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§1. Introduction

Minimal surfaces and surfaces with constant mean curvature (CMC)
have fascinated differential geometers for over two centuries. Indeed
these surfaces are solutions to variational problems whose formulation is
elegant, modelling physical situations involving soap films and bubbles;
however their richness has not been exhausted yet. Advances in the
understanding of these surfaces draw on complex analysis, theory of
Riemann surfaces, topology, nonlinear elliptic PDE theory and geometric
measure theory. Furthermore, one of the most spectacular developments
in the past twenty years has been the discovery that many problems in
differential geometry – including those of minimal and CMC surfaces –
are actually integrable systems.

The theory of integrable systems developed in the 1960’s, beginning
essentially with the study of a now famous example: the Korteweg-de
Vries equation, ut + 6uux + uxxx = 0, modelling waves in a shallow flat
channel1. In the 1960’s mathematicians noticed the exceptional proper-
ties of the KdV equation: existence of solitary waves that “superpose”
almost linearly, and an infinite number of conserved quantities. From
these observations, C. Gardner, J. Greene, M. Kruskal and R. Miura
[12] showed in 1967 that this equation could be solved completely by
reducing it to a linear one, thanks to a rather sophisticated nonlinear
transformation called inverse scattering. In 1968, P. Lax [23] gave an

Received December 27, 2000.
Revised February 8, 2002.
1Earlier already, in 1955, Fermi, Pasta and Ulam had unexpectedly dis-

covered the soliton phenomenon (to their great surprise) while simulating a
one-dimensional model in statistical mechanics on the Los Alamos computer.
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interpretation of their method by noticing that the KdV equation can
be rewritten as the evolutionary equation for an operator L (in fact

L = − d2

dx2 + u), namely Lt = [A,L]. In particular the spectrum of L
is time independent, explaining the infinite number of conserved quan-
tities. That was the starting point for a series of increasingly deeper
observations on KdV, formulated notably by the Japanese and Russian
schools, aiming at interpreting its miraculous properties: Hamiltonian
structure, explicit formulation of some of its solutions (called finite gap
solutions) through techniques from algebraic geometry, relation with dy-
namical systems on Lie algebras, and so on. . . For all these properties
the KdV equation deserves the name of completely integrable system.
Later on other equations coming from physics were identified as com-
pletely integrable systems: the one dimensional nonlinear Schrödinger,
Toda field equation, and so on. . . Today however differential geometry
seems to be the field where most of the completely integrable systems are
discovered (see [33] for instance). We will see in the following some ex-
amples stemming from problems in Riemannian geometry. Other very
interesting examples are linked to geometrical problems (but inspired
by physics) in four dimensions: self-dual Yang-Mills connections, and
self-dual Einstein metrics (the starting point being Penrose’s theory of
twistors).

The intrusion of integrable systems in differential geometry may
seem a recent discovery, however it is not so, since a “prehistory” of
completely integrable systems in geometry occurred one century ago.
A number of clues had been spotted by nineteenth century geometers:
conjugate families of CMC surfaces discussed by O. Bonnet in 1853 [5],
the Enneper-Weierstrass representation for minimal surfaces (see below),
construction of constant mean or constant Gaussian curvature surfaces
by A. Enneper and his students in 1868 and 1880 [10, 8, 22, 24], con-
struction of soliton-like solutions through iteration of Bäcklund trans-
formations [3, 25]. A synthesis can be found in the book of G. Darboux
[7]. Of course the geometers of that period did not have the point of
view we have today, which is based on concepts from Lie algebra theory.

In this survey we wish to present this theory in an accessible way,
through the examples of minimal surfaces, CMC surfaces and harmonic
maps or Willmore surfaces. We will then present a more recent example,
discovered by both authors [17, 18, 19].
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§2. Minimal surfaces and CMC surfaces

Let m be a point of an oriented surface Σ ⊂ R
3. We define the

principal curvatures at m as follows. Consider the one-parameter family
of affine planes P through m, perpendicular to the tangent plane to Σ
at m, TmΣ. Any such plane P cuts Σ along a (planar) curve and we let
k(P ) be the (oriented) curvature of that curve at m, obviously dependent
on P . As P revolves around the normal line at m, k(P ) oscillates; its
minimal and maximal values are called principal curvatures and denoted
by k1 ≤ k2. If k(P ) is independent of P , i.e. k1 = k2, the point m is
called umbilic. The quantity H := 1

2 (k1 + k2) is the mean curvature of
Σ at m and the product K = k1k2 is the Gaussian curvature.

A minimal surface satisfies by definition H = 0 at all points. The
reason behind the name is that such surfaces are stationary with respect
to the area functional A(Σ) =

∫

Σ
da (not necessarily minimizing2). A

very simple experimental procedure for producing minimal surfaces con-
sists of dipping a closed metal wire in soap and water: when taken out of
the liquid, the wire bounds a soap film, materializing a minimal surface.

Constant mean curvature surfaces are by convention those surfaces
with constant non-zero mean curvature H, as opposed to minimal sur-
faces.

Using conformal coordinates turns out to be a very convenient way
of studying the properties of these surfaces. Indeed, for any simply
connected immersed surface Σ there exists a conformal parametrization
X : Ω → R

3, where Ω is an open subset of C, i.e.

|∂xX|2 − |∂yX|2 − 2i〈∂xX, ∂yX〉 = 0 ,

and X(Ω) = Σ. Let u map z = x + iy ∈ Ω to the oriented unit normal
vector at X(z):

u(z) :=
∂xX × ∂yX

|∂xX × ∂yX|
,

where × denotes the cross product in R
3. The map u is called the

Gauss map. Then the conformality assumption implies that the first
and second fundamental forms take the following form:

(1) I :=

(

|∂xX|2 〈∂xX, ∂yX〉
〈∂xX, ∂yX〉 |∂yX|2

)

= e2ω

(

1 0
0 1

)

2However stationary surfaces will always be minimizing for small pertur-
bations in a small enough compact subset.
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and

(2) II :=

(

〈(∂x)2X, u〉 〈∂x∂yX, u〉
〈∂x∂yX, u〉 〈(∂y)2X, u〉

)

= e2ω

(

H + a b
b H − a

)

with ω, H, a, b are real-valued functions. H is exactly the mean curva-
ture. In particular

∆X = 2H∂xX × ∂yX.

