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Abstract

This paper deals with the stability problem for the planar linear switched
system ẋ(t) = u(t) A1 x(t) + (1− u(t)) A2 x(t) , x = (x1, x2)∈R2 where the real

matrices A1, A2∈R2 are Hurwitz and u(.): [0, +∞)� {0, 1} is a measurable
function. We give a Hurwitz like characterization of globally uniformly asymp-
totically stable planar switched systems. Another contribution of this paper is a
practical version of the main result in [NS] using real algebraic geometry tools.
This new approach give a Hurwitz like characterization of switched systems
which share a same strict or large common quadratic Lyapunov function and
simplify the main result in [BBM].

1 Introduction

Let A1 and A2 be two 2×2 real Hurwitz matrices. This paper deal with the problem
of finding necessary and sufficient conditions on A1 and A2 under which the switched
system (S):

ẋ(t)= u(t)A1 x(t) + (1−u(t))A2 x(t) , x = (x1, x2)∈R2

is globally uniformly asymptotically stable (GUAS), with respect to a measurable
switching functions u(.) : [0,∞)� {0, 1}.

This problem has been studied in [B] when both A1 and A2 are diagonalizable in
C and in [MB] when at least one among A1 and A2 is not diagonalizable. In both
cases the stability conditions are given in terms of coordinate-invariant parameters.
Unfortunately the parameters used in the diagonalizable case become singular in
the nondiagonalizable one and therefore the two cases were studied separately.

1. moussa.balde.math@ucad.edu.sn

2. dndiatta@aims-senegal.org

3. aminata@aims-senegal.org

1



More recently, in [BBM], the authors unify the previous studies by reformulating
them in terms of new invariants that permit to treat all cases at the same time.
Hence, they reduce the cases to be studied from 24 to 6 cases.

In this paper we reduce such cases to be studied from 6 to 1, therefore give
a Hurwitz like characterization of globally uniformly asymptotically stable planar
switched systems. Another contribution of our paper is a practical version of the
main result in [NS] using real algebraic geometry tools. This new approach give a
Hurwitz like characterization of switched systems which share a same strict or large
common quadratic Lyapunov function and simplify the main result given in [BBM].
In section 2 of this paper, we remind some classical notions concerning stability of
switched systems and introduce the Sturm-Habitcht theorem which will be very
useful. In section 3, we state our main result and present its proof thereafter.

2 Mathematical preliminaries

2.1 Stability notions

Notation 1. For δ > 0, let Bδ ⊂R2 be the unit ball of radius δ, centered in the
origin. We denote by U the set of measurable functions defined on [0, +∞) with
values in {0,1}. Given x0∈R2, we denote by γx0,u(.)(.) the trajectory of (S) starting

at x0 and corresponding to the control u(.).

Definition 2. [Unboundness]. The switched system (S) is unbounded at the origin
if there exist a initial position x0 and a control u(.) such that the trajectory γx0,u(.)(t)
goes to infinity as t goes to infinity.

Definition 3. [Uniform Stability] The switched system (S) is uniformly stable at
the origin if and only if for any ball Bε one can find a ball Bδ such that for any control
u(.)∈U and any initial position x0∈Bδ, the trajectory γx0,u(.)(.) stay in the ball Bε.

Definition 4. [Global Uniform Asymptotical Stability]. The switched system
(S) is globally uniformly asymptotically stable at the origin (GUAS for short) if it
is uniformly stable at the origin and globally uniformly attractive, i.e, for any balls
Bε and Bδ, for any initial position x0∈Bδ, for any u(.)∈U, there exist a time T > 0
such that γx0,u(.)(t) stay in the ball Bε for every t >T.

According to the following proposition, the stability properties of the switched
system (S) do not change if we allow measurable switching functions taking values
in [0, 1] instead of {0, 1}. We will name convexified switched system, the switched
system (S) with u(.) taking values in [0, 1].

Proposition 5. [MBC]. The switched system (S) and its convexified has the same
stability behavior. More precisely, the switched system (S) is GUAS (resp. uni-
formly stable or unbounded) if and only if its convexified is GUAS (resp. uniformly
stable or unbounded).
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Definition 6. [Common Lyapunov Function]. V : R2� R+ is a common
Lyapunov function (CLF for short) for the switched system (S) if V is continuous,
positive definite and strictly decreasing along non-constant trajectories of (S). If V
is a positive definite, continuous and non-increasing along non-constant trajectories
of (S) function then V is called a non-strict common Lyapunov function.

