
1976. Automated microscope for cytologic research: Prelinpiraalua-
tion. Journal of Histochemistry & Cytochemistry 24 (1), 10011

Brodatz, P., 1966. Textures: a photographic album fortarsd designers.
Dover Publications, New York, USA.

Burt, P., Adelson, E., 1983. The laplacian pyramid as a compzge code.
IEEE Transactions on Communications 31, 532-540.

Castleman, K. R., 1996. Digital image processing. Prentide Haper Saddle
River, NJ, USA.

Darrell, T., Wohn, K., 1988. Pyramid based depth from focns Aroceedings
of the IEEE Conference on Computer Vision and Pattern RetiogniAnn
Arbor, Ml , USA, pp. 504-5009.

Fernandes, M., Gavet, Y., Pinoli, J.-C., 2011a. Improvimgufomeasurements
using logarithmic image processing. Journal of Microscopg @), 228—
241.

Fernandes, M., Gavet, Y., Pinoli, J.-C., 2011b. Robustatiegm-focus by 3-D
multivariate statistical analyses. In: Proceedings of tHeH International
Conference on Image Processing. Brussels, Belgium, pp. 2118-

Forster, B., Van de Ville, D., Berent, J., Sage, D., Unser, 2004. Complex
wavelets for extended depth-of-field: a new method for thefuef multi-
channel microscopy images. Microscopy Research and Teah6ig(1-2),
33-42.

Frieden, B. R., 1967. Optical transfer of the three-dimemsli@bject. Journal
of the Optical Society of America 57 (1), 56—65.

Fukunaga, K., 1990. Introduction to statistical patteomition, 2nd Edition.
Academic Press, San Diego, CA, USA.

Gain, P., Thuret, G., Kodjikian, L., Gavet, Y., Turc, P. Haélllere, C., Acquart,
S., Le petit, J. C., Maugery, J., Campos, L., 2002. Automateithaige
analysis of stored corneal endothelium. British Journal phtbalmology
86 (7), 801-808.

Gavet, Y., Pinoli, J.-C., 2008. Visual perception baseamaattic recognition
of cell mosaics in human corneal endothelium microscopy imagesge
Analysis and Stereology 27, 53-61.

Gibson, S. F., Lanni, F., 1989. fiiaction by a circular aperture as a model
for three-dimensional optical microscopy. Journal of thei€tSociety of
America A 6 (9), 1357-1367.

Gonzalez, R. C., Woods, R. E., 2008. Digital image processng) Edition.
Prentice-Hall, Upper Saddle River, NJ, USA.

Horn, B., 2001. Robot vision, 13th Edition. The Massachissktstitute of
Technology Press, Cambridge, MA, USA.

Jolliffe, 1., 2002. Principal component analysis, 2nd Edition. rg@pei-Verlag,
New York, USA.

Krotkov, E., 1987. Focusing. International Journal of Cotepwision 1 (3),
223-237.

Mabhajan, V. N., 1998. Optical imaging and aberrations pany:geometrical
optics. SPIE Press, Bellingham, WA, USA.

Mabhajan, V. N., 2001. Optical imaging and aberrations pawélve ditraction
optics. SPIE Press, Bellingham, WA, USA.

Mahmood, M. T., Choi, T. S., 2008. A feature analysis apprd¢a@stimate 3D
shape from image focus. In: Proceedings of the IEEE IntevnatiConfer-
ence on Image Processing. Vol. 1-5. San Diego, CA , USA, pb-32219.

Mahmood, M. T., Choi, W. J., Choi, T. S., 2008. PCA-based mefoo®D
shape recovery of microscopic objects from image focus ussgyete co-
sine transform. Microscopy Research and Technique 71 (22);%07.

Mahmood, M. T., Shim, S. O., Choi, T. S., 2009. Shape from foirsguprin-
cipal component analysis in discrete wavelet transform.dcapingineering
48 (5), 057203.

Malik, A. S., Choi, T. S., 2007. Consideration of illuminatieffects and opti-
mization of window size for accurate calculation of depth maBD shape
recovery. Pattern Recognition 40 (1), 154-170.

Malik, A. S., Choi, T. S., 2008. A novel algorithm for estinatiof depth map
using image focus for 3D shape recovery in the presence oé nBatern
Recognition 41 (7), 2200-2225.

15

Meneses, J., Suarez, M. A., Braga, J., Gharbi, T., 2008 ner depth of field
using shapelet-based image analysis. Applied Optics 41.68);178.