Thus all minimal surfaces (respectively, CMC surfaces) are locally de-
scribed by the conformal immersions X such that ∆X = 0 (respectively,
∆X = 2H0∂xX × ∂yX with H0 a non-zero constant). As we will see,
this way of stating the geometric problem is quite productive.

2.1. Minimal surfaces

The set of equations

(3) |∂xX|2 − |∂yX|2 − 2i〈∂xX, ∂yX〉 = 0 and ∆X = 0

may be solved locally by introducing a complex-valued function

f := ∂zX =
1

2
(∂xX − i∂yX)

then (3) becomes

f2 = 0 and ∂z̄f = 0 ,

since ∂z̄∂z = 1
4∆. (f2 denotes the dot product (f1)2 + (f2)2 + (f3)2.)

The solution to these two equations is given by

(4) f =













i
2 (w2 − 1)

1
2 (w2 + 1)

iw













h ,

where w (respectively, h) is some meromorphic (respectively, holomor-
phic) function from Ω to C. Thus

(5) X(z) = C + Re

[∫ z

z0

f(ζ)dζ

]

,

with C a constant in R
3 and z0 a fixed base point in Ω. This is the

Enneper-Weierstrass representation formula.



4 F. Hélein and P. Romon

The reader may observe the following fact: locally, any minimal
surface is part of (continuous) one-parameter family of minimal surfaces
given by

(6) Xλ(z) = C + Re

[

λ−2

∫ z

z0

f(ζ)dζ

]

, λ ∈ S1 ⊂ C
⋆.

This family is called the conjugate family3 of the surface Σ.

2.2. Constant mean curvature surfaces

Even before Enneper and Weierstrass discovered their representa-
tion formula, O. Bonnet [5] found that minimal surfaces and CMC sur-
faces could be deformed, giving birth to conjugate families. This relies
on the fact that the immersion X can be reconstructed with the mere
knowledge of the first and second fundamental forms of X. More specifi-
cally, given four real-valued functions ω, H, a, b, there exists a conformal
immersion X whose first and second fundamental forms are given by
(1) and (2), under the condition that ω, H, a, b satisfy some compatibil-
ity relations: the Gauss-Codazzi equations4. The crucial observation is
that (ω, H, a, b) satisfies the Gauss-Codazzi equations if and only if the
deformed data (ω, H, aλ, bλ) does, where

aλ − ibλ := λ−2(a − ib) for all λ ∈ C
⋆ .

Hence starting with a conformal immersion X with constant or zero
mean curvature, and deforming the first and second fundamental forms
I and II by substituting (ω, H, aλ, bλ) for (ω, H, a, b), one gets tensors
Iλ and IIλ on Ω that are the first and second fundamental forms of a
new conformal immersion Xλ of constant or zero mean curvature. One
constructs that way the conjugate family of X, which coincides with the
Enneper-Weierstrass formula (6) in the case of minimal surfaces.

2.3. Changing viewpoint: the moving frame

We revisit here the construction of the conjugate family of a constant
or zero mean curvature surface. Before doing this, let us make a detour
into the theory of moving frames. Consider the projection p from the

3It depends only on the surface, not on the choice of the parametrization
X.

4If H = constant, the Gauss-Codazzi equations are: ∂

∂z̄

`

e2ω(a − ib)
´

= 0

and ∆ω + e2ω(H2 − a2 − b2) = 0.
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group of affine isometries of R
3, SO(3)⋉R

3, to R
3, defined by (R, t) 7→ t.

Recall that SO(3) ⋉ R
3 can be identified with the group of four by four

real matrices of type

(

R t
0 1

)

with R ∈ SO(3) and t ∈ R
3. We say

that F lifts X if p ◦ F = X:

SO(3) ⋉ R
3

F

ր ↓ p

Ω
X
−→ R

3

If Ω is a simply connected domain in C we can always lift X. A moving
frame (or Darboux frame) is a lift F : Ω −→ SO(3)⋉R

3 of the following
form:

F (z) :=

(

e1(z) e2(z) u(z) X(z)
0 0 0 1

)

where, for z ∈ Ω, (e1(z), e2(z)) is any positively oriented orthonormal
basis of Tu(z)S

2 ≃ TX(z)Σ, smoothly varying with z. The simplest
(but not the only) way to define (e1(z), e2(z)) is through coordinates:
e1 = e−ω∂xX, e2 = e−ω∂yX, where e2ω := |∂xX|2 = |∂yX|2. Notice
that the triple (e1, e2, u) is a positively oriented orthonormal basis of R

3

and as such can be identified with an element of SO(3).

As seen above, X is tied to its conjugate family, hence u is tied to
the family of Gauss maps uλ of Xλ. We set

e1,λ − ie2,λ := 2λe−ω ∂Xλ

∂z
.

obtaining thus a deformation Fλ of F defined by

Fλ(z) =

(

φλ(z) Xλ(z)
0 1

)

, where φλ =
(

e1,λ e2,λ uλ

)

.
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Since Fλ is group-valued, we may compute its Maurer-Cartan form
Aλ := F−1

λ dFλ and find

Aλ = λ−1









0 0 〈∂zu, e1〉 〈∂zX, e1〉
0 0 〈∂zu, e2〉 〈∂zX, e2〉

−〈∂zu, e1〉 −〈∂zu, e2〉 0 0
0 0 0 0









dz

+ ⋆ dω









0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









+λ









0 0 〈∂z̄u, e1〉 〈∂z̄X, e1〉
0 0 〈∂z̄u, e2〉 〈∂z̄X, e2〉

−〈∂z̄u, e1〉 −〈∂z̄u, e2〉 0 0
0 0 0 0









dz̄.