Definition 7. [Common Quadratic Lyapunov Function]. V :R2� R+ is a
common quadratic Lyapunov function (CQLF for short) for the switched system
(S), if it exists a 2× 2 positive definite symmetric matrix P such that :

1. V (x)= xT Px;

2. A1
T P + PA1 and A2

T P +P A2 are negative definite.

We recall that, for the switched system (S), the existence of a common Lyapunov
function is equivalent to GUAS (see for instance [DM]). Moreover the existence of
a non-strict Lyapunov function guarantees the uniform stability of (S).

2.2 A useful real algebraic geometry tool

Hereafter we recall some classical results from real algebraic geometry namely the
Sturm-Habitcht theorem which allow to determine precisely the number of real
roots, in any interval [a, b]⊂R of a given polynomial P ∈R[X]. This real algebraic
classical tool will be very useful to characterize switched systems which share a
common quadratic Lyapunov function.

Definition 8. [Sturm Sequence]. Let P ∈ R[X], (fi(X))i∈J0,sK a sequence of

element of R[X] and [a, b] an interval of R. By definition, (fi(X))i∈J0,sK is a Sturm
sequence associated to P on [a, b] if the following conditions are satisfied:

1. fs does not vanish on the interval (a, b];

2. For any i∈ J0, sK, α∈ [a, b] such that fi(α) = 0, we have fi−1(α) fi+1(α) < 0;

3. For any α ∈ [a, b] such that f0(α) = 0, there exist ε > 0 such that f0(α +
ε) f1(α + ε) < 0 and f0(α− ε) f1(α− ε) < 0

Definition 9. [Sign Variations]. Let A7 (a0,	 , an) ∈Rn+1. We call variation
of the sequence A, denoted by V (A) or V (a0,	 , an), the number of pairs (i, i + k)
with k > 1 such that ai ai+k < 0 and ai+r =0 for r ∈ J1, k − 1K.

Example 10. Consider the sequence A = (1, −1, 0, 5, 3, 3, −7), its variation
corresponds to the number of its sign variations hence V (A)= 3.

Let P ∈R[X] and (fi(X))i∈J0,sK a Sturm sequence associated to P on [a, b] and
consider the following function :

w:

{

R� N

y� V (f0(y),	 , fs(y))
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Theorem 11. [ BPR]The number of distinct real roots of P in (a, b] is equal to
w(a)−w(b).

For the effective computation of a Sturm sequence associated to P , the following
theorem provides an algorithm, based on the euclidean division algorithm, to com-
pute it.

Theorem 12. [Sturm-Habicht][ BPR]. Let [a, b] be an interval of R, P ∈R[X]
a square-free polynomial, (fi(X))i∈J0,sK a sequence of element of R[X] defined as
follow : f0 = P, f1 = P ′ and for i > 2, fi−2 = fi−1gi − fi with deg (fi) < deg (fi−1)
(−fi is the remainder of the euclidean division of fi−2 by fi−1) and s is the smallest
integer such that fs does not vanish in [a, b]. Then the sequence (fi(X))i∈J0,sK is a
Sturm sequence associated to P on [a, b].

3 Stability behavior of a switched planar system

Consider A1 and A2 two 2 × 2 real Hurwitz matrices. The paper deal with the
problem of finding necessary and sufficient conditions on A1 and A2 under which
the switched system (S):

ẋ(t)= u(t)A1 x(t) + (1−u(t))A2 x(t) , x = (x1, x2)∈R2

is globally uniformly asymptotically stable (GUAS) with respect to measurable
switching functions u(.) : [0,∞)� {0, 1}.

In this section we remind the notations and objects that was used in [BBM] to
state their stability result. We will use the same invariants to state our stability
results which extend the ones given in [BBM]. In the following the word invariant will
indicate any object which is invariant with respect to coordinate transformations.
As usual, we denote by det(X) and tr(X) the determinant and the trace of a matrix
X. If X ∈R2×R2 the discriminant is defined as:

δX7 tr(X)2− 4det (X) (1)

Given a pair of matrices X and Y , we define the following invariant:

Γ(X, Y )7 1

2
(tr(X) tr(Y )− tr(X Y )) (2)

Since A1 and A2 are suppose to be two real Hurwitz matrices, so we have:

det (A1),det (A2)∈R+
∗ and tr(A1), tr(A2)∈R−

∗ (3)

By means of these invariants the following invariants associated to (S) are defined:

τi: =































tr(Ai)

|δAi
|

√ , if δA1
δA2

� 0

tr(Ai)
∣

∣

∣δAj

∣

∣

∣

√ , if δA1
δA2

= 0,but δAj
� 0

tr(Ai)

2
, if δA1

= δA2
=0

(4)
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k7 τ1 τ2

tr(A1)tr(A2)
(2tr(A1tr(A2))− tr(A1)tr(A2)) (5)

∆7 4(Γ(A1, A2)
2−Γ(A1, A1)Γ(A2, A2)) (6)

R7 2Γ(A1, A2)+ ∆
√

2 det (A1)det(A2)
√ eτ1t1+τ2t2 (7)

where for i= 1, 2

ti: =



























π

2
− arctan

(

tr(A1)tr(A2)(kτi + τ3−i)

2 ∆
√

)

, if δAi
< 0

arctanh
(

2 τ1τ2 ∆
√

tr(A1)tr(A2)(kτi − τ3−i)

)

, if δAi
> 0

2 ∆
√

(

tr(A1A2)− 1

2
tr(A1)tr(A2)

)

τi

, if δAi
=0

(8)

We remind now the main stability result in [BBM] of Baldé, Boscain and Mason.

Theorem 13. [Balde-Boscain-Mason] Consider the switched system (S). Then:

1. if Γ(A1,A2)>− det (A1)det(A2)
√

and tr(A1A2)>−2 det (A1)det(A2)
√

then

the switched system (S) admits a CQLF.

If − det (A1)det(A2)
√

<Γ(A1,A2)6 det (A1)det(A2)
√

then the condition

tr(A1A2)>−2 det (A1)det(A2)
√

is automatically satisfied. As a consequence

the system admits a CQLF.

2. if Γ(A1,A2)< det (A1)det(A2)
√

then the switched system (S) is unbounded.

3. Γ(A1, A2) = − det (A1)det(A2)
√

then the switched system (S) is uniformly
stable but not GUAS.

4. if Γ(A1, A2) > det (A1)det(A2)
√

and tr(A1A2) 6 −2 det (A1)det(A2)
√

then the switched system (S) is GUAS uniformly stable (but not GUAS) or
unbounded respectively if

R< 1, R= 1, R> 1.

3.1 Statement of our main result

In this sub-section we state our mains results which characterizes completely GUAS
two-dimensional bilinear switched systems like (S). Note that the Theorem 15 Show
that the first condition of Theorem 13 is not only sufficient but also necessary.

Theorem 14. [Characterization of GUAS switched systems].The switched
system (S) is globally uniformly asymptotically stable (GUAS) if and only if:

Γ(A1, A2)∈
(

− det (A1)det(A2)
√

, det (A1)det(A2)
√

cosh (τ1t1 + τ2t2)
)

.
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Theorem 15. [Characterization of switched systems with a CQLF]. The
switched system (S) admits a common quadratic Lyapunov function if and only if

Γ(A1, A2)∈
(

− det (A1) det (A2)
√

,
1

2
tr(A1)tr(A2)+ det (A1)det(A2)

√

)

Along the next two sub-sections, we will give, among other, the complete proof
of our main result.

3.2 Strict or large common quadratic Lyapunov function

For shortness we will denote by:














d1: =det (A1), d2: =det (A2)
T1: =tr(A1), T27 tr(A2)
n7 tr(A1A2)
m7 Γ(A1, A2)

Since we have suppose A1 and A2 to be two real Hurwitz matrices, so we have:

d1, d2∈R+
∗ and T1, T2∈R−

∗ (9)

By means of these invariants we can define the following invariants associated to (S):

τi: =



























Ti

|δAi
|

√ , if δA1
δA2

� 0

Ti

∣

∣

∣δAj

∣

∣

∣

√ , if δA1
δA2

=0, but δAj
� 0

Ti

2
, if δA1

= δA2
= 0

(10)

k7 τ1 τ2

T1T2
(n− 2m) and λ7 t1 τ1 + t2τ2 (11)

R7 m + m2− d1d2

√

d1d2

√ eλ (12)

where for i= 1, 2

ti: =



























π

2
− arctan

(

T1T2(kτi + τ3−i)

4 m2− d1d2

√

)

, if δAi
< 0

arctanh
(

4 τ1τ2 m2− d1d2

√

T1T2(kτi − τ3−i)

)

, if δAi
> 0

4 m2− d1d2

√

(n − 2 m)τi
, if δAi

= 0

(13)

For any u∈ [0, 1], let D(u) and N(u) be the following expressions :

D(u)7 det (uA1 +(1−u)A2) and N(u)7 det (uA1 +(1−u)A2
−1)× d2

3.2.1 Systems with a strict common quadratic Lyapunov function

The following theorem of Narenda and Shorten, from [NS], provides a necessary and
sufficient condition for the existence of common quadratic Lyapunov function for
the switched system (S).