Nayar, S. K., Nakagawa, Y., 1994. Shape from focus. |IEEE Saetions on
Pattern Analysis and Machine Intelligence 16 (8), 824-831.

Pels, E., Schuchard, Y., 1983. Organ-culture preservatidiuman corneas.
Documenta Ophthalmologica 56 (1-2), 147-153.

Pentland, A. P., 1987. A new sense for depth of field. IEEE Jaations on
Pattern Analysis and Machine Intelligence 9 (4), 523-531.

Pieper, R. J., Korpel, A., 1983. Image processing for exterd#pth of field.
Applied Optics 22 (10), 1449-1453.

Pradeep, K. S., Rajagopalan, A. N., 2007. Improving shapa foxzus using
defocus cue. IEEE Transactions on Image Processing 16 (2)-1925.
Sharma, A., Paliwal, K. K., 2007. Fast principal componentlysis using

fixed-point algorithm. Pattern Recognition Letters 28 (11)51-1155.

Sperling, S., 1986. Evaluation of the endothelium of humamod@orneas by
induced dilation of intercellular spaces and trypan bluae®es Archive for
Clinical and Experimental Ophthalmology 224 (5), 428-434.

Strang, G., 1980. Linear algebra and its applications, 2ditida. Academic
Press, San Diego, CA, USA.

Streibl, N., 1984. Depth transfer by an imaging-system. @p#icta 31 (11),
1233-1241.

Subbarao, M., Choi, T., 1995. Accurate recovery of threeedlisional shape
from image focus. IEEE Transactions on Pattern Analysis aadHihe In-
telligence 17 (3), 266-274.

Subbarao, M., Choi, T., Nikzad, A., 1993. Focusing techeg@ptical Engi-
neering 32 (11), 2824-2836.

Sugimoto, S. A., Ichioka, Y., 1985. Digital composition of inesgwith
increased depth of focus considering depth information. liidpOptics
24 (14), 2076-2080.

Thuret, G., Manissolle, C., Acquart, S., Garraud, O., Canfpogotat, L.,
Maugery, J., Gain, P., 2004. Urgent need for normalizatiocoofieal graft
quality controls in French eye banks. Transplantation J81(299-1302.

Thuret, G., Manissolle, C., Acquart, S., Le Petit, J. C., Ny, J., Campos-
Guyotat, L., Doughty, M. J., Gain, P., 2003. Is manual cogntihcorneal
endothelial cell density in eye banks still acceptable? French experi-
ence. British Journal of Ophthalmology 87 (12), 1481-1486.

Toet, A., 1989. Image fusion by a ratio of low-pass pyramidtéPatRecogni-
tion Letters 9 (4), 245-253.

Valdecasas, A. G., Marshall, D., Becerra, J. M., Terrerd,,2001. On the ex-
tended depth of focus algorithms for bright field microscopicrieh 32 (6),
559-569.

Vollath, D., 1987. Automatic focusing by correlative methodisurnal of Mi-
croscopy 147, 279-288.

Watanabe, M., Nayar, S. K., 1997. Telecentric optics foufoanalysis. IEEE
Transactions on Pattern Analysis and Machine Intelliget®c¢12), 1360—
1365.

Wee, C. Y., Paramesran, R., 2007. Measure of image sharpriegeigenval-
ues. Information Sciences 177 (12), 2533-2552.

Willson, R. G., 1994. Modeling and calibration of automatem lenses.
Tech. Rep. CMU-RI-TR-94-03, The Robotics Institute, CgiaeMellon
University, Pittsburgh, PA, USA.

Willson, R. G., Shafer, S. A., 1991. Dynamic lens compensafioractive
color imaging and constant magnification focusing. Tech. RAgU-RI-
TR-91-26, The Robotics Institute, Carnegie Mellon UniitgrsPittsburgh,
PA, USA.

Yun, J., Choi, T., 1999. Accurate 3-D shape recovery usimgeziwindow
focus measure. In: IEEE International Conference on ImageeBsing.
Vol. 3. pp. 910-914 vol.3.

Zhang, Z., Blum, R. S., 1999. A categorization of multiscaée@mposition-
based image fusion schemes with a performance study for aldigiteera
application. Proceedings of the IEEE 87 (8), 1315-1326.



	MedIA_LetterAccept.pdf
	MEDIA_final