Remarkably enough, Aλ splits into three pieces λ−1A′
1+A0+λA′′

1 which
can be easily read off from the original Maurer-Cartan form A = F−1dF
of F . Indeed

F−1dF =









0 − ⋆ dω 〈du, e1〉 〈dX, e1〉
⋆dω 0 〈du, e2〉 〈dX, e2〉

−〈du, e1〉 −〈du, e2〉 0 0
0 0 0 0









.

We deduce a more direct way of constructing the conjugate family of X,
namely start by lifting X to F : Ω −→ SO(3) ⋉ R

3, split its Maurer-
Cartan form A into two pieces

A0 = ⋆dω









0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









and A1 := A−A0, then split again A1 = A′
1 +A′′

1 where A′
1 := A1(

∂
∂z )dz

and A′′
1 = A′

1 := A1(
∂
∂z̄ )dz̄. Then the Maurer-Cartan form of Fλ is

just Aλ = λ−1A′
1 + A0 + λA′′

1 . Now given such an Aλ, one may ask
whether a corresponding map Fλ : Ω −→ SO(3) ⋉ R

3 exists, such that
Aλ = F−1

λ dFλ. The answer for a simply connected domain Ω is positive
if and only if

(7) dAλ + Aλ ∧ Aλ = 0.
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However this equation turns out to be exactly equivalent to these two
conditions: A = F−1dF and X is a constant or zero mean curvature
immersion.

2.4. Another point of view using the Gauss map

We have previously defined the Gauss map u : Ω −→ S2 of an im-
mersion X, allowing us later on to characterize the second fundamental
form and the lift F . There is more to this than one might expect, thanks
to the following result.

Theorem 1 (Ruh-Vilms). Let X be a conformal immersion. Then
X has constant or zero mean curvature if and only if its Gauss map u is
a harmonic map into the unit sphere, i.e. u is a solution of the equation

(8) ∆u + u|∇u|2 = 0.

Among harmonic maps into the sphere, one should single out two
particular subclasses, namely the holomorphic and antiholomorphic maps
(solutions to i∂zu = u× ∂zu and i∂zu = −u× ∂zu, respectively). In the
case where u is holomorphic, X is proportional to u, and its image Σ is
a piece of a sphere. If u is antiholomorphic, then X is minimal. In the
remaining cases – the most interesting ones for us – X is a CMC surface
whose image does not lie in a sphere. In that latter case, the Ruh-Vilms
theorem can be improved on, in the sense that X can be reconstructed
from its Gauss map u (up to translations of course). This is achieved
through various formulae (Kenmotsu [20], Sym-Bobenko), or using the
procedure below. Rewrite equation (8) as a “closure” condition

∂x(u × ∂xu) + ∂y(u × ∂yu) = 0 .

This implies the existence of a map B : Ω −→ R
3 such that

∂xB = u × ∂yu, ∂yB = −u × ∂xu.

Then X = B + u.

Therefore, in order to build conformal CMC immersions, it suffices
to construct harmonic maps (which are neither holomorphic nor anti-
holomorphic), and this turns out to be easier.

We may analyze harmonic maps into the 2-sphere in an analogous
way to that in the previous section. Indeed let φ : Ω −→ SO(3) lift
u in the following sense: φ(z) = (e1(z), e2(z), u(z)) where (e1(z), e2(z))
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is any oriented orthonormal basis of Tu(z)S
2. Its Maurer-Cartan form

α := φ−1dφ splits into two pieces α = α0 + α1 where

α0 := 〈de1, e2〉





0 −1 0
1 0 0
0 0 0



 .

Further, we decompose as above α1 in its (1,0) and (0,1) parts α′
1 + α′′

1 ,
and set αλ = λ−1α′

1 + α0 + λα′′
1 for any λ ∈ C

⋆. Then u is harmonic if
and only if

(9) dαλ + αλ ∧ αλ = 0 ∀λ ∈ C
⋆.

Reciprocally, the condition (9) on a simply connected domain Ω ensures
the existence for any λ ∈ C

⋆ of a map φλ : Ω −→ SO(3) such that
dφλ = φλαλ, and consequently of a map uλ.

This characterization of harmonic maps was obtained by K. Pohlmeyer
[29], V. E. Zhakarov, A. B. Shabat [37] and K. Uhlenbeck [35], following
a different approach, inspired by the theory of integrable systems.

§3. Harmonic maps: a completely integrable system

3.1. Introducing loop groups

The most efficient way to deal with harmonic maps u : Ω −→ S2

is to work with the family of maps φλ constructed above. For the sake
of simplicity let us assume (without loss of generality) that 0 ∈ Ω and
φ(0) = 1l. From now on λ will be a non-zero complex number, unless
specified otherwise. Recall from equation (9) the existence of a unique
map φλ : Ω −→ SO(3) (for fixed λ) such that

(10) dφλ = φλαλ and φλ(0) = 1l.

Setting

P :=





1 0 0
0 1 0
0 0 −1



 ,

we define a Lie algebra involution by τ : ξ 7→ PξP−1, and observe that

τ(αλ) = α−λ ∀λ.
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Hence5

(11) τ(φλ) := PφλP−1 = φ−λ.

To verify this we set φ̃λ := τ(φ−λ). Then φ̃−1
λ dφ̃λ = τ(φ−1

−λdφ−λ) =
τ(α−λ) = αλ; we conclude the proof by a uniqueness argument.