6 Section 3



Theorem 16. [Narenda and Shorten]. The switched system (S) admits a
common quadratic Lyapunov function if and only if for any u ∈ [0, 1], D(u) >

0 andN(u) > 0.

Lemma 17. [ BBM] For any u∈ [0, 1], we have :

D(u)= (d1 + d2− 2 m)u2 +2(m− d2)u + d2

N(u) = (d1d2 + 1−n)u2 +(n− 2)u +1

Thanks to the Theorem 16, we would like to express the necessary and sufficient
condition for the existence of a common quadratic Lyapunov function “for any u∈ [0,
1], D(u) > 0 and N(u) > 0” into necessary and sufficient condition with respect to
our chosen invariants. Since from Lemma 17 it appears that D(u) and N(u) are
polynomials, so one can use the Sturm-Habitcht Theorem 12 to study the sign
variations of D(u) and N(u) on [0, 1] and hence achieves our goal.

Study of the sign variations of D(u), u ∈ [0, 1]:

It is clear that D(0) = d2 and D(1) = d1. Since A1 and A2 are real Hurwitz
matrices, it appears that D(0),D(1)∈R+

∗ , so one can deduce directly the sign of D

on [0,1] by studying its number of real roots in [0,1]. The main rule is the following:
“D(u)> 0 on [0, 1] if and only if D has no root in [0, 1]”. And we use Sturm Habicht
theorem to count the number of real roots of D(u)=(d1+d2−2 m)u2+2(m−d2)u+
d2 , u∈ [0, 1]. Before we build a Sturm sequence associated to D(u) on [0, 1], let us
point out some important remarks.

Remark 18. If d1+d2−2m=0 i.e m=
d1 + d2

2
, then D(u)=2(m−d2)+d2. As D(0),

D(1)∈R+
∗ and D is affine, therefore we have D(u)> 0 for all u∈ [0, 1].

Suppose now that d1 + d2 − 2m � 0 and let f1(u) = D(u), f2(u) = D ′(u) =
2(d1 + d2 − 2 m)u + 2(m − d2). Using the euclidean division algorithm we obtain,

according to the Sturm-Habicht Theorem 12, f3(u)=
m2− d1d2

d1 + d2− 2m
as the opposite of the

remainder of the euclidean division of f1(u) by f2(u). Since f3(u) does not depend
on u, so in our case s =3.

Remark 19. The sign variations of D(u) in [0, 1] depends on the number of roots
of D in [0, 1] which depends, according to Theorem 11, on w(0) − w(1) where
w(y)= V (f1(y), f2(y), f3(y)).

• f1(0)= d2, f2(0) = 2(m− d2), f3(0)=
m2− d1d2

d1 + d2− 2m

• f1(1)= d1, f2(1) = 2(d1−m), f3(1)=
m2− d1d2

d1 + d2− 2m

We know that d1, d2 ∈R+
∗ . We we are going to construct a sign table that will

give us the sign of f2(0), f2(1) and f3(0)= f3(1) in terms of m. The particular values
of m that should appear in the sign table are:

d1, d2,
d1 + d2

2
,− d1d2

√
, d1d2

√

Stability behavior of a switched planar system 7



It will be necessary to order these values before giving the sign table. That is the
purpose of the next lemma.

Lemma 20.

1. If d1 < d2 then − d1d2

√
< d1 < d1d2

√
<

d1 + d2

2
< d2.

2. If d2 < d1 then − d1d2

√
< d2 < d1d2

√
<

d1 + d2

2
< d1.

3. if d1 = d2 then − d1d2

√
< d2 = d1d2

√
=

d1 + d2

2
= d1.

Proof. Suppose d1 < d2. Then ( d1

√
− d2

√
)2 = d1 + d2 − 2 d1d2

√
> 0, hence

d1d2

√
<

d1 + d2

2
. Since 0<d1<d2, we have d1+d2<2d2 and d1

2<d1d2, hence
d1 + d2

2
<d2

and d1 < d1d2

√
. The same arguments prove the second case. The third point is

obvious. �

For the sign table of D, we will consider the previous three cases for making
sure that we will not neglect or forget any case.

m −∞ +∞d2
d1 + d2

2
d1d2

√
d1- d1d2

√

d1 + d2− 2m

m2− d1d2

f3

f2(0)

f2(1)

f1

w(0)−w(1)

w(1)

w(0)

0++++ − −

−−+ + +0 0

−−+

+

−−+ 0 0

+0−−−−−

− − − −0

+++

+

+ + +

2 1 1 1 1 1 2 1 1 1 1

0 0 1 1 1 1 2 1 1 1 1

2 0001 0 0 0 0 0 0

+

Figure 1. The sign table of D when d1 < d2
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m −∞ +∞d1
d1 + d2

2
d1d2

√
d2- d1d2

√

d1 + d2− 2m

m2− d1d2

f3

f2(1)

f2(0)

f1

w(0)−w(1)

w(1)

w(0)

0++++ − −

−−+ + +0 0

−−+

+

−−+ 0 0

−0+++++

+ + + +0

+++

−

+ + +

2 1 1 1 1 0 0 1 1 1 1

0 0 1 1 1 0 0 1 1 1 1

2 0001 0 0 0 0 0 0

−

Figure 2. The sign table of D when d2 < d1
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+∞d1−d1−∞m

w(0)−w(1)

w(1)

w(0)

f1

f2(1)

f2(0)

f3

m2− d1
2

2(d1−m)

−

0++ −

+−0+ 0

0+ −

+

−

+

+

− − 0

0+

++

2 1 1 1 1

0 0 1 1 1

2 01 0 0

Figure 3. The sign table of D when d1 = d2

From the three previous sign tables we obtain the following proposition.

Proposition 21.

1. For all u∈ [0, 1], D(u) > 0 if and only if m >− d1d2

√
.

2. For all u∈ [0, 1], D(u) > 0 and there exists u0∈ (0, 1) such that D(u0) = 0 if

and only if m=− d1d2

√
.

3. D changes sign twice in [0, 1] if and only if m <− d1d2

√
.

Proof. From the previous sign tables, it appears that D has respectively, in [0, 1]

zero, one and two distinct roots when m >− d1d2

√
, m=− d1d2

√
and m <− d1d2

√
.

Since D(0),D(1)∈R+
∗ , it comes the announced results. �

Study of the sign variations of N(u), u ∈ [0, 1]:

In this paragraph, we achieve the sign variations study of N(u) = (d1d2 + 1 −
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n)u2+(n−2)u+1 in [0,1], by using the same strategy as in the previous sub-section.
Before we build the Sturm sequence associated to N(u) on [0, 1], let us point out
some important remarks.

Remark 22. If d1d2 − n + 1 = 0 i.e n = d1d2 + 1, then N(u) = (d1d2 − 1)u + 1. As
N(0) = 1 > 0, N(1) = d1d2 > 0 and N is affine, therefore we have N(u) > 0 for all
u∈ [0, 1].

Suppose now that d1d2 − n + 1 � 0 and let g1(u) = N(u), g2(u) = N ′(u) =
2(d1d2 − n + 1)u + (n − 2). Using the euclidean division algorithm we obtain,

according to the Sturm-Habicht Theorem 12, g3(u) =
n2− 4d1d2

4(d1d2−n+ 1)
as the opposite

of the remainder of the euclidean division of g1(u) by g2(u). Since g3(u) does not
depend on u, so in our case s =3.

Remark 23. The sign variations of N(u) in [0, 1] depends on the number of roots
of N in [0, 1] which depends, according to Theorem 11, on w(0) − w(1) where
w(y)= V (g1(y), g2(y), g3(y)).

• g1(0) = 1, g2(0) = (n− 2), g3(0)=
n2− 4d1d2

4(d1d2−n+ 1)

• g1(1) = d1d2, g2(1)= 2d1d2−n, g3(1)=
n2− 4d1d2

4(d1d2−n+ 1)

We know that d1, d2∈R+
∗ . We are going to construct a sign table that will give

us the sign of g2(0), g2(1) and g3(0) = g3(1) in terms of n. The particular values of
n that should appear in the sign table are:

2, 2d1d2, d1d2 + 1,−2 d1d2

√
, 2 d1d2

√

It will be necessary to order these values before giving the sign table. That is the
purpose of the next lemma.

Lemma 24.

1. If d1d2 < 1 then −2 d1d2

√
< 2d1d2 < 2 d1d2

√
< d1d2 + 1< 2.

2. If d1d2 > 1 then −2 d1d2

√
< 2< 2 d1d2

√
< d1d2 +1 < 2d1d2.