For this reason we consider the loop group

LSO(3) := {S1 ∋ λ 7→ gλ ∈ SO(3)},

with group law being pointwise multiplication, and its twisted subgroup

LSO(3)τ := {S1 ∋ λ 7→ gλ ∈ SO(3) | τ(gλ) = g−λ}.

The family of maps (φλ)λ∈S2 may therefore be considered as a single
map φλ : Ω −→ LSO(3)τ . The construction of harmonic maps from Ω
to S2 amounts to finding maps φλ : Ω −→ LSO(3)τ such that φ−1

λ dφλ =
λ−1α′

1 + α0 + λα′′
1 .

Remark. The involution τ gives us a clear explanation for the splitting
α = α0 + α1. Indeed τ is a Lie algebra automorphism (τ([ξ, η]) =
[τ(ξ), τ(η)]), which squares to the identity. We may hence decompose
the Lie algebra so(3) as the sum of two eigenspaces so(3)0 ⊕ so(3)1
associated respectively to the eigenvalues (−1)0 and (−1)1. Thus αn is
just the projection of α on the so(3)n term.

3.2. Weierstrass-type representation à la Dorfmeister, Pedit

and Wu

As an application of the formalism introduced above, we describe
here an algebraic algorithm for constructing all harmonic maps Ω −→ S2

(where Ω is simply connected) starting with holomorphic data. This
construction is due to Dorfmeister, Pedit and Wu [9].

Step 1: choosing a potential. Let a, b : Ω −→ C be holomorphic
maps, and define a matrix-valued (actually loop algebra-valued) holo-
morphic 1-form

µλ = λ−1





0 0 a
0 0 b
−a −b 0



 dz

which we call the potential.

5We use the same letter τ to denote a group automorphism and its dif-
ferential at the identity, acting on the Lie algebra.
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Step 2: integrating µλ. The potential trivially satisfies dµλ + µλ ∧
µλ = 0, which is the necessary and sufficient condition for the existence
of gλ : Ω −→ LSO(3)C

τ such that6 dgλ = gλµλ.

Step 3: splitting. We write gλ as a product φλbλ, with φλ : Ω →
LSO(3)τ and bλ : Ω −→ L+SO(3)C

τ , where L+SO(3)C
τ is the subgroup

consisting of loops bλ ∈ LSO(3)C
τ that are the restriction of holomorphic

maps (in λ) from the closed unit disk to SO(3)C.

The map φλ produced in this way is a lift (in the sense of the previous
section) of a harmonic map into the sphere.

A few comments are necessary.

a) The least obvious and most complex operation in the algorithm is
the decomposition gλ = φλbλ. It rests upon a difficult theorem from A.
Pressley and G. Segal [30], stating more precisely that any loop gλ ∈
LSO(3)C can be written uniquely as the product of φλ ∈ LSO(3) and
bλ ∈ L+SO(3)C (hence the decomposition of maps is done pointwise in
z). J. Dorfmeister, F. Pedit and H.-Y. Wu call this decomposition the
Iwasawa decomposition, for it is an infinite dimensional analog of the
classical Iwasawa decomposition (whose prototype is the Gram-Schmidt
theorem: any real matrix is the product of an orthogonal matrix by an
upper triangular one).

b) This algorithm accounts for the construction of almost all harmonic
maps. Actually J. Dorfmeister, F. Pedit and H.-Y. Wu show how to
associate to any harmonic map a unique such potential µλ where the data
(a, b) is meromorphic, albeit with non accumulating poles. There are
other constructions along the same lines which avoid using meromorphic
data (at some cost though).

c) The algorithm parallels the Enneper-Weierstrass representation for-
mula (hence its name). Indeed µλ is the analog of

fλdz := λ−2













i
2 (w2 − 1)

1
2 (w2 + 1)

iw













hdz,

6LSO(3)C
τ is the complexification of LSO(3)τ . As a matter of fact

LSO(3)C
τ := {S1 ∋ λ 7→ gλ ∈ SO(3)C | τ(gλ) = g

−λ} where SO(3)C :=
{M ∈ M(3, C)| tMM = 1l and det M = 1}.
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The map gλ obtained from µλ corresponds to the (standard) integral
∫ z

fλdz (actually both integrals have the same expression, but the latter
takes place in an abelian group). Finally the Iwasawa decomposition
reduces to taking the real part. Notice that the analogy is not only in
spirit, but that under some conditions, the DPW algorithm reduces to
the Enneper-Weierstrass representation formula.

3.3. Generalizations

The result of J. Dorfmeister, F. Pedit and H.-Y. Wu applies to any
harmonic map from a simply connected Ω ⊂ C to a symmetric space
G/H, with G compact semisimple. In [15] the first author has built
a similar theory for Willmore surfaces. Recall the definition: for any
surface Σ immersed in R

3, we define the Willmore functional as

W(Σ) :=

∫

Σ

H2da,

where H denotes as usual the mean curvature. The critical points of
this functional satisfy the fourth order PDE

∆ΣH + 2H(H2 − K) = 0,

where K is the Gaussian curvature, and they are called Willmore sur-
faces. Actually this problem had been tackled ten years earlier by
K. Voss. Later on it was realized that G. Thomsen had also studied
it in 1923 [34], and many important results on these surfaces can be
found in W. Blaschke’s book [4] (however in 1929, Willmore was only
ten years old and Blaschke could not possibly guess that his “conformal
minimal surfaces” would become famous under the name of Willmore
surfaces). Let us add that S. Germain had already considered the same
problem early in the 19th century.