3. If d1d2 =1 then 2 = 2 d1d2

√
= d1d2 + 1 = 2d1d2.

Proof. Suppose d1d2 < 1. Since d1d2 > 0 then (d1d2)
2 <d1d2, hence 2d1d2 < 2 d1d2

√
.

Stability behavior of a switched planar system 11



Since ( d1d2

√
−1)2=d1d2−2 d1d2

√
+1>0 and d1d2<1, hence 2 d1d2

√
<d1d2+1<2.

The same arguments prove the second case. The third point is obvious. �

For the sign table of N , we will consider the previous three cases for making
sure that we will not neglect or forget any case.

n −∞ +∞2d1d2 + 12 d1d2

√
2d1d2-2 d1d2

√

d1d2−n + 1

n2− 4d1d2

g3

g2(0)

g2(1)

g1

w(0)−w(1)

w(1)

w(0)

0++++ − −

−−+ + +0 0

−−+

+

−−+ 0 0

+0−−−−−

− − − −0

+++

+

+ + +

2 1 1 1 1 1 2 0 1 1 1

0 0 1 1 1 1 2 0 1 1 1

2 0001 0 0 0 0 0 0

+

Figure 4. The sign table of N when d1d2 < 1
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n −∞ +∞2d1d2d1d2 + 12 d1d2

√
2-2 d1d2

√

d1d2−n + 1

n2− 4d1d2

g3

g2(1)

g2(0)

g1

w(0)−w(1)

w(1)

w(0)

0++++ − −

−−+ + +0 0

−−+

+

−−+ 0 0

−0+++++

+ + + +0

+++

−

+ + +

2 1 1 1 1 0 0 0 1 1 1

0 0 1 1 1 0 0 0 1 1 1

2 0001 0 0 0 0 0 0

−

Figure 5. The sign table of N when d1d2 > 1
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+∞2−2−∞n

w(0)−w(1)

w(1)

w(0)

g1

g2(1)

g2(0)

g3

n2− 4

2−n

−

0++ −

+−0+ 0

0+ −

+

−

+

+

− − 0

0+

++

2 1 1 0 1

0 0 1 0 1

2 01 0 0

Figure 6. The sign table of D when d1d2 = 1

From the three previous sign tables we obtain the following proposition.

Proposition 25.

1. For all u∈ [0, 1], N(u)> 0 if and only if n >−2 d1d2

√
.

2. For all u∈ [0, 1], N(u)> 0 and there exists u1∈ (0, 1) such that N(u1) = 0 if

and only if n=−2 d1d2

√
.

3. N changes sign twice in [0, 1] if and only if n <−2 d1d2

√
.

Proof. From the previous sign tables, it appears that N has respectively, in [0, 1]

zero, one and two distinct roots when n>−2 d1d2

√
, n=−2 d1d2

√
and n<−2 d1d2

√
.

Since N(0), N(1)∈R+
∗ , it comes the announced results. �

We remind in the next proposition the expression of the Theorem 15 and give
its proof.

Proposition 26. [Characterization of switched systems with a CQLF]. The
switched system (S) admits a common quadratic Lyapunov function if and only if

m∈
(

− d1d2

√
,
1

2
T1T2 + d1d2

√ )
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Proof. From Theorem 16, the switched system (S) admits a common quadratic
Lyapunov function if and only if for all u ∈ [0, 1], D(u) > 0 and N(u) > 0. From
Proposition 21 and Proposition 25:

for allu∈ [0, 1]D(u) > 0 if and only if m >− d1d2

√

for allu∈ [0, 1] N(u) > 0 if and only if n >−2 d1d2

√

Since m =
1

2
(T1T2−n), it comes the announced result. �

3.2.2 Systems with a large common quadratic Lyapunov function

We will need the following lemma, from [NS], to prove the Proposition 28 which
characterize switched system (S) with a non-strict common quadratic Lyapunov
function.

Lemma 27. [ NS]. Let A∈R2×2 be a Hurwitz matrice and consider the linear time
invariant systems :

SA: ẋ = A x

SA−1: ẋ = A−1 x

Then, any Lyapunov function for SA of the form V (x)=xT P x, is also a Lyapunov
function for SA−1.

Proposition 28. [Switched systems with a NCQLF]. The switched system (S)
admits a non-strict common quadratic Lyapunov function if

m =− d1 d2

√
or m =

1

2
T1T2 + d1d2

√

Moreover, the switched system (S) is GUAS when m=
1

2
T1T2+ d1d2

√
and not GUAS

when m =− d1d2

√
.