The crucial property of Willmore surfaces is the invariance under
conformal transformations of R

3∪{∞} (also known as the Möbius group
of S3, which is isomorphic to the connected component of the identity
in SO(4, 1)). This group has dimension 10, and is generated by the
translations, dilations and inversions of R

3. Invariance means that for
any surface Σ without boundary and any Möbius transformation T ,
W(T (Σ)) = W(Σ). Consequently the Willmore problem does not rely
on the Euclidean structure of R

3 but rather on its conformal structure.
Since R

3 is (locally) conformally equivalent to the sphere S3 or the
hyperbolic space H3, the (local) theory of Willmore surfaces is identical
in all three spaces.
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Another important property (rediscovered by R. Bryant [6], though
already known to Blaschke) is the existence of the conformal Gauss map,
a notion akin to the classical Gauss map of Euclidean geometry, but
adapted to conformal geometry. This map takes values in the set S3,1

of oriented spheres and planes of R
3 (the notation S3,1 will be explained

below). If Σ is an oriented surface in R
3, the conformal Gauss map γ

maps any point m to the unique sphere or plane tangent to Σ at m such
that their mean curvature vectors coincide — or equivalently with the
same orientation and mean curvature. Note that the mean curvature of
a sphere is the inverse of its radius; hence the conformal Gauss map is
a plane if and only if H vanishes.

A study of conformal geometry shows that the set of oriented spheres
and planes of R

3 is canonically isomorphic to

{y ∈ R
4,1 | |y|2 = −(y0)2 + (y1)2 + (y2)2 + (y3)2 + (y4)2 = 1}

which is indeed the unit sphere in Minkowski space R
4,1, hence the

notation. The set S3,1 has a natural pseudo-riemannian structure, and
is also a symmetric space, being written as SO(4, 1)/SO(3, 1).

All this construction is motivated by the following analog of the
Ruh-Vilms theorem.

Theorem 2 ([4], [6]). Let X : Ω → Σ be a conformal parametriza-
tion of a surface in R

3 or S3, and γ : Ω → S3,1 its conformal Gauss
map. Then

• γ is weakly conformal, namely for any z ∈ Ω, γ is conformal
at z or dγz = 0,

• Σ is a Willmore surface if and only if γ is harmonic.

This suggests immediately a strategy for analyzing and constructing
Willmore surfaces, by analogy to the theory of CMC surfaces. One
should study harmonic maps from Ω to S3,1 and deduce from them
conformal Willmore immersions. However it is trickier to reconstruct
the Willmore immersion from the conformal Gauss map than the CMC
surface from the classical Gauss map. Although feasible in principle,
singularities may arise at umbilic points, hence the difficulties. See [15]
for details.

A slightly different strategy proposed in [15] allows us to avoid the
problem with the umbilic points. It relies on another kind of Gauss
map: for that purpose we choose X̂ : Ω −→ S3 any map such that
X(z) 6= X̂(z), ∀z ∈ Ω. Now there is a canonical way to associate to
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each pair of disjoint points in S3 a 3-dimensional spacelike subspace
in R

4,1. Thus the pair (X, X̂) : Ω −→ S3 × S3 induces a map Z :
Ω −→ Gr3(R

4,1), where Gr3(R
4,1) is the Grassmannian of 3-dimensional

spacelike subspaces contained in R
4,1. Of course another choice X̂ ′ in

place of X̂ would lead to another map Z ′ and one goes from Z to Z ′

through a gauge transformation parametrized by a map in C∞(Ω, R2).
The key point here is that Gr3(R

4,1) = SO0(4, 1)/SO(3) × SO(1, 1),
so that any map Z can be lifted to a map φ : Ω −→ SO0(4, 1); then
the Maurer-Cartan form ω := φ−1dφ can be deformed into a form ωλ =
λ−1ω′

1+ω0+λω′′
1 , which is curvature–free if and only if X is a conformal

Willmore immersion. Therefore we see a way to rely on the results of
J. Dorfmeister, F. Pedit and H.-Y. Wu. Note that here ω′

1 is not a
(1, 0)-form in general, except for special gauge choices of Z (which can
be achieved only locally in general).

§4. Another example of integrable system in geometry: Hamil-

tonian stationary Lagrangian surfaces

We will describe now another integrable system which also corre-
sponds to a variational problem in differential geometry, and shares
many traits with the problems seen above. Nevertheless this new system
cannot be reduced to the study of a harmonic map via some Gauss map,
as was the case for CMC or in spirit for Willmore surfaces. Details of
this work can be found in [17, 18, 19].

4.1. Hamiltonian stationary Lagrangian submanifolds

A symplectic manifold is a (real) even-dimensional manifold M2n

endowed with a closed 2-form ω that is non-degenerate, i.e. for any
point m ∈ M , and any covector α ∈ T ∗

mM there exists a unique vector
V ∈ TmM such that ω(V, .) = α. The form ω is called a symplectic
form. Hereafter we will consider manifolds that are also endowed with
a Riemannian metric g, compatible with ω in the sense that the tensor
field J defined by g(JV,W ) = ω(V,W ) for any V,W ∈ TmM is an
almost-complex structure, i.e. J2 = −1l.

The simplest example is R
2n with the standard scalar product 〈 . , . 〉

and the symplectic form

ω := dx1 ∧ dy1 + · · · + dxn ∧ dyn.

The corresponding almost-complex structure J is actually complex (mean-
ing that R

2n ≃ C
n is indeed a complex manifold); it is given in the
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(x1, y1, . . . , xn, yn) coordinates by the matrix














0 −1 . . . 0 0
1 0 . . . 0 0
...

...
...

...
0 0 . . . 0 −1
0 0 . . . 1 0















.

The metric and symplectic structures merge into the standard Hermitian
product 〈 . , . 〉H := 〈 . , . 〉 − iω( . , . ) . As a consequence, the group of
linear transformations of R

2n preserving both the scalar product and
the symplectic form is U(n), the group which preserves the Hermitian
product.

We now mix both structures to set up a variational problem. Using
the metric g, one defines the volume of any immersed submanifold Σ
of M, A(Σ) :=

∫

Σ
dVol . We study critical points of this functional but

restricted to (i) Lagrangian submanifolds Σ and (ii) Hamiltonian varia-
tions (which in particular preserve the condition of being Lagrangian).
A Lagrangian submanifold of (M, ω) is a submanifold Σ of dimension n
such that the restriction of ω to Σ vanishes: ω|Σ = 0. Equivalently, using
the almost-complex structures, JTmM is orthogonal to TmM for any
m ∈ M. A vector field V on M is said to be Hamiltonian if there exists
h ∈ C∞(M, R) such that dh(.) = ω(V, .) (in other words V = −J∇h).
We write then V = ξh and call V the symplectic gradient of h. It is easy
to show that the flow of a Hamiltonian vector field preserves Lagrangian
submanifolds, i.e. the image of a Lagrangian submanifold by the flow is
again a Lagrangian submanifold.

A Hamiltonian stationary Lagrangian submanifold is a Lagrangian
submanifold such that the volume is constant up to first order for any
Hamiltonian variation: for any h ∈ C∞(M, R), δA(ξh) = 0. In general
this notion is weaker than minimality (for a Lagrangian submanifold).
Indeed let H be the mean curvature vector. By definition it is the unique
normal vector field along Σ such that for any infinitesimal variation V
of Σ,

δA(Σ)(V ) =

∫

Σ

g(H, V )dVol .

Then a Hamiltonian stationary Lagrangian submanifold is a solution to
the following system

(12)







ω|Σ = 0
∫

Σ

g(JH,∇h)dVol = 0, for any h ∈ C∞(M, R)
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Examples

a) In R
2 the symplectic form is just the volume form dx ∧ dy. For

dimensional reasons, any curve is Lagrangian. The minimal curves are
the straight lines, but Hamiltonian stationary curves are the critical
points of length for area-preserving variations. Thus these are straight
lines and circles. In this case the problem of Hamiltonian stationary
Lagrangian submanifolds is akin to the isoperimetric problem.

b) In R
4 an example of Hamiltonian stationary Lagrangian surface

is the flat torus

S1 × S1 = {(x1, y1, x2, y2) ∈ R
4 | (x1)2 + (y1)2 = (x2)2 + (y2)2 = 1

2}.

In [27], Y. G. Oh has conjectured that this torus minimizes area among
all tori obtained from it through Hamiltonian deformations. Under reg-
ularity assumptions, a proof of that conjecture has been obtained by H.
Anciaux [2].

4.2. Characterizing Hamiltonian stationary submanifolds

In order to understand further the geometry of these submanifolds,
we need a better formulation than (12) for the variational problem, and
in particular for the mean curvature vector.

Considering first the case M = R
2n ≃ C

n, let us tackle the problem
from the Ruh-Vilms theorem angle and connect it to the Gauss map
of a Lagrangian immersion. Obviously this map takes values in the
Grassmannian of oriented Lagrangian n-planes

GrLag(Cn) ≃ U(n)/SO(n) ≃ U(1) × (SU(n)/SO(n)).

The Gauss map we will consider is the map γ : Σ → GrLag(Cn) sending
each m ∈ Σ to its oriented tangent space γ(m) = TmΣ. As mentioned
above, GrLag splits into two parts and we can write γ = (eiβ , γ̃) where
eiβ (respectively, γ̃) takes values in U(1) (respectively, SU(n)/SO(n)).
The R/2πZ-valued map β is called the Lagrangian angle and we claim
it is the only relevant part of the Gauss map, as far as Hamiltonian
stationary submanifolds are concerned.

Lemma 1. Let Σ be a Lagrangian submanifold. Then the mean
curvature vector of Σ is

H = J∇β,

where eiβ is the U(1) component of the Gauss map.
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Note that, even if β is only defined modulo 2π, its gradient is well-
defined everywhere. Finally we apply lemma 1 to equation (12) to con-
clude that

∫

Σ

g(JH,∇h)dVol = −

∫

Σ

g(∇β,∇h)dVol =

∫

Σ

h∆Σβ dVol .

Hence:

Theorem 3. A Lagrangian submanifold Σ of C
n is Hamiltonian

stationary if and only if

(13) ∆Σβ = 0

Despite its compact form, this equation is a third order nonlinear
PDE. Indeed the operator ∆Σ depends (nonlinearly) on the immersion
X, and β depends on the first order derivatives of X.

One may wonder how to extract painlessly the angle β. Simply pick
any oriented orthonormal frame (e1, . . . , en) of TmΣ; then

eiβ = θ(e1, . . . , en) where θ = dz1 ∧ . . . ∧ dzn .

This characterization offers a seamless generalization to Calabi-Aubin-
Yau manifolds. These manifolds are complex Kähler manifolds (i.e. the
almost-complex structure is complex and parallel) with flat Ricci tensor.
As a crucial consequence, the canonical bundle is flat. Recall that the
canonical bundle of a complex manifold is the (complex) one-dimensional
bundle K of (n, 0)-forms (locally generated by dz1∧. . .∧dzn). The metric
induces a connection on K whose curvature is a multiple of the Ricci
form ρ = Ric(J . , . ); hence the flatness of K. Consequently there exists
a (local) nonzero parallel section θ of K, which generalizes dz1∧. . .∧dzn,
and we define the Lagrangian angle in the same fashion.

The definition of Lagrangian angle along a Lagrangian submanifold
can also be extended to Kähler-Einstein manifolds (see [36]). In that
case the Ricci tensor is a multiple of the metric, and consequently the
Ricci form is proportional to the symplectic form ω. Thus the curvature
of the canonical bundle vanishes along a Lagrangian submanifold. We
can define a parallel section θ along Σ only (not on the whole manifold)
and give meaning to the Lagrangian angle. Then again H = J∇β.