Proof. Suppose m=− d1d2

√
. According to Proposition 21, we have: for all u∈ [0,1],

D(u) > 0 and there exists an unique u0 ∈ (0, 1) such that D(u0) = 0. Therefore the
system (S) cannot be GUAS. Because D(u0) = det (u0A1 + (1− u0)A2) = 0 implies
one of the eigenvalues of B =u0A1 +(1−u0)A2 is equal to zero and the other one is
equal to tr(B) = tr(u0A1 + (1−u0)A2) = u0 tr(A1) + (1−u0) tr(A2) < 0 since A1 and
A2 are real Hurwitz matrices. Hence, if we consider the control function u(t)7 u0, for
all t∈R+, it appears that the convexified of the switched system (S) is not GUAS,
so according to Proposition 5 the switched system (S) is not GUAS. It remains
now to prove that, for m = − d1d2

√
, the switched system (S) admits a non-strict

common quadratic Lyapunov function. For this task we refer the reader to [BBM]
where such a non-strict common quadratic Lyapunov function is given.

Suppose now m =
1

2
T1T2 + d1d2

√
. The trick here is to consider the following

switched system (S∗):

ẋ(t)=u(t)A1 x(t) + (1−u(t))A2
-1x(t), x= (x1, x2)∈R2

Stability behavior of a switched planar system 15



If we plane to analyze (S∗) as we did with (S) in the previous sub-section, we
shall study the sign variations of D∗(u) 7 det (u A1 + (1 − u)A2

−1) and N∗(u) 7
det (uA1 +(1− u)A2)× d2. The key point is that for all u∈ [0, 1]:

D∗(u)= d2
−1×N(u)

N ∗(u)= d2×D(u)

Since m=
1

2
T1T2 + d1d2

√
corresponds, according to Proposition 25, to the existence

of an unique u1 ∈ (0, 1) such that N(u1) = 0, so for m =
1

2
T1T2 + d1d2

√
we have

D∗(u1) = 0. So by the same analyze as in the first part of the current proof we
obtain that, when m =

1

2
T1T2 + d1d2

√
, the switched system (S∗) is not GUAS but

admits a non-strict common quadratic Lyapunov function (the one given in [BBM]
adapted to the invariants of (S∗)). Let us call V such a non-strict common quadratic
Lyapunov function. It comes that V is a non-strict quadratic Lyapunov function
for SA1

and for SA
2

−1. Hence, according to Lemma 27, V is non-strict quadratic
Lyapunov function for SA2

. In conclusion if V is a non-strict quadratic Lyapunov
function for SA1

and for SA2
, so when m=

1

2
T1T2 + d1d2

√
, V is a non-strict common

quadratic Lyapunov function for the switched system (S). It remain to prove that
when m=

1

2
T1T2+ d1d2

√
the switched system (S) is GUAS to finish the proof. This

task will be achieve in the next sub-section (more precisely in Remark 32). �

3.3 Global uniform asymptotic stable switched systems

The object of this sub-section is to establish the results announced in Theorem 14
We recall partially Theorem 13 from [BBM] in the next proposition.

Proposition 29. [Balde-Boscain-Mason] Consider the switched system (S).
Then:

1. if m <− d1d2

√
, then the switched system (S) is unbounded,

2. if m > d1d2

√
and n 6 −2 d1d2

√
then the switched system (S) is GUAS,

uniformly stable (but not GUAS) or unbounded respectively if

R< 1, R= 1, R> 1.

We recall that m=
1

2
(T1T2−n). So n6−2 d1d2

√
if and only if m>

1

2
T1T2+ d1d2

√
.

Since T1, T2 ∈R−
∗ (because A1and A2 are real Hurwitz matrices), the second point

of the previous proposition can be reformulate simply as follow:
if m >

1

2
T1T2 + d1d2

√
then the switched system (S) is GUAS, uniformly stable

(but not GUAS) or unbounded respectively if

R< 1, R= 1, R> 1.

We recall that R7 m + m2− d1d2

√

d1d2

√ eλ. Hence m2− d1d2

√

= e−λR d1d2

√
−m and by

squaring this last equality we obtain :

m2− d1d2 = d1d2 e−2λR2− 2e−λRm d1d2

√
+m2
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Therefore

m= d1d2

√ (

e−λR2 + eλ

2R

)

(14)

In the followings, we study the variations of m with respect to the parameter R.
Before we start this study, let us proof the following lemma which will be very useful.