4.3. Hamiltonian stationary Lagrangian surfaces in R
4

We specialize now to Lagrangian surfaces in R
4 ≃ C

2. In this case
we may assume without loss of generality that the surface is given by a
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conformal immersion X : Ω → R
4. A usual we take Ω to be a simply

connected domain in the plane.

Inspired by the previous constructions for CMC surfaces, we build
a moving frame (e1, e2) in R

4 such that

(14)

{

〈ea(z), eb(z)〉 = δab

ω(e1(z), e2(z)) = 0
⇐⇒ 〈ea(z), eb(z)〉H = δab

for any z ∈ Ω. In other words (e1, e2) is an unitary basis of C
2 over

C, or (e1, e2) are the columns of a matrix in U(2). That way we have
constructed a map F : Ω → U(2) ⋉ C

2 lifting X, defined by

F (z) :=

(

e1(z) e2(z) X(z)
0 0 1

)

.

Before going further we need to understand what we are looking for.
If we lift X into U(2) ⋉ C

2 (using Darboux frames for instance), the
lift F will include first order information on X and the Euler-Lagrange
equation (13) will be reduced to second order (as in the harmonic map
case). If we hope to go one step further, it is judicious to lift the pair
(X, γ) – which takes values in (U(2)⋉C

2)/SO(2) – where γ is the Gauss
map defined above. Since (X, γ) contains first order data (on X), the
lift should contain second order derivatives. Such a solution is feasible
but hardly optimal; indeed the only relevant part of the Gauss map is
the Lagrangian angle. So we want to lift the pair (X, eiβ), which is a
U(2) ⋉ C

2/SU(2) map.

To achieve this, we require from the lift F (defined as above) that

θ(e1, e2) = eiβ where β is the Lagrangian angle along Σ.

From now on, the lift will always be such (and we call it a Lagrangian
lift). Let α := F−1dF be the Maurer-Cartan form, taking values in the
Lie algebra of U(2)⋉C

2, g = u(2)⊕C
2. To have a better understanding

of the geometry of this Lie algebra, we introduce the matrix

K :=













0 0 −1 0 0
0 0 0 1 0
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 1













,

(recall that although we write U(2) we always think of real matrices),
and define an automorphism τ on U(2) ⋉ C

2 by g 7→ KgK−1. Abusing
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notation we write τ again for its differential at identity, acting linearly on
g. Since τ4 = id , its action diagonalizes on g

C = (u(2)⊕C
2)C which splits

into four eigenspaces g
C

ℓ for each eigenvalue iℓ, where ℓ ∈ {−1, 0, 1, 2}.
So we may write

α = α−1 + α0 + α1 + α2 .

As a direct consequence of the choice of lift, each component has a
geometrical meaning: α±1 contain 〈dX, ea〉, α0 contains the su(2) part,
and α2 is more or less dβ, indeed this is the second order information
we aimed at. As in the harmonic map case we can split into dz and dz̄
parts, writing αℓ = α′

ℓ +α′′
ℓ . We read off the splitting all the geometrical

properties we need.

Theorem 4. a) The Lagrangian immersion X is conformal if and
only if α′

1 = α′′
−1 = 0.

b) Let X be a conformal Lagrangian immersion, then X is Hamiltonian
stationary if and only if

(15) dαλ + αλ ∧ αλ = 0, for any λ ∈ S1 ⊂ C,

where
αλ := λ−2α′

2 + λ−1α−1 + α0 + λα1 + λ2α′′
2 .

Equation (15) puts forward a family of deformations of α = F−1dF
in a manner similar to what happens in the CMC or harmonic case. In
particular, (15) is the necessary and sufficient condition for the existence
of Fλ : Ω → U(2) ⋉ C

2 such that dFλ = Fλαλ; and each Fλ yields
by projection on C

2 a conformal Hamiltonian stationary Lagrangian
immersion Xλ.

This result shows that the Hamiltonian stationary problem is an
integrable system. We may at that point use appropriate tools like the
twisted loop groups

L(U(2) ⋉ C
2)τ := {S1 ∋ λ 7→ gλ ∈ U(2) ⋉ C

2 | τ(gλ) = giλ},

and obtain essentially the same results as for CMC surfaces: a Weierstrass-
type formula and a classification of all tori (which are of finite type
again).

4.4. Generalization to other symmetric spaces

Switching from flat R
4 to other Hermitian symmetric spaces of di-

mension 2 (CP 2, CP 1 × CP 1 and their non-compact duals), it remains
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true that Hamiltonian stationary Lagrangian surfaces are the solutions
of an integrable system, even if the Lagrangian angle is not anymore
globally defined (since these manifolds are not Calabi-Aubin-Yau) [19].
Nevertheless the Lagrangian angle can be defined along the surface only,
because the manifolds are Kähler-Einstein. Furthermore, the integrable
system retains the same structure; the only change lies in the Lie algebra
g in which the Maurer-Cartan form takes values. For instance, we write
the complex projective plane as CP 2 = SU(3)/U(2) and g = su(3). As
above, we have a notion of an “appropriate” lift of (X, eiβ), and also an
order four automorphism with the same geometric properties. All results
hold, up to the loop group splittings which depend on the compactness
of g; at that point we have either global or local results, according to
the space under consideration.

The case of Lagrangian surfaces in CP 2 deserves special attention
due to its relation with conical singularities of Lagrangian surfaces in
complex 3-manifolds. Indeed such singularities have a limit cone C ⊂
C

3 whose intersection Σ̂ with the unit sphere is a Legendrian surface,
namely the tangent plane at any m ∈ Σ̂ ⊂ S5 is orthogonal to both m
and im. This is a contact condition: Σ̂ is tangent to a four dimensional
non integrable distribution in S5. The Hopf fibration π : S5 → CP 2

projects Legendrian surfaces down to Lagrangian surfaces. Conversely,
any (simply connected) Lagrangian surface admits a unique Legendrian
lift through π, up to a multiplicative constant, giving rise to a Lagrangian
cone in C

3. Moreover Hamiltonian stationarity is preserved from the
cone to the projected surface in CP 2. So is minimality, so that special-
Lagrangian cones in C

3 correspond to minimal Lagrangian surfaces in
CP 2, a subcase of our integrable system. Notice that an intermediate
integrable system can be written for Legendrian surfaces in S5.

4.5. Another approach for Lagrangian surfaces in R
4

Finally let us inspect more carefully Hamiltonian stationary La-
grangian surfaces in R

4. Using the splitting g
C = g

C
−1 + g

C
0 + g

C
1 + g

C
2 ,

equation (15) uncouples to yield (almost) linear systems. It turns out
that constructing such surfaces amounts to solving consecutively two
linear PDEs, and integrating, a procedure much simpler than the infi-
nite dimensional methods described previously. Even more, this process
applies actually to Lagrangian surfaces themselves, not only the station-
ary ones. Before we proceed with the construction, let us point out its
limitations: since the decoupling relies upon commutation properties, it
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will never apply to other Hermitian symmetric spaces like CP 2, nor to
the CMC case.

The simplest way to obtain these results consists in taking a par-
ticular lift F among the Lagrangian lifts of (X, eiβ) (X is as usual a
conformal Lagrangian immersion, not necessarily stationary). Indeed,
choose F = (eiβǫ1, e

iβǫ2, X) or (−eiβǫ1,−eiβǫ2, X), where (ǫ1, ǫ2) is any
unitary basis. Clearly F satisfies our axiom from section 4.3. We may
actually write

e−Jβ/2dX = Re

[(

s1

−is1

)

dz

]

+ iRe

[(

s2

is2

)

dz

]

,

where s1 and s2 are complex-valued functions. If we set

φ :=

(

s1

s̄2

)

,

then φ satisfies the Dirac-type equation

(16) Dφ = Mφ,

where

D :=

(

0 ∂/∂z
−∂/∂z̄ 0

)

and M :=
1

2

(

∂β/∂z̄ 0
0 ∂β/∂z

)

.

Reciprocally, given any map β : Ω → R and any φ solution of (16), then
the C

2-valued one-form

ξ := eJβ/2 Re

((

s1

−is1

)

dz

)

+ ieJβ/2 Re

((

s2

is2

)

dz

)

is closed: dξ = 0. Thus there is a map X : Ω → C
2 ≃ R

4 such that
dX = ξ and whenever φ does not vanish, X is a conformal Lagrangian
immersion. Furthermore, X is Hamiltonian stationary if and only if β
is harmonic.

An alternative approach was developped by R. Aiyama [1]. We
explain here the connection with our framework. Write

X =: eiβ/2

(

a + b

i(a − b)

)

, and Φ :=

(

a + b
i(a − b)

)

.

Clearly the components of the immersion X can be expressed in terms
of Φ and β without integration. But Φ satisfies also a Dirac equation:
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DΦ = −MΦ. The variables Φ and φ are related by

φ = (D + M)

(

0 −1
1 0

)

Φ.

We obtain in this way a Weierstrass representation of sorts for Lagran-
gian surfaces in R

4. Analogous formulations have already been suggested
for surfaces in R

3, extending the Enneper-Weierstrass formula to the
non-minimal case; see for instance the work of B. G. Konopelchenko [21].
It is quite instructive to compare his representation formula with the one
for Lagrangian surfaces we have just obtained. The representation for-
mula of B. G. Konopelchenko consists in choosing a real-valued function
p on Ω, called the potential, and a map φ : Ω → C

2 (actually a spinor)
such that Dφ = pφ (with the same notation as before). Then the R

3-
valued one-form

η := Re





s2
1dz − s̄2

2dz̄
−i(s2

1dz − s̄2
2)dz̄

s1s2dz + s1s2dz̄





satisfies dη = 0. Hence the existence of a map Y : Ω → R
3 such

that dY = η; furthermore Y is a weakly-conformal immersion with first
fundamental form

I = (|s1|
2 + |s2|

2)2
(

1 0
0 1

)

and mean curvature given by 2p = H(|s1|
2 + |s2|

2).

However both formulae differ deep inside in that the quantities in-
volved (φ, β, p) are of a different nature in each problem (e.g. p is a
density while β is a function), and also because one is quadratic while
the other is essentially linear. Still there are interesting analogies and
in some particular cases, both Dirac equations coincide. Thus some
Lagrangian surfaces in R

4 correspond to some surfaces in R
3.

This Dirac-like approach yields quite simple expressions in the Hamil-
tonian stationary case. Notably it leads to a complete description of all
such tori in R

4. Using this representation, H. Anciaux [2] has obtained
precise isoperimetric estimates in relation to Oh’s conjecture.

§5. Conclusion

In this survey, we have exhibited only some aspects of integrable
systems theory, and skipped interesting developments such as finite type



22 F. Hélein and P. Romon

solutions (e.g. all CMC tori have finite type, as shown by U. Pinkall
and I. Sterling [28] (see also [16])), the dressing action, and so on. We
have also given few examples. For more details of the general theory
see [13, 33, 16]; for Hamiltonian stationary Lagrangian surfaces, see
[17, 18, 19].
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Bianchi, Sitzungsber. der Bayer. Akad. (1884).
[23] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves,

Comm. Pure. Appl. Math. 21 (1968), 467–490.
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CMLA, ENS de Cachan
61 avenue du Président Wilson
94235 Cachan Cedex
FRANCE

Pascal Romon
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