Lemma 30. For m >
1

2
t1t2 + d1d2

√
we have the following relations:

1. λ7 τ1t1 + τ2t2∈R−.

2. R> eλ.

Proof. From the relations (3) and (4), it appears τ1, τ2∈R−. Let us now prove that
t1 > 0 and t2 > 0. We recall that:

ti: =



























π

2
− arctan

(

T1T2(kτi + τ3−i)

4 m2− d1d2

√

)

, if δAi
< 0

arctanh
(

4 τ1τ2 m2− d1d2

√

T1T2(kτi − τ3−i)

)

, if δAi
> 0

4 m2− d1d2

√

(n − 2 m)τi
, if δAi

= 0

k7 τ1 τ2

T1T2
(n− 2m)

Since for any x ∈ R, arctan (x) ∈
(

−π

2
,

π

2

)

, it comes ti > 0 if δAi
< 0. As m >

1

2
T1T2 + d1d2

√
, so n − 2m 6 n − T1T2 − 2 d1d2

√
. We have m =

1

2
(T1T2 − n), hence

n − 2m 6 −2(m + d1d2

√
) < 0. Since τi 6 0, it comes that ti > 0 if δAi

= 0. Since
n−2m<0, it appears that k<0, hence (kτi−τ3−i)>0. Knowing that arctanh(x)>0
when x > 0, it comes ti > 0 if δAi

> 0. This finish the proof of λ7 τ1t1 + τ2t2 ∈R−
when m>

1

2
T1T2 + d1d2

√
. Now let us prove by contradiction that R> eλ. If we had

R < eλ, we would have 0 <
m + m2− d1d2

√

d1d2

√ eλ < eλ. Thus
(

m + m2− d1d2

√

)

2
< d1d2.

Therefore (m2 − d1d2) < −m m2− d1d2

√

, so m2− d1d2

√

< m that is impossible

because m >
1

2
T1T2 + d1d2

√
> 0. �

Now let us study the sign variations of m with respect toR. AsR is use in [BBM]
to inspect the behavior when m>

1

2
T1T2+ d1d2

√
>0, then we can consider deservedly

that R>eλ, according to Lemma 30. Therefore the sign variations of m with respect
to R will be studied in [eλ,+∞). If we differentiate m with respect to R we obtain:

dm

dR = d1d2

√ (

e−λR2− eλ

2R2

)

(15)

Hence dm

dR =0 if and only if R=−eλ or R= eλ. According to Lemma 30 λ∈R−, so
we obtain the following table:

Stability behavior of a switched planar system 17



R

dm

dR

m

eλ 1

d1d2

√

0

+∞

+∞

d1d2

√
cosh(λ)

+

Figure 7. Variations of m with respect to R

It comes out from this table that for m >
1

2
T1T2 + d1d2

√
:

R< 1 ⇔ m < d1d2

√
cosh(λ)

R= 1 ⇔ m = d1d2

√
cosh(λ)

R> 1 ⇔ m > d1d2

√
cosh(λ)

So we can reformulate the second point of the Proposition 29 into the following
proposition.

Proposition 31. Consider the switched system (S). Then:

1. If m ∈
[ 1

2
T1T2 + d1d2

√
, d1d2

√
cosh(λ)

)

then the switched system (S) is
GUAS.

2. If m = d1d2

√
cosh(λ) then the switched system (S) is uniformly stable (but

not GUAS).

3. If m > d1d2

√
cosh(λ) then the switched system (S) is unbounded.

Remark 32. The first point of the previous proposition, in the particular case when
m=

1

2
T1T2 + d1d2

√
, complete the remaining part of the proof of the Proposition 28.

If we gather the Theorem 15, Proposition 16 and Proposition 31 we obtain our
main result and its corollaries:

Theorem 33. [Characterization of GUAS switched systems].The switched
system (S) is globally uniformly asymptotically stable (GUAS) if and only if:

Γ(A1, A2)∈
(

− det (A1)det(A2)
√

, det (A1)det(A2)
√

cosh (τ1t1 + τ2t2)
)

.
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Corollary 34. The switched system (S) is uniformly stable not GUAS if and only if:

Γ(A1, A2)=− det (A1)det(A2)
√

or Γ(A1, A2)= det (A1)det(A2)
√

cosh(τ1t1 + τ2t2).

Corollary 35. The switched system (S) is unbounded if and only if:

Γ(A1, A2)<− det (A1)det(A2)
√

or Γ(A1, A2)> det (A1)det(A2)
√

cosh(τ1t1 + τ2t2)
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